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Abstract

Proofs, detailed description of the MCMC algorithm and additional results for the paper

“A Bayesian quantile time series model for asset returns”

A Parameter values for simulations

(0, 0.01) (0.01,0.025) (0.025, 0.05) (0.05, 0.125) (0.125, 0.25) (0.25, 0.375) (0.375, 0.5)
µ− 0.27 0.27 0.27 0.27 0.06 0.03 0.015
β− 0.845 0.845 0.845 0.845 0.9 0.9 0.9
γ− 0.14 0.14 0.14 0.14 0.09 0.09 0.095

(0.5, 0.625) (0.625, 0.75) (0.75, 0.875) (0.875, 0.95) (0.95, 0.975) (0.975, 0.99) (0.99, 1)
µ+ 0.015 0.03 0.06 0.27 0.27 0.27 0.27
β+ 0.9 0.9 0.9 0.845 0.845 0.845 0.845
γ+ 0.095 0.09 0.09 0.14 0.14 0.14 0.14

Table 1: Parameter values for the simulated B-JSAV(1, 1) process
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(0, 0.01) (0.01,0.025) (0.025, 0.05) (0.05, 0.125) (0.125, 0.25) (0.25, 0.375) (0.375, 0.5)
µ− 0 0.0125 0.01 0.0075 0.08 0.08 0.075
β− 0.94 0.945 0.955 0.965 0.9 0.9 0.9
γ− 0.06 0.05 0.04 0.03 0.09 0.09 0.09

(0.5, 0.625) (0.625, 0.75) (0.75, 0.875) (0.875, 0.95) (0.95, 0.975) (0.975, 0.99) (0.99, 1)
µ+ 0.075 0.07 0.07 0.0023 0.0025 0.0028 0.0324
β+ 0.9 0.9 0.9 0.82 0.8 0.75 0.7
γ+ 0.09 0.09 0.09 0.175 0.195 0.245 0.246

Table 2: Parameter values for the simulated B-JSSV(1, 1) process
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B Proofs

B.1 Proof of Theorem 3.1

Let Y ∼ F, where F = LIT(θ−, θ+, F0, a) then

E[y`] =

∫
y`f(y) dy

=

K∑
i=1

∫ x−i−1

x−i

y`g(y)f0(G(y)) dy +

K∑
i=1

∫ x+i

x+i−1

y`g(y)f0(G(y)) dy

=
K∑
i=1

∫ G(x−i−1)

G(x−i )
(G−1(z))`f0(z) dz +

K∑
i=1

∫ G(x+i )

G(x+i−1)
(G−1(z))`f0(z) dz

=
K∑
i=1

∫ Q0(1/2−ai−1)

Q0(1/2−ai)
(x−i−1 + θ−i (z −Q0(1/2− ai−1)))`f0(z) dz

+

K∑
i=1

∫ Q0(1/2+ai)

Q0(1/2+ai−1)
(x+i−1 + θ+i (z −Q0(1/2 + ai−1))

`f0(z) dz

=

K∑
i=1

∫ Q0(1/2−ai−1)

Q0(1/2−ai)
(x−i−1 − θ

−
i Q0(1/2− ai−1) + θ−i z)

`f0(z) dz

+
K∑
i=1

∫ Q0(1/2+ai)

Q0(1/2+ai−1)
(x+i−1 − θ

+
i Q0(1/2 + ai−1) + θ+i z)

`f0(z) dz

=
K∑
i=1

∫ Q0(1/2−ai−1)

Q0(1/2−ai)

∑̀
j=0

 `

j

 (x−i−1 − θ
−
i Q0(1/2− ai−1))`−j(θ−i )jzjf0(z) dz

+
K∑
i=1

∫ Q0(1/2+ai)

Q0(1/2+ai−1)

∑̀
j=0

 `

j

 (x+i−1 − θ
+
i Q0(1/2 + ai−1))

`−j(θ+i )jzjf0(z) dz

=

K∑
i=1

∑̀
j=0

 `

j

 (x−i−1 − θ
−
i Q0(1/2− ai−1))`−j(θ−i )j

∫ Q0(1/2−ai−1)

Q0(1/2−ai)
zjf0(z) dz

+
K∑
i=1

∑̀
j=0

 `

j

 (x+i−1 − θ
+
i Q0(1/2 + ai−1))

`−j(θ+i )j
∫ Q0(1/2+ai)

