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APPENDIX

Appendixz A: Technical Lemmas

To establish the theoretical results in Section 3, the following technical lemmas are

considered.

Lemma 1. The OLS estimator of o; is not consistent.

PRrRoOOF: Define

T 1 T

Ay = Z ZitZi(t—l)Y;%t_l)a By = ﬁ Z Z; Zi(t—l)Y;(t—l)git-
t=2 t=2

Then, we have a"9F — a; = Al_ilBh- and compute the following equation,

T
1
E(Bu) = —T 1 E E{ZitZi(t—l)Y;(t—l)git}
t=2

— % iE[YE(H)&t{E(Zit ]:)E(Zi(t*”’}_)H
t=2

1 T

“T7_1 E{Y;(tfl)fitpitpi(tfl)} = E{K‘(tq)&tpitpi(t,l)} # 0
t=2

T
1
E(Ay) = T_1 Z E{ZitZi(t—l)Yz%t—l)} = E{Yi%t—l)pitpz’(t—n} —c> 0.
t=2

By the law of large numbers, we have Ay; —, E(Ay;) — ¢ and By; —, E(By;) = 0.

With Slutsky’s Theorem, we can show that &% is inconsistent.
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Lemma 2. Assume M; and My are N x N square matrices. Let U = (uq, - ,uy)

follows a N-dimensional standard normal distribution. Then, we have
(i) E(UT M U) = tr(My);
(ii) E(UT MU - UT MyU) = tr(M;)tr(Ms) + 2tr( M, M,);
(iii) cov(U" MU, UT MyU) = 2tr(M, M>);

(iv) var(UT M U) = 2tr(M?3).

PRrOOF: This Lemma follows Lemma A.11 in the supplement of Lee (2004).

Lemma 3. Define S = (N(T — 1))7'(20%) 'S, & Ai(p)&, and S, = (N(T —

1)1 (202) S0, ET Aup)Ei. Assume the conditions in Theorem 8 hold, we have

VN(T = 1){S = E(S)} =4 N(0,A1),
VN(T = 1){8 — E(S1)} —a N(0,0"As).

PROOF: Denote U; = X728, = 07'Q(p)V/2&, = (Uyy,- - ,Unt)", where U, follows a
N-dimensional standard normal distribution. Denote B,(p) = Q(p)~/2A,(p)Q(p) /2,

and By(p) = Q(p) "2 A,(p)Q(p) /2, ie.,
Bi(p) = Qp)" " [Z2/P H{Q(p) — diag($2(p))}P; ' 2, + diag((p)) Py 2] p) 2.
Then, we have

§ = oxer— 2 U )AL = s U B



Then, by Lemma 2, we have the expectation of S as,

BS) = 2N(T1— 1) ;E[E{U Bl thH zN(; 1) ;E[“{Bt@)}]
= 2N(; 5 gE[tr{At(p)Q(p)‘lH = ﬁtr{ﬁ(p)fl(p)‘l}
The associated second moment is
B(S?) = E{B(S*F)} = —W (ZE[ U7 B0} 7]+

Z E[{UZBtl(p)Utl}{U;Btg(P)Um}|]:})
t1£ts
m (i Blau{ B )] + Z Z Etx{By, (o) }Yor{ By, (p )}])

t=2 =2to=

(S B[t + v + 3wl 1}).

t=2 t1#£t

4N2 2

Consequently, we have

(N(T = 1))eov(8) = (N(T = D)){E(S?) — E*(S)}

ZE[Qtr{BQ (p)} + tr{Bi(p )}} - ﬁtrQ{Q(p)Q(p)_l}

ZE(?HH gty s facom)) - e oo

— An.

According to Lemma 2 of Sun and Wang (2019), we can obtain the asymptotic

normality of S. Similar results can be obtained for §; following the same logic, where

E(S1) = 1/2, and (N(T—1))cov(81) = 4NT—4N)"' 7, E(Qtr[{At(p)Q(p)_l}Q} 4



tr2{At(p)Q(p)*1}] — N/4 — 0*Agy. In addition, we have

(N(T —1))cov(S,S;) = (4NT — 4N)~!

