Supplemental Material for "Autoregression Model with Spatial Dependence and Missing Data"

Jing Zhou ${ }^{1}$, Jin Liu ${ }^{2}$, Feifei Wang ${ }^{1}$, and Hansheng Wang ${ }^{2}$
${ }^{1}$ Renmin University of China, and ${ }^{2}$ Peking University

APPENDIX

Appendix A: Technical Lemmas

To establish the theoretical results in Section 3, the following technical lemmas are considered.

Lemma 1. The OLS estimator of α_{i} is not consistent.

Proof: Define

$$
A_{1 i}=\frac{1}{T-1} \sum_{t=2}^{T} Z_{i t} Z_{i(t-1)} Y_{i(t-1)}^{2}, \quad B_{1 i}=\frac{1}{T-1} \sum_{t=2}^{T} Z_{i t} Z_{i(t-1)} Y_{i(t-1)} \varepsilon_{i t} .
$$

Then, we have $\hat{\alpha}_{i}^{L S E}-\alpha_{i}=A_{1 i}^{-1} B_{1 i}$ and compute the following equation,

$$
\begin{aligned}
E\left(B_{1 i}\right) & =\frac{1}{T-1} \sum_{t=2}^{T} E\left\{Z_{i t} Z_{i(t-1)} Y_{i(t-1)} \varepsilon_{i t}\right\} \\
& =\frac{1}{T-1} \sum_{t=2}^{T} E\left[Y_{i(t-1)} \varepsilon_{i t}\left\{E\left(Z_{i t} \mid \mathcal{F}\right) E\left(Z_{i(t-1)} \mid \mathcal{F}\right)\right\}\right] \\
& =\frac{1}{T-1} \sum_{t=2}^{T} E\left\{Y_{i(t-1)} \varepsilon_{i t} p_{i t} p_{i(t-1)}\right\}=E\left\{Y_{i(t-1)} \varepsilon_{i t} p_{i t} p_{i(t-1)}\right\} \neq 0 \\
E\left(A_{1 i}\right) & =\frac{1}{T-1} \sum_{t=2}^{T} E\left\{Z_{i t} Z_{i(t-1)} Y_{i(t-1)}^{2}\right\}=E\left\{Y_{i(t-1)}^{2} p_{i t} p_{i(t-1)}\right\} \rightarrow c>0
\end{aligned}
$$

By the law of large numbers, we have $A_{1 i} \rightarrow_{p} E\left(A_{1 i}\right) \rightarrow c$ and $B_{1 i} \rightarrow_{p} E\left(B_{1 i}\right) \nrightarrow 0$. With Slutsky's Theorem, we can show that $\hat{\alpha}_{i}^{L S E}$ is inconsistent.

Lemma 2. Assume M_{1} and M_{2} are $N \times N$ square matrices. Let $\mathbb{U}=\left(u_{1}, \cdots, u_{N}\right)^{\top}$ follows a N-dimensional standard normal distribution. Then, we have
(i) $E\left(\mathbb{U}^{\top} M_{1} \mathbb{U}\right)=\operatorname{tr}\left(M_{1}\right)$;
(ii) $E\left(\mathbb{U}^{\top} M_{1} \mathbb{U} \cdot \mathbb{U}^{\top} M_{2} \mathbb{U}\right)=\operatorname{tr}\left(M_{1}\right) \operatorname{tr}\left(M_{2}\right)+2 \operatorname{tr}\left(M_{1} M_{2}\right)$;
(iii) $\operatorname{cov}\left(\mathbb{U}^{\top} M_{1} \mathbb{U}, \mathbb{U}^{\top} M_{2} \mathbb{U}\right)=2 \operatorname{tr}\left(M_{1} M_{2}\right)$;
(iv) $\operatorname{var}\left(\mathbb{U}^{\top} M_{1} \mathbb{U}\right)=2 \operatorname{tr}\left(M_{1}^{2}\right)$.

Proof: This Lemma follows Lemma A. 11 in the supplement of Lee (2004).

Lemma 3. Define $\mathcal{S}=(N(T-1))^{-1}\left(2 \sigma^{2}\right)^{-1} \sum_{t=2}^{T} \mathcal{E}_{t}^{\top} \dot{A}_{t}(\rho) \mathcal{E}_{t}$, and $\mathcal{S}_{1}=(N(T-$ 1) $)^{-1}\left(2 \sigma^{2}\right)^{-1} \sum_{t=2}^{T} \mathcal{E}_{t}^{\top} A_{t}(\rho) \mathcal{E}_{t}$. Assume the conditions in Theorem 3 hold, we have

$$
\begin{aligned}
& \sqrt{N(T-1)}\{\mathcal{S}-E(\mathcal{S})\} \rightarrow_{d} N\left(0, \Delta_{11}\right) \\
& \sqrt{N(T-1)}\left\{\mathcal{S}_{1}-E\left(\mathcal{S}_{1}\right)\right\} \rightarrow_{d} N\left(0, \sigma^{4} \Delta_{22}\right)
\end{aligned}
$$

Proof: Denote $\mathbb{U}_{t}=\Sigma^{-1 / 2} \mathcal{E}_{t}=\sigma^{-1} \Omega(\rho)^{1 / 2} \mathcal{E}_{t}=\left(U_{1 t}, \cdots, U_{N t}\right)^{\top}$, where \mathbb{U}_{t} follows a N-dimensional standard normal distribution. Denote $B_{t}(\rho)=\Omega(\rho)^{-1 / 2} A_{t}(\rho) \Omega(\rho)^{-1 / 2}$, and $\dot{B}_{t}(\rho)=\Omega(\rho)^{-1 / 2} \dot{A}_{t}(\rho) \Omega(\rho)^{-1 / 2}$, i.e.,

$$
\dot{B}_{t}(\rho)=\Omega(\rho)^{-1 / 2}\left[\mathcal{Z}_{t} \mathcal{P}_{t}^{-1}\{\dot{\Omega}(\rho)-\operatorname{diag}(\dot{\Omega}(\rho))\} \mathcal{P}_{t}^{-1} \mathcal{Z}_{t}+\operatorname{diag}(\dot{\Omega}(\rho)) \mathcal{P}_{t}^{-1} \mathcal{Z}_{t}\right] \Omega(\rho)^{-1 / 2}
$$

Then, we have

$$
\mathcal{S}=\frac{1}{2 N(T-1)} \sum_{t=2}^{T} \mathbb{U}_{t}^{\top} \Omega(\rho)^{-1 / 2} \dot{A}_{t}(\rho) \Omega(\rho)^{-1 / 2} \mathbb{U}_{t}=\frac{1}{2 N(T-1)} \sum_{t=2}^{T} \mathbb{U}_{t}^{\top} \dot{B}_{t}(\rho) \mathbb{U}_{t} .
$$