Q0(1/2+ai−1)
zjf0(z) dz
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B.2 Proof of Theorem 3.2

E[|Y |] =

∫
|y|f(y) dy =

∫
|y|g(y)f0(G(y)) dy

=

K∑
i=1

∫ x−i−1

x−i

|y|g(y)f0(G(y)) dy +

K∑
i=1

∫ x+i

x+i−1

|y|g(y)f0(G(y)) dy

=
K∑
i=1

∫ G(x−i−1)

G(x−i )
|G−1(z)|f0(z) dz +

K∑
i=1

∫ G(x+i )

G(x+i−1)
|G−1(z))|f0(z) dz

=−
K∑
i=1

∫ Q0(1/2−ai−1)

Q0(1/2−ai)
(x−i−1 + θ−i (z −Q0(1/2− ai−1)))f0(z) dz

+

K∑
i=1

∫ Q0(1/2+ai)

Q0(1/2+ai−1)
(x+i−1 + θ+i (z −Q0(1/2 + ai−1))f0(z) dz

=−
K∑
i=1

(ai − ai−1)(x−i−1 − θ
−
i Q0(1/2− ai−1))− θ−i

K∑
i=1

I−i,1

+
K∑
i=1

(ai − ai−1)(x−i−1 + θ+i Q0(1/2 + ai−1)) + θ+i

K∑
i=1

I+i,1

=−
K∑
i=1

θ−i

(
(1/2− ai)Q0(1/2− ai)− (1/2− ai−1)Q0(1/2− ai−1) + I−i,1

)
+

K∑
i=1

θ+i

(
(1/2− ai)Q0(1/2 + ai)− (1/2 + ai−1)Q0(1/2 + ai−1) + I+i,1

)
=Φθ,

where Φ is a (1× 2K)-dimensional vector with terms

Φi =

 −(1/2− ai)Q0(1/2− ai) + (1/2− ai−1)Q0(1/2− ai−1)− I−i,1, 1 ≤ i ≤ K

(1/2− ai)Q0(1/2 + ai)− (1/2− ai−1)Q0(1/2 + ai−1) + I+i,1, K + 1 ≤ i ≤ 2K,

and

θ =
(
θ−K , . . . , θ

−
1 , θ

+
1 , . . . , θ

+
K

)
.
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B.3 Proof of Theorem 4.1

Define θ?t = (θt+1, . . . , θt−N+2) if L = 1 or θ?t = (θt+1, . . . , θt−N+2, |yt|, . . . , |yt−L+2|)T

if L > 1. Then

θ?t = µ? +Atθ
?
t−1

where µ? T = (µ01×(2K(L−1)+N)).

This is a generalised autoregressive model with i.i.d. coefficients (Bougerol and Picard

1992) which implies that

θ?t = µ? +
k−1∑
i=1

i∏
j=1

At−jµ
? +

k∏
j=1

At−jθ
?
t−k

and taking expectations leads to

E [θ?t ] = µ? +
k−1∑
i=1

i∏
j=1

E [At−j ]µ
? +

k∏
j=1

E [At−j ] E
[
θ?t−k

]
= µ? +

k−1∑
i=1

Aiµ? +AkE
[
θ?t−k

]

where A = E [At] and

E [θ?t ] =
∞∑
i=0

Aiµ? = (I −A)−1µ?

if the absolute value of the eigenvalues of A are all less than 1.

B.4 Proof of Corollary 4.1

Theorem 4.1 states that a B-JSAV(1,1) is weakly stationary if the eigenvalues of E[At] =

B1 + ΓE[Dt] + ∆1E[D̃t] are less than 1. Noticing that Γ, E[Dt], ∆1 and E[D̃t] are vectors

and applying Theorem 2.1 of Ding and Zhou (2007) twice gives the result.

B.5 Proof of Corollary 4.2

Row reduction of det(E[At]− λI) leads to the result.
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B.6 Proof of Theorem 4.2

Cline (2007) considers a time series θt ∈ Θ with the structure

θt = F (θt−1, εt),

where F : RK ×E→ Θ ⊂ RK and εt are i.i.d. errors with εt ∈ E for some Euclidean space

E and provides conditions for the process to be stationary. We then write

θt = B

(
θt−1
‖θt−1‖

, εt

)
‖θt−1‖+ C(θt−1, εt).

