

Fig. S1. TET activity and total cell number in TET1-disrupted and DMOG-treated blastocysts. (A) Measurement of TET enzyme activity in *TET1* KO blastocysts. Total TET enzyme activity in *TET1* KO blastocysts was decreased compared to that in control blastocysts. Error bars represent standard deviation. A p-value < 0.05 was considered statistically significant. (B) There was no significant difference of total cell number between IVF control, injection control (Cas9 only), and *TET1* KO blastocysts. (C) Total cell number of blastocysts incubated with DMOG was not different compared to that of control blastocysts. Top horizontal line and bottom horizontal line of the box indicate maximum and minimum values, respectively. Middle horizontal line indicates average value. A p-value < 0.05 was considered statistically significant.

Fig. S2. The effect of DMOG treatment on TET3 inhibition in zygotes. (A) Timeline of DMOG treatment to inhibit TET3 activity in zygotes. Oocytes were incubated with 1mM DMOG for 30 min before fertilization and the treatment was maintained during fertilization and embryo culture for further 21 h, then zygotes were collected for immunocytochemistry analysis. (B) Inhibition of TET3 activity by DMOG treatment. In control zygotes, formation of 5hmC was detected in both paternal and maternal pronuclei. 5hmC was disappeared in pronuclei when zygotes were incubated with DMOG.

Table S1. Validation of targeting efficiency by CRISPR/Cas9 at TET1 gene locus. All blastocysts

Embryos genotyped	Target site 1	Target site 2	Target site 3
(n=10)			
Embryo #1	Homozygous	Homozygous	Mosaic w/ wildtype
Embryo #2	Homozygous	Homozygous	Mosaic w/ wildtype
Embryo #3	Homozygous	Biallelic	Mosaic w/ wildtype
Embryo #4	Biallelic	Biallelic	Mosaic w/o wildtype
Embryo #5	Biallelic	Biallelic	Mosaic w/o wildtype
Embryo #6	Biallelic	Homozygous	Mosaic w/o wildtype
Embryo #7	Biallelic	Homozygous	Mosaic w/ wildtype
Embryo #8	Biallelic	Biallelic	Mosaic w/o wildtype
Embryo #9	Homozygous	Biallelic	Mosaic w/ wildtype
Embryo #10	Biallelic	Biallelic	Mosaic w/ wildtype

genotyped carried mutations at the three target sites indicating 100% targeting efficiency.

Table S2. Development of *TET1* KO embryos to blastocyst stage. Frequency of blastocyst formation at day 7 decreased in *TET1* KO embryos compared to that in IVF control and injection control (Cas9 only) embryos. Different letters indicate statistical difference.

	Number of blastocysts at day 7 (%)	Number of oocytes used
IVF control	111 (28.8) ^a	385
Injection control (Cas9)	164 (18.5) ^b	885
<i>TET1</i> KO	119 (12.4) ^c	958

Table S3. Development of embryos treated with DMOG. Frequency of blastocyst formation at day 7 decreased in embryos treated with DMOG compared to that in control embryos. Different letters indicate statistical difference.

	Number of blastocysts at day 7 (%)	Number of oocytes used
Control	304 (21.3) ^a	1429
DMOG	261 (17.6) ^b	1484

Table S4. Information of sgRNAs used for depletion of *TET1* gene.

sgRNAs	Sequence $(5' \rightarrow 3')$
TET1_sgRNA1	TGTCTCGATCTCGCCATGCA
TET1_sgRNA2	GTGCTCATCATGGTATGGGA
TET1_sgRNA3	AGTCGAACCTGTACATGTCA

Table S5. Primers used for RT-qPCR analysis.