[M] =

E|26:{ A(p) Ai(p)2p) *}

t

+ { Ap) o) fer{ Ai(0) ) }| - {2000} = —o?Ase,

||
I\

This completes the proof of Lemma 3.

Lemma 4 (Asymptotic normality of the ideal estimation equation). Under the condi-

tions in Theorem 3, we have

where A is defined as in condition (C1).

PrOOF: Recall the likelihood function for 6,

N(T —1)
2

06) = 01(p.0%) =——L1og|p) | - loa(0%) — 5.3 O & Ap)E.

2

The associated first derivative is

de () T—-1 . . 1 1
WO T 0007 (000 — o S & A0 = ~N (T~ 1)(8 ~ ES)
p 2 20° —
de(0) NT—-1)1 1 .1 N(T —1)
Then, we have
1 ae (6)
1 de0) | ey de ro(l) = —/N(T —1)(S - ES) o)
JNT df 1 m e
N(l_T_l) ¢4 LV/N(T —1)(S; — ESy)



By Lemma 3 and condition (C1), we have (N(T —1))"Y2d(,(0)/dp —4 N(0,Aq),
(N(T —1))7Y2dt,(0) /do? —4 N (0, Agy), and (N(T — 1)) "*cov{dl,(0)/dp, dl,(0)/do?}
— Ajy. Then, we can derive the asymptotic normal distribution of (NT)~'/2d¢,(0)/df
using the central limit theorem for linear-quadratic forms. Thus, the proof of Lemma

4 is completed.

Lemma 5. Under the conditions in Theorem 3, the symmetric information matric

Ayt = —(NT)"H{d?¢1(0)/d0d0" }, we have Ay N7 —p A.

PROOF: The second derivative for the likelihood of € is specified as follows

_h(0) _ T—ltr[{Q_l(P)Q(P)}2_Q_1( )] + 57 2 6 A0

dp? 2 20%
d20,(0) d20,(0) 1 .1
 dpdo? T do2dp T 20t & Ap)&
t=2
260)  NT-1)1 11 .t
dd? T2 o g 8 A
t=2

Note that E{o 2, A,(p)&} = tr{Q " (p)Q:p)}, then, we have

1 d*,(0) 1 )
_N(T—l)E{ dp> } ON [{Q Hp)2p)} | = An

1 d*0,(0) 1 BV
T ot | = a2} — A
1 d2€1(9) 1
_N(T — 1)E{d02d02} 204 — A
For Ay 7, we have
1 yd®6(6) 1 d20,(0)
Avr = NT{ dfdo™ } - N(T — 1)E{ dodoT } +op(1) = A

This follows by condition (C2). Thus, we have Ay yyr —, A. This completes the proof



of Lemma 5.

Lemma 6 (Asymptotic normality of the feasible estimation equation). Assume con-

ditions (C1)-(C3), we have

Then, by the Lemma 4, we have (NT)™Y2dly(0)/d0 —4 N(0,A).

PROOF: Define P, = diag{pupic—1)} € RV*N. Recall the feasible weighted log-

likelihood is specified as :

T
1 ST 4 ()6
lo(0) = la(p, 0°) = log |Q(p)| — Tlog - 2— E E A

where 4,(p) = Z,P; H{Qp)—diag(Q(p)) } P ' Zi+diag(Qp)) Py 26 & = (Bre - 1 éne) T

and &;; = Yy — &;Yj—1). The associated first derivative is

dis(0) T —1 4, 1 S~ ari s
i = 3 w0} - 55 ;& Ai(p)€,

dlr(0)  NT—1)1 1 ~ari, \a
o~ 2 o g 2 h AR

Compared to d¢,(6)/df = (d¢,(0)/dp,dl1(0)/do?)T, we have

B {deélie) _ dé;ée)} _ 1 {igjjxt(p)g} - & At(p)&}. (A1)