It is convenient to define the following notation. Let ψ̃t = θt
‖θt‖ and Ψ = {θ ∈ Θ|‖θ‖ =

1} and define w(ψ̃, u) = ‖B(ψ̃, u)‖ and η̃(ψ̃, u) = B(ψ̃,u)

‖B(ψ̃,u)‖ for ψ̃ ∈ Ψ, u ∈ E. Let

θ?t = B
(

θ?t−1

‖θ?t−1‖
, εt

)
‖θ?t−1‖ and define ψ̃?t =

θ?t
‖θ?t ‖

= η̃
(
ψ̃?t−1, εt

)
for ψ̃?t , ψ̃

?
t ∈ Ψ.

Theorem 3.4 of Cline (2007) establishes conditions for stationarity of θt under the fol-

lowing assumptions:

Assumption 1 The error sequence {εt} are i.i.d. with E(|εt|β) <∞ for some β > 0.

Assumption 2 (i) There exist b1 > 0, b2 ≤ 0, b̃ < ∞ and c̃(x) = o(‖x‖), as ‖x‖ such that

max(b1|u| − b2, 0) ≤ ‖B(ψ̃, u)‖ ≤ b̃(1 + |u|), for all u ∈ E and ψ̃ ∈ Ψ and

‖C(θ, u)‖ ≤ c̃(θ)(1 + |u|), for all u ∈ E and θ ∈ Θ.

(ii) For some finite K and a ∈ (0, 1], P (‖B(θ/‖θ‖, ε1)‖θ‖ + C(θ, ε1)‖ < δ‖θ‖) <

Kδa for all θ ∈ Θ such that ‖Θ‖ > 1, and for all δ ∈ (0, 1].

Assumption 3 {Xt} and {X?
t } are each aperiodic r-irreducible Markov chains, on X and X?, respec-

tively. Furthermore, bounded subsets of X are small for {Xt}, and subsets of X? that

are bounded and bounded away from {0} are small for {X?
t }.

Assumption 4 There exists a set Ψ#, open in Ψ = {θ ∈ Θ : ‖θ‖ = 1}, such that

(i) {B(·, u)}|u|≤M is equicontinuous on Ψ# for all finite M . That is, for each ε > 0
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and M < ∞, there exists δ > 0, such that |ψ̃ − ψ̃′| < δ, ψ̃, ψ̃′ ∈ Ψ# implies

‖B(ψ̃, u)−B(ψ̃′, u)‖ < ε, for all |u| ≤M .

(a) for each ε > 0, there exists L < ∞ such that P (ψ̃1 ∈ Ψ#, ψ̃
?
1 ∈ Ψ#|θ0 = θ) >

1− ε, for all θ ∈ Θ with θ/‖θ‖ ∈ Ψ# and ‖θ‖ > L, and

(b) for every ε > 0, there exists n ≥ 1 and L <∞ such that P (ψ̃n ∈ Ψ#|θ0 = θ) >

1− ε, for all θ ∈ Θ with ‖θ‖ > L.

Assumption 3 can also be checked using the following theorem proved by Cline

Theorem B.1 (Theorem 5.1 of Cline). Let {Xt} be a Markov process on X ⊂ RK with tran-

sition kernel T defined by T (x,A) = P (X1 ∈ A|X0 = x) and suppose that the following

three conditions hold

(i) For some k ≥ 1, T k(x, ·) is absolutely continuous for all x ∈ X and, hence, for each

n ≥ k, Tn(x, ·) is absolutely continuous with some density gn(x, ·).

(ii) For each x ∈ X there exists n ≥ k satisfying: there exists an open set A ⊂ X and

δ > 0 such that

inf
x̂:‖x̂−x‖<δ

gn(x̂, x̃) > 0 for x̃ ∈ A

(iii) There exists x̃ ∈ X satisfying: for each x ∈ X and δ > 0, there exists n ≥ k such that

P (‖Xn − x̃‖ < δ|X0 = x) > 0 and P (‖Xn+1 − x̃‖ < δ|X0 = x) > 0.

Then {Xt} is an aperiodic r-irreducible T -chain.

To show that the B-JGJR process is stationary, we define u ∼ F0, D− is a (K × 1)-

dimensional vector where [D−(u)]i = I(Q0(1/2− ai−1) < u < Q0(1/2− ai))u and D+ is

a (K× 1)-dimensional vector where [D+(u)]i = I(Q0(1/2 +ai−1) < u < Q0(1/2 +ai))u.