Then, by Lemma 2, we have the expectation of \mathcal{S} as,

$$
\begin{aligned}
E(\mathcal{S}) & =\frac{1}{2 N(T-1)} \sum_{t=2}^{T} E\left[E\left\{\mathbb{U}_{t}^{\top} \dot{B}_{t}(\rho) \mathbb{U}_{t} \mid \mathcal{F}\right\}\right]=\frac{1}{2 N(T-1)} \sum_{t=2}^{T} E\left[\operatorname{tr}\left\{\dot{B}_{t}(\rho)\right\}\right] \\
& =\frac{1}{2 N(T-1)} \sum_{t=2}^{T} E\left[\operatorname{tr}\left\{\dot{A}_{t}(\rho) \Omega(\rho)^{-1}\right\}\right]=\frac{1}{2 N} \operatorname{tr}\left\{\dot{\Omega}(\rho) \Omega(\rho)^{-1}\right\} .
\end{aligned}
$$

The associated second moment is

$$
\begin{aligned}
E\left(\mathcal{S}^{2}\right)= & E\left\{E\left(\mathcal{S}^{2} \mid \mathcal{F}\right)\right\}=\frac{1}{4 N^{2}(T-1)^{2}} E\left(\sum_{t=2}^{T} E\left[\left\{\mathbb{U}_{t}^{\top} \dot{B}_{t}(\rho) \mathbb{U}_{t}\right\}^{2} \mid \mathcal{F}\right]+\right. \\
& \left.\sum_{t_{1} \neq t_{2}} E\left[\left\{\mathbb{U}_{t_{1}}^{\top} \dot{B}_{t_{1}}(\rho) \mathbb{U}_{t_{1}}\right\}\left\{\mathbb{U}_{t_{2}}^{\top} \dot{B}_{t_{2}}(\rho) \mathbb{U}_{t_{2}}\right\} \mid \mathcal{F}\right]\right) \\
= & \frac{1}{4 N^{2}(T-1)^{2}}\left(\sum_{t=2}^{T} E\left[2 \operatorname{tr}\left\{\dot{B}_{t}^{2}(\rho)\right\}\right]+\sum_{t_{1}=2}^{T} \sum_{t_{2}=2}^{T} E\left[\operatorname{tr}\left\{\dot{B}_{t_{1}}(\rho)\right\} \operatorname{tr}\left\{\dot{B}_{t_{2}}(\rho)\right\}\right]\right) \\
= & \frac{1}{4 N^{2}(T-1)^{2}}\left(\sum_{t=2}^{T} E\left[2 \operatorname{tr}\left\{\dot{B}_{t}^{2}(\rho)\right\}+\operatorname{tr}^{2}\left\{\dot{B}_{t}(\rho)\right\}\right]+\sum_{t_{1} \neq t_{2}} \operatorname{tr}^{2}\left\{\dot{\Omega}(\rho) \Omega(\rho)^{-1}\right\}\right)
\end{aligned}
$$

Consequently, we have

$$
\begin{aligned}
& (N(T-1)) \operatorname{cov}(\mathcal{S})=(N(T-1))\left\{E\left(\mathcal{S}^{2}\right)-E^{2}(\mathcal{S})\right\} \\
& =\frac{1}{4 N(T-1)} \sum_{t=2}^{T} E\left[2 \operatorname{tr}\left\{\dot{B}_{t}^{2}(\rho)\right\}+\operatorname{tr}^{2}\left\{\dot{B}_{t}(\rho)\right\}\right]-\frac{1}{4 N} \operatorname{tr}^{2}\left\{\dot{\Omega}(\rho) \Omega(\rho)^{-1}\right\} \\
& =\frac{1}{4 N(T-1)} \sum_{t=2}^{T} E\left(2 \operatorname{tr}\left[\left\{\dot{A}_{t}(\rho) \Omega(\rho)^{-1}\right\}^{2}\right]+\operatorname{tr}^{2}\left\{\dot{A}_{t}(\rho) \Omega(\rho)^{-1}\right\}\right)-\frac{1}{4 N} \operatorname{tr}^{2}\left\{\dot{\Omega}(\rho) \Omega(\rho)^{-1}\right\} \\
& \rightarrow \Delta_{11}
\end{aligned}
$$

According to Lemma 2 of Sun and Wang (2019), we can obtain the asymptotic normality of \mathcal{S}. Similar results can be obtained for \mathcal{S}_{1} following the same logic, where $E\left(\mathcal{S}_{1}\right)=1 / 2$, and $(N(T-1)) \operatorname{cov}\left(\mathcal{S}_{1}\right)=(4 N T-4 N)^{-1} \sum_{t=2}^{T} E\left(2 \operatorname{tr}\left[\left\{A_{t}(\rho) \Omega(\rho)^{-1}\right\}^{2}\right]+\right.$
$\left.\operatorname{tr}^{2}\left\{A_{t}(\rho) \Omega(\rho)^{-1}\right\}\right]-N / 4 \rightarrow \sigma^{4} \Delta_{22}$. In addition, we have

$$
\begin{aligned}
(N(T-1)) \operatorname{cov}\left(\mathcal{S}, \mathcal{S}_{1}\right) & =(4 N T-4 N)^{-1} \sum_{t=2}^{T} E\left[2 \operatorname{tr}\left\{\dot{A}_{t}(\rho) A_{t}(\rho) \Omega(\rho)^{-2}\right\}\right. \\
& \left.+\operatorname{tr}\left\{\dot{A}_{t}(\rho) \Omega(\rho)^{-1}\right\} \operatorname{tr}\left\{A_{t}(\rho) \Omega(\rho)^{-1}\right\}\right]-\frac{1}{4} \operatorname{tr}\left\{\dot{\Omega}(\rho) \Omega(\rho)^{-1}\right\} \rightarrow-\sigma^{2} \Delta_{12}
\end{aligned}
$$

This completes the proof of Lemma 3.

Lemma 4 (Asymptotic normality of the ideal estimation equation). Under the conditions in Theorem 3, we have

$$
\frac{1}{\sqrt{N T}} \frac{d \ell_{1}(\theta)}{d \theta} \rightarrow_{d} N(0, \Delta)
$$

where Δ is defined as in condition (C1).

Proof: Recall the likelihood function for θ,

$$
\ell_{1}(\theta)=\ell_{1}\left(\rho, \sigma^{2}\right)=\frac{T-1}{2} \log |\Omega(\rho)|-\frac{N(T-1)}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{t=2}^{T} \mathcal{E}_{t}^{\top} A_{t}(\rho) \mathcal{E}_{t} .
$$

The associated first derivative is

$$
\begin{aligned}
\frac{d \ell_{1}(\theta)}{d \rho} & =\frac{T-1}{2} \operatorname{tr}\left\{\Omega^{-1}(\rho) \dot{\Omega}(\rho)\right\}-\frac{1}{2 \sigma^{2}} \sum_{t=2}^{T} \mathcal{E}_{t}^{\top} \dot{A}_{t}(\rho) \mathcal{E}_{t}=-N(T-1)(\mathcal{S}-E \mathcal{S}) \\
\frac{d \ell_{1}(\theta)}{d \sigma^{2}} & =-\frac{N(T-1)}{2} \frac{1}{\sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{t=2}^{T} \mathcal{E}_{t}^{\top} A_{t}(\rho) \mathcal{E}_{t}=\frac{N(T-1)}{\sigma^{2}}\left(\mathcal{S}_{1}-E \mathcal{S}_{1}\right)
\end{aligned}
$$