To prove the Lemma, we can assume o2 = 1, and it suffices to show that

\/72{8 Ap)é, — €7 Ap)&} = ﬁzm —0,(1), (A2)



where Ly, = & Ai(p)&r — E] A(p)& = €] Aup)&: — & Ai(p)& + E{Ai(p) — Ai(p) }Er.
Note that & = Y, — diag(Y,_1)a and & = Y, — diag(Y,_1)a = & — diag(Y,_1)(& — a),
where Y, = (Y, - ,Yn:)" and & = (&y,---,an)". Then, we have é;—At(p)é't =

{& — diag(Y,_1)(& — )} T Au(p){& — diag(Y,_1)(& — @)}, and

& A(p)é — & Ap)E =(a — o) "diag(Y,—1) Ay (p)diag(Y,—1) (& — @)

— 287 Ay(p)diag(Y;-1)(a — @) = Ly + Ly po.

Then, we have

T T
Z Lip =2 Z gtTAt(p)diag(Yt—l)<a —a) < sup(ai — &)

t=2 t=2

T
2 Z diag(Yt—l)At(p)gt
t=2

Since VT (V5% — ;) is asymptotic normal and (NT)~Y2 "7 diag(Y,_1)A(p)& =
0,(1). We can show that (NT)~23" Li;5 = 0,(1). Similarly, we can show that

(NT)~'/2 23:2 Ly 41 = 0p(1). Next, considering

Aulp) = Adlp) = 2P = P ) [p) — ding{ o)} (P~ ) 2
+ (P =Pt [2Ap) - diag{Q(p)}| P 2

+ 2P [Q(P) - diag{Q(p)}} (73;1 - Pt_l)zt + diag{Q(p)} (7/5;1 - Pt_1>Zt-

Then, we can show that A,(p) — Ai(p) = 0,(1), and jlt(p) — Ai(p) = 0,(1). We
have L3 = & {Ai(p) — Ai(p) Y& = ET{Ai(p) — Au(p)}&i + 0,(1) = 0,(1). Therefore,

(NT)~1/2 ZtT:Q Ly = 0,(1), ie., (A.2) holds. In addition, \/]{TT{df;(f) — dflla(f)} -

s S AET Ap)Es — ET A(p)E:} = 0,(1). Thus, we have

1 (di(0)  de9)y
\/W{ o do }_Op“)'




Following Lemma 4, we have the asymptotic normality of (NT)~/2dly(6)/df. This

completes the proof of Lemma 6.

Lemma 7. The symmetric information matriz Ay yr = —(NT)Hd?*(5(0)/d0dO" }, we

have Ay N7 = Ay vt + 0p(1) —p A

PROOF: The second derivative of ¢5(0) for the likelihood of 6 is specified as follows

Pl0) T-1 o ) T
- -4 tr[{@ PO =0 0] + 55 D ET A
=2
Ph(0) (0 .
~dpdo® dazdp 204 ZE At
CPL)  NT-1)1 _ii
do2do? 2 2 p—

Following the similar proof of (A.1), we can easily verify Ay v — Ay n7 = 0,(1). By
Lemma 5, Ay yyv — A = 0,(1). Therefore, we have Ay yy — A = 0,(1). Thus, the proof

of Lemma 7 is completed.
Appendix B: Proof of Theorem 1

PROOF: For the ideal WLS estimation of «;, define

T
1 Ty Zitr
Ay =y 220D

T
9 1 Zit Zi(t—1)
-1 iy Pit Pit—1)

Y2 1, Bu=\/m—
=1) -1 —y Pit Pi(t—1)

Y;(t—l)git-

Then, we have

V T — 1(623VLSE - Oéi) = AQ_ZIBQZ (AS)



With Slutsky’s Theorem, it is sufficient to prove that

Agi —p 0'32/1_, (A4)
Bgi —d N(O, O'%z) (A5)
For A,;, we have
a Zi T
B(Ay) = (T - 1) > B[V B{ 2 B(S=2 | F ‘;H
(Aa:) = ) tz:; ¢=1) Pit (pi(tfl) } )
T
= (T -1 E{Yi )} =0,
t=2