We also define D(u) =

 D−(u)

D+(u)

 and D?(u) =

 D−(u)

0K

 . This allows us to give
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expressions for the terms defined by Cline (2007):

B(x, u) =
√
B1x2 + Γ1(D(u)x)2 + ∆1(D?(u)x)2

and

C(ψ̃, u) =
√
µ+Bx2 + Γ(D(u)x)2 + ∆(D?(u)x)2−

√
Bx2 + Γ(D(u)x)2 + ∆(D?(u)x)2,

where x2 and
√
x represent the component-wise square and square root respectively. We use

L2 distance as the norm.

Assumption 1 Assumption 1 is met by the assumption of the theorem.

Assumption 2 (i) The assumption is met with b1 = min{γi + δi}, b2 = 0 and

b̃ = max{max{β2i }, 4K max{βi(γi + δi)}, 2K
2K∑
i=1

(γi + δi)
2}.

For ψ̃ ∈ Ψ and u < 0,

‖B(ψ̃, u)‖2 =
2K∑
i=1

βiψ̃i + γi

2K∑
j=1

Di,j(u)ψ̃j + δi

K∑
j=1

Di,j(u)ψ̃j

2

≤
2K∑
i=1

βiψ̃i + u(γi + δi)

K∑
j=1

ψ̃j

2

=

K∑
i=1

β2i ψ̃
2
i + 2u

(
K∑
i=1

βiψ̃i(γi + δi)

)
K∑
j=1

ψ̃j

+ u2
K∑
i=1

(γi + δi)
2

 K∑
j=1

ψ̃j

2

≤ max{β2i }+ 4uK max{βi(γi + δi)}+ 2u2K

K∑
i=1

(γi + δi)
2

≤ b̃(1 + u)2.
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and for ψ̃ ∈ Ψ and u > 0,

‖B(ψ̃, u)‖2 =

2K∑
i=1

βiψ̃i + γi

2K∑
j=K+1

Di,j(u)ψ̃j

2

≤
2K∑
i=1

βiψ̃i + uγi

2K∑
j=K+1

ψ̃j

2

=

2K∑
i=K+1

β2i ψ̃
2
i + 2u

(
2K∑

i=K+1

βiψ̃iγi

)
2K∑

j=K+1

ψ̃j

+ u2

(
2K∑

i=K+1

γ2i

) 2K∑
j=K+1

ψ̃j

2

≤ max{β2i }+ 4uK max{βiγi}+ 2Ku2
2K∑
i=1

γ2i

≤ b̃(1 + u)2.

Furthermore, ‖B(ψ̃, u)‖2 > min{γi + δi}u2 = (b1u− b2)2.

(ii) It is clear that

‖B(θ/‖θ‖, ε1)‖θ‖+ C(θ, ε1)‖2 = ‖(B + ΓD(ε1) + ∆D?(ε1))θ + µ‖2

>

2K∑
j=1

β2j θ
2
j > min{β2j }‖θ‖2.

The assumption is trivially true with K = min{β2j } and a = 1.

Assumption 3 We check the condition in Theorem B.1

(i)

θ2t = µ+
n−1∑
j=1

Bjµ+Bnθ2t−n +
n∑
k=1

Bk−1γ y2t−k +
n∑
k=1

Bk−1δ I(yt−k < 0)y2t−k

The transition kernel p(θ2t |θ2t−K) is a linear function of yt−n, . . . , yt−1 whose joint

density is absolutely continuous with respect to R2K and so θt will be absolutely

continuous. Since the distribution of θ2t is continuous then so is the distribution of

θt.
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(ii) Since the transition kernel in (i) is absolutely continuous and any point θ ∈ Θ can

be approximated using a suitably large n then the condition is met.

(iii) It is clear from the form in part (i) that for any point θ there is an n which makes

any points in (R+)
2K reachable.

Assumption 4 We set Ψ# = Ψ.

(i) Clearly θ is equicontinuous on (R+)
2K since

B(ψ̃, u) =

√
Bψ̃2 + Γ(D(u)ψ̃)2 + ∆(D?(u)ψ̃)2

and D(u)ij ≤ D(M) and D?(u)ij < D(M) for all i and j.