Then, we have

$$
\frac{1}{\sqrt{N T}} \frac{d \ell_{1}(\theta)}{d \theta}=\binom{\frac{1}{\sqrt{N(T-1)}} \frac{d \ell_{1}(\theta)}{d \rho}}{\frac{1}{\sqrt{N(T-1)}} \frac{d \ell_{1}(\theta)}{d \sigma^{2}}}+o_{p}(1)=\binom{-\sqrt{N(T-1)}(\mathcal{S}-E \mathcal{S})}{\frac{1}{\sigma^{2}} \sqrt{N(T-1)}\left(\mathcal{S}_{1}-E \mathcal{S}_{1}\right)}+o_{p}(1)
$$

By Lemma 3 and condition (C1), we have $(N(T-1))^{-1 / 2} d \ell_{1}(\theta) / d \rho \rightarrow_{d} N\left(0, \Delta_{11}\right)$, $(N(T-1))^{-1 / 2} d \ell_{1}(\theta) / d \sigma^{2} \rightarrow_{d} N\left(0, \Delta_{22}\right)$, and $(N(T-1))^{-1} \operatorname{cov}\left\{d \ell_{1}(\theta) / d \rho, d \ell_{1}(\theta) / d \sigma^{2}\right\}$ $\rightarrow \Delta_{12}$. Then, we can derive the asymptotic normal distribution of $(N T)^{-1 / 2} d \ell_{1}(\theta) / d \theta$ using the central limit theorem for linear-quadratic forms. Thus, the proof of Lemma 4 is completed.

Lemma 5. Under the conditions in Theorem 3, the symmetric information matrix $\Lambda_{1, N T}=-(N T)^{-1}\left\{d^{2} \ell_{1}(\theta) / d \theta d \theta^{\top}\right\}$, we have $\Lambda_{1, N T} \rightarrow_{p} \Lambda$.

Proof: The second derivative for the likelihood of θ is specified as follows

$$
\begin{aligned}
-\frac{d^{2} \ell_{1}(\theta)}{d \rho^{2}} & =\frac{T-1}{2} \operatorname{tr}\left[\left\{\Omega^{-1}(\rho) \dot{\Omega}(\rho)\right\}^{2}-\Omega^{-1}(\rho) \ddot{\Omega}(\rho)\right]+\frac{1}{2 \sigma^{2}} \sum_{t=2}^{T} \mathcal{E}_{t}^{\top} \ddot{A}_{t}(\rho) \mathcal{E}_{t} \\
-\frac{d^{2} \ell_{1}(\theta)}{d \rho d \sigma^{2}} & =-\frac{d^{2} \ell_{1}(\theta)}{d \sigma^{2} d \rho}=-\frac{1}{2 \sigma^{4}} \sum_{t=2}^{T} \mathcal{E}_{t}^{\top} \dot{A}_{t}(\rho) \mathcal{E}_{t} \\
-\frac{d^{2} \ell_{1}(\theta)}{d \sigma^{2} d \sigma^{2}} & =-\frac{N(T-1)}{2} \frac{1}{\sigma^{4}}+\frac{1}{\sigma^{4}} \frac{1}{\sigma^{2}} \sum_{t=2}^{T} \mathcal{E}_{t}^{\top} A_{t}(\rho) \mathcal{E}_{t} .
\end{aligned}
$$

Note that $E\left\{\sigma^{-2} \mathcal{E}_{t}^{\top} \ddot{A}_{t}(\rho) \mathcal{E}_{t}\right\}=\operatorname{tr}\left\{\Omega^{-1}(\rho) \ddot{\Omega}(\rho)\right\}$, then, we have

$$
\begin{aligned}
-\frac{1}{N(T-1)} E\left\{\frac{d^{2} \ell_{1}(\theta)}{d \rho^{2}}\right\} & =\frac{1}{2 N} \operatorname{tr}\left[\left\{\Omega^{-1}(\rho) \dot{\Omega}(\rho)\right\}^{2}\right] \rightarrow \Lambda_{11} \\
-\frac{1}{N(T-1)} E\left\{\frac{d^{2} \ell_{1}(\theta)}{d \rho d \sigma^{2}}\right\} & =-\frac{1}{2 N \sigma^{2}} \operatorname{tr}\left\{\Omega^{-1}(\rho) \dot{\Omega}(\rho)\right\} \rightarrow \Lambda_{12} \\
-\frac{1}{N(T-1)} E\left\{\frac{d^{2} \ell_{1}(\theta)}{d \sigma^{2} d \sigma^{2}}\right\} & =\frac{1}{2 \sigma^{4}} \rightarrow \Lambda_{22} .
\end{aligned}
$$

For $\Lambda_{1, N T}$, we have

$$
\Lambda_{1, N T}=\frac{1}{N T}\left\{\frac{d^{2} \ell_{1}(\theta)}{d \theta d \theta^{\top}}\right\}=\frac{1}{N(T-1)} E\left\{\frac{d^{2} \ell_{1}(\theta)}{d \theta d \theta^{\top}}\right\}+o_{p}(1) \rightarrow \Lambda .
$$

This follows by condition (C2). Thus, we have $\Lambda_{1, N T} \rightarrow_{p} \Lambda$. This completes the proof
of Lemma 5.

Lemma 6 (Asymptotic normality of the feasible estimation equation). Assume conditions (C1)-(C3), we have

$$
\frac{1}{\sqrt{N T}}\left\{\frac{d \ell_{1}(\theta)}{d \theta}-\frac{d \ell_{2}(\theta)}{d \theta}\right\}=o_{p}(1) .
$$

Then, by the Lemma 4, we have $(N T)^{-1 / 2} d \ell_{2}(\theta) / d \theta \rightarrow_{d} N(0, \Delta)$.

Proof: Define $\widehat{\mathcal{P}}_{t}=\operatorname{diag}\left\{\hat{p}_{i t} \hat{p}_{i(t-1)}\right\} \in \mathbb{R}^{N \times N}$. Recall the feasible weighted loglikelihood is specified as :

$$
\ell_{2}(\theta)=\ell_{2}\left(\rho, \sigma^{2}\right)=\frac{T-1}{2} \log |\Omega(\rho)|-\frac{N(T-1)}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{t=2}^{T} \hat{\mathcal{E}}_{t}^{\top} \hat{A}_{t}(\rho) \hat{\mathcal{E}}_{t},
$$

where $\hat{A}_{t}(\rho)=\mathcal{Z}_{t} \hat{\mathcal{P}}_{t}^{-1}\{\Omega(\rho)-\operatorname{diag}(\Omega(\rho))\} \hat{\mathcal{P}}_{t}^{-1} \mathcal{Z}_{t}+\operatorname{diag}(\Omega(\rho)) \hat{\mathcal{P}}_{t}^{-1} \mathcal{Z}_{t}, \hat{\mathcal{E}}_{t}=\left(\hat{\varepsilon}_{1 t}, \cdots, \hat{\varepsilon}_{N t}\right)^{\top}$, and $\hat{\varepsilon}_{i t}=Y_{i t}-\hat{\alpha}_{i} Y_{i(t-1)}$. The associated first derivative is

$$
\begin{aligned}
\frac{d \ell_{2}(\theta)}{d \rho} & =\frac{T-1}{2} \operatorname{tr}\left\{\Omega^{-1}(\rho) \dot{\Omega}(\rho)\right\}-\frac{1}{2 \sigma^{2}} \sum_{t=2}^{T} \hat{\mathcal{E}}_{t}^{\top} \hat{\dot{A}}_{t}(\rho) \hat{\mathcal{E}}_{t} \\
\frac{d \ell_{2}(\theta)}{d \sigma^{2}} & =-\frac{N(T-1)}{2} \frac{1}{\sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{t=2}^{T} \hat{\mathcal{E}}_{t}^{\top} \hat{A}_{t}(\rho) \hat{\mathcal{E}}_{t} .
\end{aligned}
$$