Then, by the law of large numbers, we have Ay —, 052/1_ . For Bsy;, the expectation and

variance are computed as follows

Z Zz(t 1)
B(Bai) =\ 7 > B[V, E{ Zit g F) ‘]—"H 0
2 —1 Z i(t-1)Cit Dit (pz(t 1) ‘

E<B§i):T—1ZE[ o 1)€1tE{Z,tE Z%, ‘]—" ‘f}]

Di p(tl

2 Zity Zi(ta—1) 1/ Zity Zi(t1—1)
TR E[Yi Y 11En i E{ 2 Zilta=1) o Zit ‘J-‘}]
T — 1 Z (tl 1) (t2 1) fi=itz pitg pi(tg—l) (plt1 pz(t1 1)

t17#t2
1 2
:—T 1 Z E{Y% 1) 2tp7;1p_(tl 1)} + T—— 1 Z E{Yi(hfl)Yi(tgfl)gitlgitQ}
t=2 t1#t2

—B{Y3 i ) = o

Then, we have (T — 1)"%/2By; —, 0. Thus, &@}V*%€ — a; —, 0. By a slight extension of
Example 7.15 in Hamilton (1994), we can obtain the result of equation (A.5). Thus,

the proof of Theorem 1 has been completed.

Appendizx C: Proof of Theorem 2



By the theory of logistic regression, we can obtain (3 — 8) = O,(1/v/NT). Then with

Delta method, we have

i — pie = Op(1/VNT),  py' —p;' = O,(1/VNT),
ﬁitﬁi(tfl) — PitPi(t—1) = Op(l/ Vv NT)-

For the feasible WLSE, define

Z'Lt Zz(t I)Y(t DEit-

1 Zzt Zz(t 1)y -2
’ Z e-1) ’ VT tz; pzt pz t—1)

T_lt 2pztpz(t 1)

Then, we have
V T— 1((/)[\?/LS - ai) = A?Tle& (AG)

With Slutsky’s Theorem, it is sufficient to prove that

As; =, 0}2/1_, (A.7)
Bs; —4 N(O, O-%z) (A8)

For As;, we have

T
Zy  Ziq
EAi:T—]__l EY2 E ZtE I‘F
(Ag)) = (T = 1) Z Vi B{ S EC )| 7
T
— (=1 EB{yz, PP B4, 4+ 0,(1/VNT) =, 0%
=9 pztpz(t 1)

Then, by the law of large numbers, we have As; —, a%. For B3, the expectation is
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computed as

E(Bs) = ﬁiE[Y(t 1)5,tE{itE(i(t 217) 7} =0
t=2

Its variance is computed as

T
1 z: Z 2
2y it i(t—1)
B(BY) = 7= Y E|Vi. 1)eztE{ptE(p(t : AF 7=
t=2 3 t1#£t2

E|:Y;(t1 1)Y (ta— I)EztlgthE{ ito (ta— 1)E( t1 “i(ti1—1) ./—" ‘f}i|
pzt? pl(t2 1) plt1 pz(t1 1)

T
2 PitDi(t-1)

2 DPitPi(t—1)
= — E{Y;t DEit o = } + E{Y;(t 1) Yi(ty-1)Eits City
-1 ¢-1)° pzztp?(t—l) T-1 t;2 ' T Db

T
— 1
T—-1 pars ’(t 1)€ztpzt p( 1) + 0O ~7
° 1
+ T_1 1Zt2 E{K(t1—1)§§(t2—1)€it15it2}{1 + OP(W) }

= B(B3;) + Op<1/\/ﬁ) —p 01

Then we have (T — 1)"Y2Bs; —, 0. Thus, V% — a; —, 0. By a slight extension of
Example 7.15 in Hamilton (1994), we can obtain the result of equation (A.8). Thus,

the proof of Theorem 2 has been completed.
Appendixz D: Proof of Theorem 3

The proof is similar to the proof of Theorem 1 in Sun and Wang (2019). The details

are given in the following two steps.