(ii) and (iii)

ψ̃1 =
θ1
‖θ1‖

=

√
µ+Bθ20 + γy2t + δI(yt < 0)y2t

‖
√
µ+Bθ20 + γy2t + δI(yt < 0)y2t ‖

∈ Ψ

ψ̃?1 =

√
(Bψ?0

2 + γD(ε1)ψ?0
2 + δD?(ε1)ψ?0

2

‖
√

(Bψ?0
2 + γS(ε1)ψ?0

2 + δD?(ε1)ψ?0
2‖
∈ Ψ

θ?1
‖θ?1‖

=
B
(

θ?0
‖θ?0‖

, εt

)
‖B
(

θ?0
‖θ?0‖

, εt

)
‖

=
θ?0
‖θ?0‖

and so, clearly, conditions (ii) and (iii) will be met.

C MCMC algorithm

The algorithm samples the variables: ν̃ = (θ0, µ, β, γ, ψ0, φ, η, µ0, β0, γ0, σ
2
µ, σ

2
β, σ

2
γ). The

likelihood is

L(ν̃) =

T∏
t=1

ft(yt)

using the density in Equation (2.1) in the main paper. In a Metropolis-Hastings updating

step, we often use the shorthand L to represent the value of the likelihood at the current
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values of the parameters and L′ to represent the value of the likelihood at the new values

of the parameters (including the current values of parameters that are not being updated).

Generically, we use p(ν) to represent the prior of a parameter ν.

The algorithm makes extensive use of the idea of adaptive MCMC and, in particular,

the algorithm of Atchadé and Rosenthal (2005) for Metropolis-Hastings random walk. Sup-

pose we are updating a generic parameter ν. This algorithm adjusts the scale of the pro-

posal distribution so that the acceptance rate converges to a value ā (for which we use the

asympotically optimal value 0.234 Roberts, Gelman, and Gilks (1997)). At the m-th it-

eration of the sampler, a value ν ′ is proposed from the transition qsν,m(ν, ν ′) where sν,m

is a scale parameter (for example, the standard deviation in a normal random walk). The

proposed value is accepted using the standard Metropolis-Hastings acceptance probability

ã = min
{

1,
L′ p(ν′)qsν,m (ν′,ν)

L p(ν)qsν,m (ν,ν′)

}
. The approach differs from standard Metropolis-Hastings by

updating the scale parameter sν,m using the recursion

sν,m+1 = sν,m + wm(ã− ā), (C.1)

where wm = O(m−b) for 1/2 < b ≤ 1. This allows the sampler to automatically find an

appropriate scale for the proposal in the update. Atchadé and Rosenthal (2005) showed that

this updating of the scale does not affect the ergodicity of the sampler output.

The algorithm also uses the adaptive parallel tempering algorithm of Miasojedow, Moulines,

and Vihola (2013). parallel tempering has long been used to improve convergence of MCMC

algorithms for multi-modal posterior distributions. For a generic set of parameters, parallel

tempering uses l chains which are run in parallel with ν(j) being the parameters for the j-th

chain and the target density of the j-th chain is

πj

(
ν(j)|y

)
∝ p

(
y|ν(j)

)γ?j
p
(
ν(j)
)
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where 0 < γ?1 < · · · < γ?l = 1 are l different temperatures. The target distribution for the l-th

chain is the posterior distribution whereas the other chain will tend to be more dispersed than

the posterior distribution. We can explore each target distribution using an adaptive MCMC

scheme. In addition, parameter values for different chains are proposed to be swapped with

a Metropolis-Hastings acceptance probability used to ensure that the chains have the cor-

rect target distributions. The effectiveness of this algorithm depends on the choice of the

temperatures. We use an adaptive approach to choosing these temperatures suggested by Mi-

asojedow, Moulines, and Vihola (2013). Atchadé, Roberts, and Rosenthal (2011) show that

it is optimal to choose the acceptance probability of swaps between consecutive parameter

values at consecutive temperatures to be 0.234. The algorithm of Miasojedow, Moulines, and

Vihola (2013) adjusts the temperatures to maintain this acceptance rate. Further details can

be found in Miasojedow, Moulines, and Vihola (2013)

The steps of the Gibbs sampler for the j-th temperature, γ?j , are provided below.

Updating θ0

Each element of log θ0 is updated using an adaptive Metropolis-Hastings random walk (Atchadé

and Rosenthal 2005). The Metropolis-Hastings acceptance probability for log θ
(j)
i,0 is

min

1,
L′γ

?
j p
(

log θ
(j)
i,0

′)
Lγ

?
j p
(

log θ
(j)
i,0

)
 .