Compared to $d \ell_{1}(\theta) / d \theta=\left(d \ell_{1}(\theta) / d \rho, d \ell_{1}(\theta) / d \sigma^{2}\right)^{\top}$, we have

$$
\begin{equation*}
-\left\{\frac{d \ell_{2}(\theta)}{d \rho}-\frac{d \ell_{1}(\theta)}{d \rho}\right\}=\frac{1}{2 \sigma^{2}}\left\{\sum_{t=2}^{T} \hat{\mathcal{E}}_{t}^{\top} \hat{\dot{A}}_{t}(\rho) \hat{\mathcal{E}}_{t}-\sum_{t=2}^{T} \mathcal{E}_{t}^{\top} \dot{A}_{t}(\rho) \mathcal{E}_{t}\right\} . \tag{A.1}
\end{equation*}
$$

To prove the Lemma, we can assume $\sigma^{2}=1$, and it suffices to show that

$$
\begin{equation*}
\frac{1}{\sqrt{N(T-1)}} \sum_{t=2}^{T}\left\{\hat{\mathcal{E}}_{t}^{\top} \hat{\dot{A}}_{t}(\rho) \hat{\mathcal{E}}_{t}-\mathcal{E}_{t}^{\top} \dot{A}_{t}(\rho) \mathcal{E}_{t}\right\}=\frac{1}{\sqrt{N(T-1)}} \sum_{t=2}^{T} L_{1, t}=o_{p}(1) \tag{A.2}
\end{equation*}
$$

where $L_{1, t}=\hat{\mathcal{E}}_{t}^{\top} \hat{\dot{A}}_{t}(\rho) \hat{\mathcal{E}}_{t}-\mathcal{E}_{t}^{\top} \dot{A}_{t}(\rho) \mathcal{E}_{t}=\hat{\mathcal{E}}_{t}^{\top} \dot{A}_{t}(\rho) \hat{\mathcal{E}}_{t}-\mathcal{E}_{t}^{\top} \dot{A}_{t}(\rho) \mathcal{E}_{t}+\hat{\mathcal{E}}_{t}^{\top}\left\{\hat{\dot{A}}_{t}(\rho)-\dot{A}_{t}(\rho)\right\} \hat{\mathcal{E}}_{t}$. Note that $\mathcal{E}_{t}=\mathbb{Y}_{t}-\operatorname{diag}\left(\mathbb{Y}_{t-1}\right) \alpha$ and $\hat{\mathcal{E}}_{t}=\mathbb{Y}_{t}-\operatorname{diag}\left(\mathbb{Y}_{t-1}\right) \hat{\alpha}=\mathcal{E}_{t}-\operatorname{diag}\left(\mathbb{Y}_{t-1}\right)(\hat{\alpha}-\alpha)$, where $\mathbb{Y}_{t}=\left(Y_{1 t}, \cdots, Y_{N t}\right)^{\top}$ and $\hat{\alpha}=\left(\hat{\alpha}_{1}, \cdots, \hat{\alpha}_{N}\right)^{\top}$. Then, we have $\hat{\mathcal{E}}_{t}^{\top} \dot{A}_{t}(\rho) \hat{\mathcal{E}}_{t}=$ $\left\{\mathcal{E}_{t}-\operatorname{diag}\left(\mathbb{Y}_{t-1}\right)(\hat{\alpha}-\alpha)\right\}^{\top} \dot{A}_{t}(\rho)\left\{\mathcal{E}_{t}-\operatorname{diag}\left(\mathbb{Y}_{t-1}\right)(\hat{\alpha}-\alpha)\right\}$, and

$$
\begin{aligned}
\hat{\mathcal{E}}_{t}^{\top} \dot{A}_{t}(\rho) \hat{\mathcal{E}}_{t}-\mathcal{E}_{t}^{\top} \dot{A}_{t}(\rho) \mathcal{E}_{t}= & (\hat{\alpha}-\alpha)^{\top} \operatorname{diag}\left(\mathbb{Y}_{t-1}\right) \dot{A}_{t}(\rho) \operatorname{diag}\left(\mathbb{Y}_{t-1}\right)(\hat{\alpha}-\alpha) \\
& -2 \mathcal{E}_{t}^{\top} \dot{A}_{t}(\rho) \operatorname{diag}\left(\mathbb{Y}_{t-1}\right)(\hat{\alpha}-\alpha)=L_{1, t 1}+L_{1, t 2} .
\end{aligned}
$$

Then, we have

$$
\sum_{t=2}^{T} L_{1, t 2}=2 \sum_{t=2}^{T} \mathcal{E}_{t}^{\top} \dot{A}_{t}(\rho) \operatorname{diag}\left(\mathbb{Y}_{t-1}\right)(\alpha-\hat{\alpha}) \leq \sup _{i}\left(\alpha_{i}-\hat{\alpha}_{i}\right)\left|2 \sum_{t=2}^{T} \operatorname{diag}\left(\mathbb{Y}_{t-1}\right) \dot{A}_{t}(\rho) \mathcal{E}_{t}\right|
$$

Since $\sqrt{T}\left(\widetilde{\alpha}_{i}^{W L S E}-\alpha_{i}\right)$ is asymptotic normal and $(N T)^{-1 / 2} \sum_{t=2}^{T} \operatorname{diag}\left(\mathbb{Y}_{t-1}\right) \dot{A}_{t}(\rho) \mathcal{E}_{t}=$ $O_{p}(1)$. We can show that $(N T)^{-1 / 2} \sum_{t=2}^{T} L_{1, t 2}=o_{p}(1)$. Similarly, we can show that $(N T)^{-1 / 2} \sum_{t=2}^{T} L_{1, t 1}=o_{p}(1)$. Next, considering

$$
\begin{aligned}
\hat{\mathcal{A}}_{t}(\rho)-A_{t}(\rho) & =\mathcal{Z}_{t}\left(\widehat{\mathcal{P}}_{t}^{-1}-\mathcal{P}_{t}^{-1}\right)[\Omega(\rho)-\operatorname{diag}\{\Omega(\rho)\}]\left(\widehat{\mathcal{P}}_{t}^{-1}-\mathcal{P}_{t}^{-1}\right) \mathcal{Z}_{t} \\
& +\mathcal{Z}_{t}\left(\widehat{\mathcal{P}}_{t}^{-1}-\mathcal{P}_{t}^{-1}\right)[\Omega(\rho)-\operatorname{diag}\{\Omega(\rho)\}] \mathcal{P}_{t}^{-1} \mathcal{Z}_{t} \\
& +\mathcal{Z}_{t} \mathcal{P}_{t}^{-1}[\Omega(\rho)-\operatorname{diag}\{\Omega(\rho)\}]\left(\widehat{\mathcal{P}}_{t}^{-1}-\mathcal{P}_{t}^{-1}\right) \mathcal{Z}_{t}+\operatorname{diag}\{\Omega(\rho)\}\left(\widehat{\mathcal{P}}_{t}^{-1}-\mathcal{P}_{t}^{-1}\right) \mathcal{Z}_{t} .
\end{aligned}
$$

