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A. Sensitivity to the number of training systems 

Table A shows the stability of the prognostic performance of the proposed method on sub-dataset 

FD001 according to the different number of training systems. The evaluations are repeated 10 times for 

each value of the number of training systems, and the detailed training settings follow Section 4.4.1 of the 

manuscript. We can see that as we have more training data, the prognostic performance of the proposed 

method gets more accurate and precise. 

 

 

B. Sensitivity to the sensor signal noise level 

Here, we investigate how the noise and disturbance of the available data affect the stability of the 

proposed method. To do that, we introduce additional Gaussian random noise 𝜀𝒩~𝑁(0, 𝜎𝒩
2 )  to the 

standardized sensor signals of sub-dataset FD001 and apply the proposed method. Figure A shows 

examples of how 𝜀𝒩 affects standardized sensor signals. The evaluations are repeated 10 times for each 

value of the noise level 𝜎𝒩
2  and the detailed training settings follow Section 4.4.1 of the manuscript. Table 

B shows the prognostic results of the proposed method according to different noise levels. We can see 

Table A. The mean and standard deviation (in parentheses) of prognostic results of the proposed method 

on FD001. 

Number of 

training systems 

40 60 80 100 

Score 722.77 (45.82) 549.36 (32.46) 372.58 (23.14) 267.21 (14.78) 

RMSE 23.32 (8.21) 17.43 (3.74) 15.49 (2.44) 12.42 (0.21) 

 



that the smaller the noise level, the better the prognostic performance. Given that the C-MAPSS dataset 

itself (i.e., 𝜎𝒩
2 = 0) has a certain noise level already, the proposed method shows fairly good robustness 

against noise level. 

 

C. Comparison of computational costs 

Table C shows the average computation time of the proposed method and other benchmark 

methods over 10 trials on FD001 sub-dataset. The proposed method, Benchmarks (2) and (5) are tested 

using Intel Core i5-6300U CPU 2.40-GHz and 16-GP RAM. The Benchmark (4) is tested with Intel Core 

i7-3770 3.40-GHz CPU and 16-GB RAM. The training time of Benchmark (3) is excluded as the authors 

of the paper did not provide detailed settings to reproduce the results and calculate the computational 

costs. The table shows that the proposed method yields much lower training time than the existing deep 

learning approach (MODBNE) and comparable training time to Deep LSTM (Benchmark (2)). Although 

the proposed method takes longer training time than the existing parametric approach (HI), please note 

that this training procedure is carried out offline. In online, we can obtain the interval estimations of RUL 

which take around 0.1s seconds using two Intel(R) Xeon(R) CPU E5-4620 0 2.20GHz processors and 192 

GB RAM and around 0.5s using Intel Core i5-6300U CPU 2.40-GHz and 16-GP RAM. To obtain the 

interval estimation, we repeat multiple stochastic forward passes (for  𝑅 repetitions) to obtain 𝑅 empirical 
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Figure A. Signals of T50 of Training Unit 1 in FD001 when the noise level 𝜎𝒩
2  is (a) 0, (b) 0.1, and 

(c) 0.2. 

 

Table B. The mean and standard deviation (in parentheses) prognostic results of the proposed method 

on FD001 according to different 𝜎𝒩
2  values. 

𝜎𝒩
2  0 0.01 0.05 0.1 0.2 

Score 267.21 (14.78) 287.61 (19.24) 294.60 (20.28) 306.94 (23.36) 1117.51 (61.93) 

RMSE 12.19 (0.22) 13.31 (0.76) 13.78 (1.24) 14.45 (2.59) 18.71 (2.76) 

 

 

 



(Monte Carlo) samples. Owing to these samples being independent, computation time can be further 

reduced by using parallel computing if needed in practice. 

 

 

D. Numerical study – Li-ion battery 

In this section, we further apply the proposed method to predict the RULs of Li-ion batteries. In 

Section D.I, we provide an overview of the system and dataset. Section D.II demonstrates how we 

preprocess the raw degradation data and presents the prognostic results of the proposed method. 

D.I. Overview of the system and dataset 
In this dataset (Bole et al., 2014), a set of four 18650 Li-ion batteries (RW1, RW2, RW7 and 

RW8) were continuously operated under a randomly generated sequence of charging and discharging 

profiles (also referred to as random walk discharging). Each system (battery) starts from a fully charged 

cell in a stationary condition. At each cycle time, three sensor signals are collected from a battery: voltage, 

current and temperature. Here, we consider the last signal measurement time of each battery as its failure 

time. More detailed experimental settings can be found in Bole et al., (2014). 

D.II. Data preprocessing and results  
We first conduct similar data preprocessing procedures to Section 4.2. Specifically, min-max 

normalization is applied to all three sensor signals, such that each degradation data is within the range of 

[0, 1]. Then, the sliding time window procedure is applied to the training systems to augment the training 

dataset. The hyper-parameters are optimized via 10-fold cross validation: 𝑛𝑇𝑊 = 10, the number of 

hidden layers of BDNN is set to 2, the number of hidden neurons per hidden layer of BDNN is set to 20. 

Out of four batteries, the first three batteries (RW1, RW2 and RW7) are used to train the model 

while the fourth battery (RW8) is used to test the model. The RUL prediction results of RW8 are illustrated 

in Figure B. We can see that as the battery approaches the failure, the proposed method provides more 

accurate and tighter interval estimations of RULs. 

 

Table C. The average model training time of the proposed method and other benchmark approaches on 

FD001. 

 The Proposed 

Method 

Deep  

LSTM 

(Benchmark (2)) 

MODBNE  

(Benchmark (4)) 

HI 

(Benchmark (5)) 

Average Model 

Training Time (s) 

1014.75 961.47 1153760.67 0.85 
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Figure B. Estimated RULs of RW8. The black dashed line represents the actual RULs of RW8. The X 

marker line shows the mean of estimated RULs using the proposed method. The shaded areas show 

the one and two standard deviations of the estimated RULs. 