Each element of log θ
(j)
0 will have its own scaling parameter which also differs across j.
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Updating µ, β and γ

The parameter logµ(j) can be updated using an adaptive Metropolis-Hastings random walk

sampler which uses the proposal

logµ(j)
′
= logµ(j) + σµ,jsµ,j (Σµ)1/2 εµ,j

where εµ,j ∼ N(02K , I2K) and (Σµ)1/2 is taken to be the Cholesky decomposition of Σµ.

The proposal is accepted with probability

min

1,
L′γ

?
j p
(

logµ(j)
′)

Lγ
?
j p
(
logµ(j)

)
 .

The scaling value sµ,j is updated using the recursion in (C.1). The parameters β(j) and γ(j)

can be updated in same way with their own scaling at each temperature, sβ,j and sγ,j .

Updating ψ0

We update logψ0 using an adaptive Metropolis-Hastings random walk (Atchadé and Rosen-

thal 2005). The Metropolis-Hastings acceptance probability is

min

1,
L′γ

?
j p
(

logψ
(j)
0

′)
Lγ

?
j p
(

logψ
(j)
0

)
 .

There is a scaling parameter for each temperature.
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Updating φ and η

We update log φ and log η using separate adaptive Metropolis-Hastings random walks (Atchadé

and Rosenthal 2005). The Metropolis-Hastings acceptance probability for log φ is

min

{
1,
L′γ

?
j log φ′ I(log φ′ + log η < 1)

Lγ
?
j log φ I(log φ+ log η < 1)

}
.

and the Metropolis-Hastings acceptance probability for log η is

min

{
1,
L′γ

?
j log η′ I(log φ+ log η′ < 1)

Lγ
?
j log η I(log φ+ log η < 1)

}
.

For both parameters, there is a scaling parameter for each temperature.

Although this update is sufficient to define a Gibbs sampler for the posterior distribution,

it can lead to poor mixing. This is due to the form of the transformation Gt which sug-

gests that log η(j) and all log θ
(j)
i,t ’s will be strongly negatively correlated. To address this,

we jointly update log η(j) and log θ
(j)
1,0, . . . , log θ

(j)
2K,0 and logµ

(j)
1 , . . . , logµ

(j)
2K . We propose

log η(j)
′
= log η(j) + εη where εη ∼ N

(
0, σ

(j) 2
η,m

)
and it represents the iteration and σ(j) 2η,m is

updated using the recursion in (C.1). We propose log θ
(j)
i,0

′
= log θ

(j)
i,0 log η(j)

′/
log η(j) and

logµ
(j)
i

′
= logµ

(j)
i log η(j)

′/
log η(j). The proposed move is accepted with the following

acceptance probability

min

1,
L′
(

log η(j)
′)2K∏2K

i=1 p
(

logµ
(j)
i

′)
L
(
log η(j)

)2K∏2K
i=1 p

(
logµ

(j)
i

)
 .

Updating µ0, β0 and γ0

The full conditional distributions of logµ
(j)
0 , log β

(j)
0 and log γ

(j)
0 are

logµ
(j)
0 ∼ N

(
Pµ

(
σ(j) 2µ

)−1
1TΣ−1µ logµ(j), Pµ

)
,

14



where

Pµ =

((
σ(j) 2µ

)−1
1T2KΣ−1µ 12K + σ−20

)−1
,

log β
(j)
0 ∼ N

(
Pβ

(
σ
(j) 2
β

)−1
1TΣ−1β log β(j), Pβ

)
,

where

Pβ =

((
σ
(j) 2
β

)−1
1T2KΣ−1β 12K + σ−20

)−1
and

log γ
(j)
0 ∼ N

(
Pγ

(
σ(j) 2γ

)−1
1TΣ−1γ log γ(j), Pγ

)
,

where

Pγ =

((
σ(j) 2γ

)−1
1T2KΣ−1γ 12K + σ−20

)−1
.

We also use a second update step in order to improve the mixing of these series. For

this we introduce a set of interweaving steps. A second update for logµ0, also updates

logµ1, . . . , logµ2K using a Metropolis-Hastings update step. This allows to update the

scale of all local processes simultaneously. We propose logµ′0 = logµ0 + εµ where εµ ∼

N
(
0, σ2µ0,m

)
andm represents the iteration and σ2µ0,m is updated using the recursion in (C.1).