Then, we can show that $\hat{A}_{t}(\rho)-A_{t}(\rho)=o_{p}(1)$, and $\hat{\hat{A}}_{t}(\rho)-\dot{A}_{t}(\rho)=o_{p}(1)$. We have $L_{1, t 3}=\hat{\mathcal{E}}_{t}^{\top}\left\{\hat{\dot{A}}_{t}(\rho)-\dot{A}_{t}(\rho)\right\} \hat{\mathcal{E}}_{t}=\mathcal{E}_{t}^{\top}\left\{\hat{\dot{A}}_{t}(\rho)-\dot{A}_{t}(\rho)\right\} \mathcal{E}_{t}+o_{p}(1)=o_{p}(1)$. Therefore, $(N T)^{-1 / 2} \sum_{t=2}^{T} L_{1, t}=o_{p}(1)$, i.e., (A.2) holds. In addition, $\frac{1}{\sqrt{N T}}\left\{\frac{d_{2}(\theta)}{d \sigma^{2}}-\frac{d d_{1}(\theta)}{d \sigma^{2}}\right\}=$ $\frac{1}{2 \sigma^{\top}} \sum_{t=2}^{T}\left\{\hat{\mathcal{E}}_{t}^{\top} \hat{A}_{t}(\rho) \hat{\mathcal{E}}_{t}-\mathcal{E}_{t}^{\top} A_{t}(\rho) \mathcal{E}_{t}\right\}=o_{p}(1)$. Thus, we have

$$
\frac{1}{\sqrt{N T}}\left\{\frac{d \ell_{2}(\theta)}{d \theta}-\frac{d \ell_{1}(\theta)}{d \theta}\right\}=o_{p}(1) .
$$

Following Lemma 4, we have the asymptotic normality of $(N T)^{-1 / 2} d \ell_{2}(\theta) / d \theta$. This completes the proof of Lemma 6.

Lemma 7. The symmetric information matrix $\Lambda_{2, N T}=-(N T)^{-1}\left\{d^{2} \ell_{2}(\theta) / d \theta d \theta^{\top}\right\}$, we have $\Lambda_{2, N T}=\Lambda_{1, N T}+o_{p}(1) \rightarrow_{p} \Lambda$.

Proof: The second derivative of $\ell_{2}(\theta)$ for the likelihood of θ is specified as follows

$$
\begin{aligned}
-\frac{d^{2} \ell_{2}(\theta)}{d \rho^{2}} & =\frac{T-1}{2} \operatorname{tr}\left[\left\{\Omega^{-1}(\rho) \dot{\Omega}(\rho)\right\}^{2}-\Omega^{-1}(\rho) \ddot{\Omega}(\rho)\right]+\frac{1}{2 \sigma^{2}} \sum_{t=2}^{T} \hat{\mathcal{E}}_{t}^{\top} \hat{\tilde{A}}_{t}(\rho) \hat{\mathcal{E}}_{t} \\
-\frac{d^{2} \ell_{2}(\theta)}{d \rho d \sigma^{2}} & =-\frac{d^{2} \ell_{2}(\theta)}{d \sigma^{2} d \rho}=-\frac{1}{2 \sigma^{4}} \sum_{t=2}^{T} \hat{\mathcal{E}}_{t}^{\top} \hat{\dot{A}}_{t}(\rho) \hat{\mathcal{E}}_{t} \\
-\frac{d^{2} \ell_{2}(\theta)}{d \sigma^{2} d \sigma^{2}} & =-\frac{N(T-1)}{2} \frac{1}{\sigma^{4}}+\frac{1}{\sigma^{4}} \frac{1}{\sigma^{2}} \sum_{t=2}^{T} \hat{\mathcal{E}}_{t}^{\top} \hat{A}_{t}(\rho) \hat{\mathcal{E}}_{t} .
\end{aligned}
$$

Following the similar proof of (A.1), we can easily verify $\Lambda_{2, N T}-\Lambda_{1, N T}=o_{p}(1)$. By Lemma $5, \Lambda_{1, N T}-\Lambda=o_{p}(1)$. Therefore, we have $\Lambda_{2, N T}-\Lambda=o_{p}(1)$. Thus, the proof of Lemma 7 is completed.

Appendix B: Proof of Theorem 1

Proof: For the ideal WLS estimation of α_{i}, define

$$
A_{2 i}=\frac{1}{T-1} \sum_{t=2}^{T} \frac{Z_{i t}}{p_{i t}} \frac{Z_{i(t-1)}}{p_{i(t-1)}} Y_{i(t-1)}^{2}, \quad B_{2 i}=\sqrt{\frac{1}{T-1}} \sum_{t=2}^{T} \frac{Z_{i t}}{p_{i t}} \frac{Z_{i(t-1)}}{p_{i(t-1)}} Y_{i(t-1)} \varepsilon_{i t} .
$$

Then, we have

$$
\begin{equation*}
\sqrt{T-1}\left(\widetilde{\alpha}_{i}^{W L S E}-\alpha_{i}\right)=A_{2 i}^{-1} B_{2 i} . \tag{A.3}
\end{equation*}
$$

With Slutsky's Theorem, it is sufficient to prove that

$$
\begin{align*}
& A_{2 i} \rightarrow_{p} \sigma_{Y_{i}}^{2} \tag{A.4}\\
& B_{2 i} \rightarrow_{d} N\left(0, \sigma_{1 i}^{2}\right) \tag{A.5}
\end{align*}
$$

For $A_{2 i}$, we have

$$
\begin{aligned}
E\left(A_{2 i}\right) & =(T-1)^{-1} \sum_{t=2}^{T} E\left[Y_{i(t-1)}^{2} E\left\{\left.\frac{Z_{i t}}{p_{i t}} E\left(\left.\frac{Z_{i(t-1)}}{p_{i(t-1)}} \right\rvert\, \mathcal{F}\right) \right\rvert\, \mathcal{F}\right\}\right] \\
& =(T-1)^{-1} \sum_{t=2}^{T} E\left\{Y_{i(t-1)}^{2}\right\}=\sigma_{Y_{i}}^{2}
\end{aligned}
$$