Step 1: To demonstrate the consistency of gMLE , we first show that there exists

11
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some constant C' > 0 so that

lim P{sup (0 +a(NT) V%) < £,(0)} = 1. (A.9)

N, T—o0 Itl|=C

Applying Taylor’s expansion to £1(6 + a(NT)~?t), we have

Rnr(0) = 6,(6 + (NT)"Y2t) — £,(6)

dey (9)

2
— (NT)—I/%&TW + (2NT)—1tTd G(6)

dhdo’

t +0,(1). (A.10)

From Lemma 2, we know that (NT)~'/2d¢,(0)/d0 = O,(1). In addition, we have
(NT)™1d?01(0)/d0d0" = —Ay Nr+0,(1) — —A;. By the similar arguments of Theorem
1 in Sun and Wang (2019), we can obtain the consistency of gMLE Specifically, the
second term of (A.10) is quadratic and negative, and the first term is linear. Then,

for a sufficiently large C, the second term would dominate the first one. Thus, (A.9)

holds. In addition, we maximize [() at OMLE  which means 6MLF is controlled by

{60+ (NT)=*2t . ||t|| < C}. Consequently, [|MEE| = O,(NT)~Y/2.

Step 2: To demonstrate the asymptotic normality of gMLE , we take a Taylor ex-

pansion of d¢;(6MEE)/df = 0 at the true value of 6. This leads to

~ 1 d20,(6) -t 1 dey(0)
VNT(OMEE — ) = § — -
( ) { NTMMT}Nﬁﬁ g

QMLE

where 6 lies between and 6. By the Slutsky’s Theorem and Lemma 4, it suffices

to show

L d6(0) 1 d(9) )
NT dodoT ~ NT dodoT P\

(A.11)

Consequently, we only to consider each block of the two related matrices, respectively.
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First, we consider

L 6(6) 1 d*(9)
NT dp? NT dp?

= L27NT = Op(]_). (Al?)

The details are given below. Note that Q(3) = Q(p), and

Q7 (5)0p) = Q7 (p)p) + 2 (PR (PP — ) (A.13)

Q7 PUDY = 197 (UDY +2[2 I - AP DI (- ) (A14)

with p lying between p and p. We know that

Lonr = e [0 (A3 — {2 (0)2p)Y)

— o [ @00) — i (i) + 4 (572 07?) Zf% pIE
[igmt )& — Zs Aup)e]

= Lo n71 + LonT2 + Lo Nt + LonTa-

With the consistency of p™ =¥ and (A.13), we have Ly71 = 0,(1). Similarly, by (A.14),

we have Lyro = 0,(1). By a similar calculation of (A.1) and the consistency of

MLE

GMLE — (GMLE 527 ""\T e also have Lyts = 0,(1), and Lyrs = 0,(1). Then, the

pME o

equation (A.12) holds, and other blocks of &= iw%ﬁ) e 55929@ are also 0,(1). Thus,

(A.11) holds, and we have completed the proof of Theorem 3.
Appendixz E: Proof of Theorem 4

The proof of Theorem 4 is similar to the proof of Theorem 3. We can prove the

consistency by the same argument with Lemmas 6 and 7. To show the asymptotic
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é\MLE

normality of , we apply Taylor expansion to d@(@) /df = 0 at the true value of 0.

This leads to

~ 1 d20,(0)y-1 1 diy(0)
/NT MLE — . 2
(0 %) { NT d&dQT} VNT df '’

where § lies between # and 6. By the Slutsky’s Theorem and Lemmas 6 and 7, it

suffices to show

1 dh0) 1 d(9)
NT d6d6T — NT dodeT

= 0,(1). (A.15)

Consequently, similar to (A.12), we can consider each block of the two related matrices,

respectively. First, we have

Lovr = i — W = o [t (O P - {0 (DA
. % {71 ()Q(P) — tr{Q ! }
+ﬁ<5—2—a—2>;§ APE A+ g 5 2 A — Aol

= Lynr1+ Lsnr2+ Ly nrs + Lanra = 0p(1).

This can be established by a similar calculation for {Ly NT7k}%:1 in Theorem 3. Then,

Ls Nt = 0,(1), and other blocks of wa%@ T %;jg(for) are also o0,(1). Thus, (A.15)

holds, and this completes the proof of Theorem 4.
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