Primers	Sequence $(5' \rightarrow 3')$
GAPDH_forward	ATGACATCAAGAAGGTGGTGAAGC
GAPDH_reverse	CCAGCATCAAAAGTGGAAGAGTGA
OCT4_forward	TTTGGGAAGGTGTTCAGCCAAACG
OCT4_reverse	TCGGTTCTCGATACTTGTCCGCTT
NANOG_forward	AGGACAGCCCTGATTCTTCCACAA
NANOG_reverse	AAAGTTCTTGCATCTGCTGGAGGC
SOX2_forward	TGTCGGAGACGGAGAAGCG
SOX2_reverse	CGGGGCCGGTATTTATAATCC
KLF2_forward	CGATCCTCCTTGACGAATTT
KLF2_reverse	CAAGCCTCGATCCTCTAGT
ESRRB_forward	CTGCAAGGCCTTCTTCAA
ESRRB_reverse	CGTTTGGTGATCTCACACTC
ZFP42_forward	GGATTCCTTCTCGACTGTTAC
ZFP42_reverse	GCTCTTGTTCTGATCCTTCTT
DPPA3_forward	CTCAGGCTTGTCCTCAAATG
DPPA3_reverse	CGTCAAGTTACTGAGGTTCTG
PRDM14_forward	GAGCCTGCAGGTCATAAAG
PRDM14_reverse	CTTGAGATGCTTGTCTCTGTAA
TCL1A_forward	GGCAAAGGCTGTGTATGT
TCL1A_reverse	CCTGACGCATGAGTACTTG
SOX17_forward	CTTCATGGTGTGGGGCTAAGG
SOX17_reverse	CGGCCGGTACTTGTAGTTG

GATA6_forward	GCTGCACAGTCTACAGAGTC
GATA6_reverse	AGCGGTTGCACAAGTAGT
GATA4_forward	AAGAGATGCGTCCCATCAAG
GATA4_reverse	GACTGGCTGACCGAAGATG
CDX2_forward	AACCTGTGCGAGTGGATG
CDX2_reverse	CCTTTCTCCGAATGGTGATGTA
TEAD4_forward	TGTGAGTACATGGTCAACTTCAT
TEAD4_reverse	GCTGACACCTCGAAGACATAC
GATA3_forward	TACTACGGAAACTCGGTGAGG
GATA3_reverse	TGGATGGACGTCTTGGAGAA
TET1_forward	TGTCGGCTTGGCAAGAAAGA
TET1_reverse	AGACCACTGTGCTGCCATTA
TET2_forward	GTGAGATCACTCACCCATCGCATA
TET2_reverse	TACTGGCACTATCAGCATCACAGG
TET3_forward	TCTTCCGTCGTTCAGCTACTACAG
TET3_reverse	GTGGAGGTCTGGCTTCTTAAA

Table S6. Primers used for PCR amplification of bisulfite converted DNA.

Primers	Sequence $(5' \rightarrow 3')$
NANOG promoter1_forward	AAAATTAGGTAGAGATATTATTAAAAA
NANOG promoter1_reverse	AAATATTCCCTCTATACCCACTTAAC
NANOG promoter2_forward	CTTATATAGGAAGAGAGAGAGATTAAATTG
NANOG promoter2_reverse	CCCAACAATACTTACTAAATAAACTTTCC
NANOG gene-body1_forward	CTAATTTAATATGAGTGTGGA
NANOG gene-body1_reverse	GAATATTAAAAAATTCTTACATCTACTAAAA
NANOG gene-body2_forward	GAGAGGTAGAAGTATTTTAGTTTTAGTAGA
NANOG gene-bopy2_reverse	GTAAAATAATTTAAAAATAAATCCATAATTT

Amplified regions	Primers	PCR conditions
NANOG promoter	NANOG	Initial denaturation for 2 min at 95°C and 40 cycles of
part 1	promoter1_forward	denaturation for 30 sec at 95°C, annealing for 30 sec at
	NANOG	50°C, extension for 30 sec min at 72°C, followed by a
	promoter1_reverse	final extension for 2 min at 72°C.
NANOG promoter	NANOG	Initial denaturation for 2 min at 95°C and 40 cycles of
part 2	promoter2_forward	denaturation for 30 sec at 95°C, annealing for 30 sec at
	NANOG	50°C, extension for 45 sec min at 72°C, followed by a
	promoter2_reverse	final extension for 2 min at 72°C.
NANOG gene-	NANOG gene-	Initial denaturation for 2 min at 95°C and 40 cycles of
body part 1	body1_forward	denaturation for 30 sec at 95°C, annealing for 30 sec at
	NANOG gene-	45°C, extension for 30 sec min at 72°C, followed by a
	body1_reverse	final extension for 2 min at 72°C.
NANOG gene-	NANOG gene-	Initial denaturation for 2 min at 95°C and 40 cycles of
body part 2	body2_forward	denaturation for 30 sec at 95°C, annealing for 30 sec at
	NANOG gene-	50°C, extension for 30 sec min at 72°C, followed by a
	bopy2_reverse	final extension for 2 min at 72°C.

Table S7. PCR conditions for amplification of bisulfite converted DNA