Then, by the law of large numbers, we have $A_{2 i} \rightarrow_{p} \sigma_{Y_{i}}^{2}$. For $B_{2 i}$, the expectation and variance are computed as follows

$$
\begin{aligned}
E\left(B_{2 i}\right) & =\sqrt{\frac{1}{T-1}} \sum_{t=2}^{T} E\left[Y_{i(t-1)} \varepsilon_{i t} E\left\{\left.\frac{Z_{i t}}{p_{i t}} E\left(\left.\frac{Z_{i(t-1)}}{p_{i(t-1)}} \right\rvert\, \mathcal{F}\right) \right\rvert\, \mathcal{F}\right\}\right]=0 \\
E\left(B_{2 i}^{2}\right) & =\frac{1}{T-1} \sum_{t=2}^{T} E\left[Y_{i(t-1)}^{2} \varepsilon_{i t}^{2} E\left\{\left.\frac{Z_{i t}^{2}}{p_{i t}^{2}} E\left(\left.\frac{Z_{i(t-1)}^{2}}{p_{i(t-1)}^{2}} \right\rvert\, \mathcal{F}\right) \right\rvert\, \mathcal{F}\right\}\right] \\
& +\frac{2}{T-1} \sum_{t_{1} \neq t_{2}} E\left[Y_{i\left(t_{1}-1\right)} Y_{i\left(t_{2}-1\right)} \varepsilon_{i t_{1}} \varepsilon_{i t_{2}} E\left\{\left.\frac{Z_{i t_{2}}}{p_{i t_{2}}} \frac{Z_{i\left(t_{2}-1\right)}}{p_{i\left(t_{2}-1\right)}} E\left(\left.\frac{Z_{i t_{1}}}{p_{i t_{1}}} \frac{Z_{i\left(t_{1}-1\right)}}{p_{i\left(t_{1}-1\right)}} \right\rvert\, \mathcal{F}\right) \right\rvert\, \mathcal{F}\right\}\right] \\
& =\frac{1}{T-1} \sum_{t=2}^{T} E\left\{Y_{i(t-1)}^{2} \varepsilon_{i t}^{2} p_{i t}^{-1} p_{i(t-1)}^{-1}\right\}+\frac{2}{T-1} \sum_{t_{1} \neq t_{2}} E\left\{Y_{i\left(t_{1}-1\right)} Y_{i\left(t_{2}-1\right)} \varepsilon_{i t_{1}} \varepsilon_{i t_{2}}\right\} \\
& =E\left\{Y_{i(t-1)}^{2} \varepsilon_{i t}^{2} p_{i t}^{-1} p_{i(t-1)}^{-1}\right\}=\sigma_{1 i}^{2} .
\end{aligned}
$$

Then, we have $(T-1)^{-1 / 2} B_{2 i} \rightarrow_{p} 0$. Thus, $\widetilde{\alpha}_{i}^{W L S E}-\alpha_{i} \rightarrow_{p} 0$. By a slight extension of Example 7.15 in Hamilton (1994), we can obtain the result of equation (A.5). Thus, the proof of Theorem 1 has been completed.

By the theory of logistic regression, we can obtain $(\hat{\beta}-\beta)=O_{p}(1 / \sqrt{N T})$. Then with Delta method, we have

$$
\begin{aligned}
& \hat{p}_{i t}-p_{i t}=O_{p}(1 / \sqrt{N T}), \quad \hat{p}_{i t}^{-1}-p_{i t}^{-1}=O_{p}(1 / \sqrt{N T}) \\
& \hat{p}_{i t} \hat{p}_{i(t-1)}-p_{i t} p_{i(t-1)}=O_{p}(1 / \sqrt{N T})
\end{aligned}
$$

For the feasible WLSE, define

$$
A_{3 i}=\frac{1}{T-1} \sum_{t=2}^{T} \frac{Z_{i t}}{\hat{p}_{i t}} \frac{Z_{i(t-1)}}{\hat{p}_{i(t-1)}} Y_{i(t-1)}^{2}, \quad B_{3 i}=\frac{1}{\sqrt{T-1}} \sum_{t=2}^{T} \frac{Z_{i t}}{\hat{p}_{i t}} \frac{Z_{i(t-1)}}{\hat{p}_{i(t-1)}} Y_{i(t-1)} \varepsilon_{i t}
$$

Then, we have

$$
\begin{equation*}
\sqrt{T-1}\left(\widehat{\alpha}_{i}^{W L S}-\alpha_{i}\right)=A_{3 i}^{-1} B_{3 i} . \tag{A.6}
\end{equation*}
$$

With Slutsky's Theorem, it is sufficient to prove that

$$
\begin{align*}
& A_{3 i} \rightarrow_{p} \sigma_{Y_{i}}^{2} \tag{A.7}\\
& B_{3 i} \rightarrow_{d} N\left(0, \sigma_{1 i}^{2}\right) \tag{A.8}
\end{align*}
$$

For $A_{3 i}$, we have

$$
\begin{aligned}
E\left(A_{3 i}\right) & =(T-1)^{-1} \sum_{t=2}^{T} E\left[Y_{i(t-1)}^{2} E\left\{\left.\frac{Z_{i t}}{\hat{p}_{i t}} E\left(\left.\frac{Z_{i(t-1)}}{\hat{p}_{i(t-1)}} \right\rvert\, \mathcal{F}\right) \right\rvert\, \mathcal{F}\right\}\right] \\
& =(T-1)^{-1} \sum_{t=2}^{T} E\left\{Y_{i(t-1)}^{2} \frac{p_{i t}}{\hat{p}_{i t}} \frac{p_{i(t-1)}}{\hat{p}_{i(t-1)}}\right\}=E\left(A_{2 i}\right)+O_{p}(1 / \sqrt{N T}) \rightarrow_{p} \sigma_{Y_{i}}^{2}
\end{aligned}
$$

Then, by the law of large numbers, we have $A_{3 i} \rightarrow_{p} \sigma_{Y_{i}}^{2}$. For B_{3}, the expectation is
computed as

$$
E\left(B_{3 i}\right)=\sqrt{\frac{1}{T-1}} \sum_{t=2}^{T} E\left[Y_{i(t-1)} \varepsilon_{i t} E\left\{\left.\frac{Z_{i t}}{\hat{p}_{i t}} E\left(\left.\frac{Z_{i(t-1)}}{\hat{p}_{i(t-1)}} \right\rvert\, \mathcal{F}\right) \right\rvert\, \mathcal{F}\right\}\right] \rightarrow_{p} 0
$$