We propose logµ′j = logµj+log µ′0−logµ0. The proposed value is then accepted according

to the acceptance probability

min

1,
L′γ

?
j p
(

logµ
(j)
0

′)
Lγ

?
j p
(

logµ
(j)
0

)
 .
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Updating σ2
µ, σ2

β and σ2
γ

We update the logarithm of these parameters. The full conditional distributions of log σ
(j) 2
µ ,

log σ
(j) 2
β and log σ

(j) 2
γ are

exp

{
−1

2

(
exp

{
log σ(j) 2µ

})−1
Aµ

}(
exp

{
2(1−K) log σ(j) 2µ

})(
1 + exp

{
log σ(j) 2µ

})−K
,

where Aµ =
(

logµ(j) − logµ
(j)
0 12K

)T
Σ−1µ

(
logµ(j) − logµ

(j)
0 12K

)
,

exp

{
−1

2

(
exp

{
log σ

(j) 2
β

})−1
Aβ

}(
exp

{
2(1−K) log σ

(j) 2
β

})(
1 + exp

{
log σ

(j) 2
β

})−K
,

where Aβ =
(

log β(j) − log β
(j)
0 12K

)T
Σ−1β

(
log β(j) − log β

(j)
0 12K

)
, and

exp

{
−1

2

(
exp

{
log σ(j) 2γ

})−1
Aγ

}(
exp

{
2(1−K) log σ(j) 2γ

})(
1 + exp

{
log σ(j) 2γ

})−K
,

where Aγ =
(

log γ(j) − log γ
(j)
0 12K

)T
Σ−1γ

(
log γ(j) − log γ

(j)
0 12K

)
, respectively. These

parameter are updated using an adaptive Metropolis-Hastings random walk with normal in-

crements whose variance is adapted using the method of Atchadé and Rosenthal (2005).

We also update log σ2µ using a second adaptive Metropolis-Hastings random walk where

we propose log σ
(j) 2
µ (on the log scale) and produce a proposed value

logµ?
′

= logµ
(j)
0 1 +

log σ
(j) 2
µ

′

log σ
(j) 2
µ

(
logµ? − logµ

(j)
0 1
)
.

The proposed value is then accepted according to the acceptance probability

min

1,
L′γ

?
j log σ

(j) 2
µ

′
p
(

log σ
(j) 2
µ

′)
Lγ

?
j log σ

(j) 2
µ p

(
log σ

(j) 2
µ

)
 .

Update steps for log σ
(j) 2
β and log σ

(j) 2
γ can be defined in a similar way.
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D Results for B-JSAV(1,1) model

Figure 1: B-JSAV(1,1) robust quantile-based measures of the (a) scale, (b) skewness, and (c) kurtosis for
IBM, S&P500, and WTI for K = 10 and a = (0, 0.05, . . . , 0.45, 0.5). The 95% credible intervals is in
red.

The results for the B-JSAV(1,1) specification are presented in Figure 1. The model is able

to capture the time-varying volatility with some short periods in which volatility increases

rapidly. The S&P500 index appears to be more stable when compared to the other two

assets, while WTI is the most volatile series with the highest spikes. Our model also allows

for time-varying higher moments. The skewness is relatively constant for IBM and S&P500.

However, there is some evidence of time-varying skewness for WTI with periods of both

positive and negative skewness. There are two periods of positive skewness (1991 and 2009)

while skewness becomes increasingly negative in the period from 2010 to 2014. There is

also evidence of time-varying kurtosis. The variation is particularly pronounced for WTI
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Figure 2: B-JSAV(1,1) robust quantile-based measures of the (a) scale, (b) skewness, and (c) kurtosis for
IBM and S&P500 for K = 10 and a = (0, 0.05, . . . , 0.4, 0.45). We colour with red the 95% credible
intervals.

data where the excess kurtosis rapidly increases to 0.5 during the 80’s before rapidly falling

to a low of−0.1 in the early 90’s followed by a gradual increase to a level of around 0.2. The

level is subsequently constant apart from some periods in 2014 when excess kurtosis falls to

0.1. The time variation in the S&P500 index is less clear (which is not surprising as this is an

average of individual asset returns). The level is fairly constant at around 0.4. There is also

evidence of time variation in kurtosis for the IBM data. Similar findings hold for the other

specifications and can be found in Appendix D.