Its variance is computed as

$$
\begin{aligned}
E\left(B_{3 i}^{2}\right)= & \frac{1}{T-1} \sum_{t=2}^{T} E\left[Y_{i(t-1)}^{2} \varepsilon_{i t}^{2} E\left\{\left.\frac{Z_{i t}^{2}}{\hat{p}_{i t}^{2}} E\left(\left.\frac{Z_{i(t-1)}^{2}}{\hat{p}_{i(t-1)}^{2}} \right\rvert\, \mathcal{F}\right) \right\rvert\, \mathcal{F}\right\}\right]+\frac{2}{T-1} \sum_{t_{1} \neq t_{2}} \\
& E\left[Y _ { i (t _ { 1 } - 1) } Y _ { i (t _ { 2 } - 1) } \varepsilon _ { i t _ { 1 } } \varepsilon _ { i t _ { 2 } } E \left\{\frac{Z_{i t_{2}}}{\hat{p}_{i t_{2}}} \frac{\left.\left.\left.Z_{i\left(t_{2}-1\right)}^{p_{i\left(t_{2}-1\right)}} E\left(\left.\frac{Z_{i t_{1}}}{\hat{p}_{i t_{1}}} \frac{Z_{i\left(t_{1}-1\right)}}{\hat{p}_{i\left(t_{1}-1\right)}} \right\rvert\, \mathcal{F}\right) \right\rvert\, \mathcal{F}\right\}\right]}{=} \begin{array}{rl}
T-1 & \frac{1}{t=2} \sum_{t}^{T} E\left\{Y_{i(t-1)}^{2} \varepsilon_{i t}^{2} p_{i t} p_{i(t-1)}^{2}\right. \\
\hat{p}_{i t}^{2} \hat{p}_{i(t-1)}^{2}
\end{array}+\frac{2}{T-1} \sum_{t_{1} \neq t_{2}} E\left\{Y_{i\left(t_{1}-1\right)} Y_{i\left(t_{2}-1\right)} \varepsilon_{i t_{1}} \varepsilon_{i t_{2}} \frac{p_{i t} p_{i(t-1)}}{\hat{p}_{i t} \hat{p}_{i(t-1)}}\right\}\right.\right. \\
= & \frac{1}{T-1} \sum_{t=2}^{T} E\left\{Y_{i(t-1)}^{2} \varepsilon_{i t}^{2} p_{i t}^{-1} p_{i(t-1)}^{-1}\right\}\left\{1+O_{p}\left(\frac{1}{\sqrt{N T}}\right)\right\} \\
& +\frac{2}{T-1} \sum_{t_{1} \neq t_{2}} E\left\{Y_{i\left(t_{1}-1\right)} Y_{i\left(t_{2}-1\right)} \varepsilon_{i t_{1}} \varepsilon_{i t_{2}}\right\}\left\{1+O_{p}\left(\frac{1}{\sqrt{N T}}\right)\right\} \\
= & E\left(B_{2 i}^{2}\right)+O_{p}(1 / \sqrt{N T}) \rightarrow_{p} \sigma_{1 i}^{2} .
\end{aligned}
$$

Then we have $(T-1)^{-1 / 2} B_{3 i} \rightarrow_{p} 0$. Thus, $\widehat{\alpha}_{i}^{W L S}-\alpha_{i} \rightarrow_{p} 0$. By a slight extension of Example 7.15 in Hamilton (1994), we can obtain the result of equation (A.8). Thus, the proof of Theorem 2 has been completed.

Appendix D: Proof of Theorem 3

The proof is similar to the proof of Theorem 1 in Sun and Wang (2019). The details are given in the following two steps.

Step 1: To demonstrate the consistency of $\widetilde{\theta}^{M L E}$, we first show that there exists
some constant $C>0$ so that

$$
\begin{equation*}
\lim _{N, T \rightarrow \infty} P\left\{\sup _{\|t\|=C} \ell_{1}\left(\theta+a(N T)^{-1 / 2} t\right)<\ell_{1}(\theta)\right\}=1 \text {. } \tag{A.9}
\end{equation*}
$$

Applying Taylor's expansion to $\ell_{1}\left(\theta+a(N T)^{-1 / 2} t\right)$, we have

$$
\begin{align*}
R_{N T}(\theta) & =\ell_{1}\left(\theta+(N T)^{-1 / 2} t\right)-\ell_{1}(\theta) \\
& =(N T)^{-1 / 2} t^{\top} \frac{d \ell_{1}(\theta)}{d \theta}+(2 N T)^{-1} t^{\top} \frac{d^{2} \ell_{1}(\theta)}{d \theta d \theta^{\top}} t+o_{p}(1) . \tag{A.10}
\end{align*}
$$

From Lemma 2, we know that $(N T)^{-1 / 2} d \ell_{1}(\theta) / d \theta=O_{p}(1)$. In addition, we have $(N T)^{-1} d^{2} \ell_{1}(\theta) / d \theta d \theta^{\top}=-\Lambda_{1, N T}+o_{p}(1) \rightarrow-\Lambda_{1}$. By the similar arguments of Theorem 1 in Sun and Wang (2019), we can obtain the consistency of $\widetilde{\theta}^{M L E}$. Specifically, the second term of (A.10) is quadratic and negative, and the first term is linear. Then, for a sufficiently large C, the second term would dominate the first one. Thus, (A.9) holds. In addition, we maximize $l(\theta)$ at $\widetilde{\theta}^{M L E}$, which means $\widetilde{\theta}^{M L E}$ is controlled by $\left\{\theta+(N T)^{-1 / 2} t:\|t\| \leq C\right\}$. Consequently, $\left\|\widetilde{\theta}^{M L E}\right\|=O_{p}(N T)^{-1 / 2}$.

Step 2: To demonstrate the asymptotic normality of $\widetilde{\theta}^{M L E}$, we take a Taylor expansion of $d \ell_{1}\left(\widetilde{\theta}^{M L E}\right) / d \theta=0$ at the true value of θ. This leads to

$$
\sqrt{N T}\left(\widetilde{\theta}^{M L E}-\theta\right)=\left\{-\frac{1}{N T} \frac{d^{2} \ell_{1}(\breve{\theta})}{d \theta d \theta^{\top}}\right\}^{-1} \frac{1}{\sqrt{N T}} \frac{d \ell_{1}(\theta)}{d \theta}
$$

where $\breve{\theta}$ lies between $\widetilde{\theta}^{M L E}$ and θ. By the Slutsky's Theorem and Lemma 4, it suffices to show

$$
\begin{equation*}
\frac{1}{N T} \frac{d^{2} \ell_{1}(\breve{\theta})}{d \theta d \theta^{\top}}-\frac{1}{N T} \frac{d^{2} \ell_{1}(\theta)}{d \theta d \theta^{\top}}=o_{p}(1) \tag{A.11}
\end{equation*}
$$

Consequently, we only to consider each block of the two related matrices, respectively.

First, we consider

$$
\begin{equation*}
\frac{1}{N T} \frac{d^{2} \ell_{1}(\breve{\theta})}{d \rho^{2}}-\frac{1}{N T} \frac{d^{2} \ell_{1}(\theta)}{d \rho^{2}}=L_{2, N T}=o_{p}(1) \tag{A.12}
\end{equation*}
$$

The details are given below. Note that $\ddot{\Omega}(\breve{\rho}) \equiv \ddot{\Omega}(\rho)$, and

$$
\begin{align*}
\Omega^{-1}(\breve{\rho}) \ddot{\Omega}(\breve{\rho}) & =\Omega^{-1}(\rho) \ddot{\Omega}(\rho)+\Omega^{-1}(\bar{\rho}) \ddot{\Omega}(\bar{\rho}) \Omega^{-1}(\bar{\rho}) \ddot{\Omega}(\bar{\rho})(\breve{\rho}-\rho) \tag{A.13}\\
\left\{\Omega^{-1}(\breve{\rho}) \dot{\Omega}(\breve{\rho})\right\}^{2} & =\left\{\Omega^{-1}(\rho) \dot{\Omega}(\rho)\right\}^{2}+2\left[\Omega^{-1}(\bar{\rho})\left\{I-\dot{\Omega}(\bar{\rho}) \Omega^{-1}(\bar{\rho})\right\} \ddot{\Omega}(\bar{\rho})\right](\breve{\rho}-\rho) \tag{A.14}
\end{align*}
$$

with $\bar{\rho}$ lying between $\breve{\rho}$ and ρ. We know that

$$
\begin{aligned}
L_{2, N T} \doteq \frac{1}{2 N} & {\left[\operatorname{tr}\left\{\Omega^{-1}(\check{\rho}) \dot{\Omega}(\breve{\rho})\right\}^{2}-\operatorname{tr}\left\{\Omega^{-1}(\rho) \dot{\Omega}(\rho)\right\}^{2}\right] } \\
& -\frac{1}{2 N}\left[\operatorname{tr}\left\{\Omega^{-1}(\breve{\rho}) \ddot{\Omega}(\breve{\rho})-\operatorname{tr}\left\{\Omega^{-1}(\rho) \ddot{\Omega}(\rho)\right\}\right]+\frac{1}{2}\left(\breve{\sigma}^{-2}-\sigma^{-2}\right) \sum_{t=2}^{T} \mathcal{E}_{t}^{\top} \ddot{A}_{t}(\breve{\rho}) \mathcal{E}_{t}\right. \\
& +\frac{1}{2 \sigma^{2}}\left[\sum_{t=2}^{T} \mathcal{E}_{t}^{\top} \ddot{A}_{t}(\breve{\rho}) \mathcal{E}_{t}-\sum_{t=2}^{T} \mathcal{E}_{t}^{\top} \ddot{A}_{t}(\rho) \mathcal{E}_{t}\right] \\
= & L_{2, N T, 1}+L_{2, N T, 2}+L_{2, N T, 3}+L_{2, N T, 4} .
\end{aligned}
$$

With the consistency of $\widetilde{\rho}^{M L E}$ and (A.13), we have $L_{N T, 1}=o_{p}(1)$. Similarly, by (A.14), we have $L_{N T, 2}=o_{p}(1)$. By a similar calculation of (A.1) and the consistency of $\widetilde{\theta}^{M L E}=\left(\widetilde{\rho}^{M L E},{\widetilde{\sigma^{2}}}^{M L E}\right)^{\top}$, we also have $L_{N T, 3}=o_{p}(1)$, and $L_{N T, 4}=o_{p}(1)$. Then, the equation (A.12) holds, and other blocks of $\frac{1}{N T} \frac{d^{2} \ell_{1}(\breve{\theta})}{d \theta d \theta^{\top}}-\frac{1}{N T} \frac{d^{2} \ell_{1}(\theta)}{d \theta d \theta^{\top}}$ are also $o_{p}(1)$. Thus, (A.11) holds, and we have completed the proof of Theorem 3.

Appendix E: Proof of Theorem 4

The proof of Theorem 4 is similar to the proof of Theorem 3. We can prove the consistency by the same argument with Lemmas 6 and 7. To show the asymptotic
normality of $\widehat{\theta}^{M L E}$, we apply Taylor expansion to $d \ell_{2}(\widehat{\theta}) / d \theta=0$ at the true value of θ. This leads to

$$
\sqrt{N T}\left(\widehat{\theta}^{M L E}-\theta\right)=\left\{-\frac{1}{N T} \frac{d^{2} \ell_{2}(\breve{\theta})}{d \theta d \theta^{\top}}\right\}^{-1} \frac{1}{\sqrt{N T}} \frac{d \ell_{2}(\theta)}{d \theta},
$$

where $\breve{\theta}$ lies between $\widehat{\theta}$ and θ. By the Slutsky's Theorem and Lemmas 6 and 7, it suffices to show

$$
\begin{equation*}
\frac{1}{N T} \frac{d^{2} \ell_{2}(\breve{\theta})}{d \theta d \theta^{\top}}-\frac{1}{N T} \frac{d^{2} \ell_{2}(\theta)}{d \theta d \theta^{\top}}=o_{p}(1) . \tag{A.15}
\end{equation*}
$$

Consequently, similar to (A.12), we can consider each block of the two related matrices, respectively. First, we have

$$
\begin{aligned}
L_{3, N T}= & \frac{1}{N T} \frac{d^{2} \ell_{2}(\breve{\theta})}{d \rho^{2}}-\frac{1}{N T} \frac{d^{2} \ell_{2}(\theta)}{d \rho^{2}} \doteq \frac{1}{2 N}\left[\operatorname{tr}\left\{\Omega^{-1}(\breve{\rho}) \dot{\Omega}(\breve{\rho})\right\}^{2}-\operatorname{tr}\left\{\Omega^{-1}(\rho) \dot{\Omega}(\rho)\right\}^{2}\right] \\
& -\frac{1}{2 N}\left[\operatorname{tr}\left\{\Omega^{-1}(\breve{\rho}) \ddot{\Omega}(\breve{\rho})-\operatorname{tr}\left\{\Omega^{-1}(\rho) \ddot{\Omega}(\rho)\right\}\right]\right. \\
& +\frac{1}{2 N T}\left(\breve{\sigma}^{-2}-\sigma^{-2}\right) \sum_{t=2}^{T} \widehat{\mathcal{E}}_{t}^{\top} \ddot{A}_{t}(\breve{\rho}) \widehat{\mathcal{E}}_{t}+\frac{1}{2 N T \sigma^{2}} \sum_{t=2}^{T} \widehat{\mathcal{E}}_{t}^{\top}\left\{\ddot{A}_{t}(\breve{\rho})-\ddot{A}_{t}(\rho)\right\} \widehat{\mathcal{E}}_{t} \\
= & L_{3, N T, 1}+L_{3, N T, 2}+L_{3, N T, 3}+L_{3, N T, 4}=o_{p}(1) .
\end{aligned}
$$

This can be established by a similar calculation for $\left\{L_{2, N T, k}\right\}_{k=1}^{4}$ in Theorem 3. Then, $L_{3, N T}=o_{p}(1)$, and other blocks of $\frac{1}{N T} \frac{d^{2} \ell_{2}(\breve{\theta})}{d \theta d \theta^{\top}}-\frac{1}{N T} \frac{d^{2} \ell_{2}(\theta)}{d \theta d \theta^{\top}}$ are also $o_{p}(1)$. Thus, (A.15) holds, and this completes the proof of Theorem 4.

References

Hamilton, J. (1994). Time Series Analysis. Princeton, NJ: Princeton University Press.

Lee, L.-F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica, 72(6):1899-1925.

Sun, Z. and Wang, H. (2019). Network imputation for a spatial autoregression model with incomplete data. Statistica Sinica, forthcoming.