The results that we considered above cover a long period of 30 or 40 years and the plots

of the conditional moments show trends in the volatility, skewness and kurtosis. However,

these graphs do not illustrate the ability of the model to capture short-term changes in the
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higher moments, and so we consider inference for shorter periods, for example a year. We

concentrate on periods that we expect to be extremely volatile such as that of 2009 following

the financial crisis and that of 1996 during the Great Moderation. The results are given in

Figure 2 for B-JSAV(1,1) for the three series. The results for the other 3 specifications can

be found in Appendix D.

There is strong evidence of time-varying volatility in Figure 2 during 1996 and 2009.

The time variation in the S&P500 index is clear now. The variation is particularly evident in

2009, where the volatility rapidly decreases by almost 2 units from the beginning to the end

of the year. Similar findings hold for WTI data (which we don’t present here). The year 1996

was a less volatile for S&P500 and WTI, but not for IBM. It seems that there was persistence

(for example in January) with some short periods in which volatility increased rapidly (for

example in February).

The skewness for both years is relatively constant for S&P500 and WTI, while there is

some evidence of time-varying skewness for IBM with periods of both positive and negative

skewness. More specifically, there are two periods of positive skewness and three periods of

negative skewness throughout the year, with that during 1996 to be more volatile.

There is also evidence of time-varying kurtosis for all three datasets. If we turn to 1996

and IBM, we find that after the first 6 months there was a rapid drop by almost 0.3 units. The

kurtosis stayed low until August when there was an increase which didn’t last for a long time.

The kurtosis then dropped again and stayed around 0.2 for most of the remaining months of

1996.

E Additional results

Here we include the plots of the data and the quantiles (Figure 3), and the plots of the robust

quantile-based measures of the scale, skewness and kurtosis for the whole period as well as

for 2009 and 1996 for B-JGJR(1,1) (Figures 4 and 5), B-JSSV(1,1) (Figures 6 and 7), and
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B-JAVL(1,1) (Figures 8 and 9).

Figure 3: (a) Daily equity returns and posterior median of the conditional quantiles for (b) B-JGJR(1,1),
and (c) B-JAVL(1,1) for IBM, S&P500, and WTI. We use different colours to depict the various quantiles
for K = 10 probability levels and a = (0, 0.05, . . . , 0.45, 0.5).
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Figure 5: B-JGJR(1,1) robust quantile-based measures of the (a) scale, (b) skewness, and (c) kurtosis for
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Roberts, G. O., A. Gelman, and W. R. Gilks. 1997. “Weak convergence and optimal

scaling of random walk Metropolis algorithms”. Annals of Applied Probability

7:110–120.

22



Figure 6: B-JSSV(1,1) robust quantile-based measures of the (a) scale, (b) skewness, and (c) kurtosis for
IBM, S&P500, and WTI for K = 10 probability levels and a = (0, 0.05, . . . , 0.45, 0.5). We colour with
red the 95% credible intervals.
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Figure 7: B-JSSV(1,1) robust quantile-based measures of the (a) scale, (b) skewness, and (c) kurtosis for
IBM and S&P500 for K = 10 and a = (0, 0.05, . . . , 0.4, 0.45). We colour with red the 95% credible
intervals.
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Figure 8: B-JAVL(1,1) obust quantile-based measures of the (a) scale, (b) skewness, and (c) kurtosis for
IBM, S&P500, and WTI for K = 10 probability levels and a = (0, 0.05, . . . , 0.45, 0.5). We colour with
red the 95% credible intervals.

25



1996 2009

01 07 12
0

2

4

(a
)

IBM

01 07 12
-0.2

0

0.2

(b
)

01 07 12

0
0.2
0.4
0.6

(c
)

01 07 12
0

2

4
S&P500

01 07 12

-0.1

0

0.1

01 07 12

0
0.2
0.4
0.6

01 07 12
0

2

4
S&P500

01 07 12

-0.1

0

0.1

01 07 12

0
0.2
0.4
0.6

01 07 12
0

2

4
IBM

01 07 12
-0.2

0

0.2

01 07 12

0
0.2
0.4
0.6

Figure 9: B-JSAVL(1,1) robust quantile-based measures of the (a) scale, (b) skewness, and (c) kurtosis
for IBM and S&P500 for K = 10 and a = (0, 0.05, . . . , 0.4, 0.45). We colour with red the 95% credible
intervals.
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