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Abstract

This supplemental material consists largely of the theoretical proofs.

1. Technical details

For the sake of convenience, we define a rule for all the values in this article,
just like B, δN , δ. No superscript means the value belongs to the new confidence
band, superscript ′ means the value belongs to the old confidence band, and
superscript ∗ means the value belongs to the new resampling confidence band.
For example, B is a new confidence band, δ′N is a nominal confidence from old
confidence band B′, and m̂∗ is the function estimator of resampling confidence
band B∗.

1.1. Proof of Theorem 4.1

In this section we prove the main theoretical result, Theorem 4.1. The
proof is divided into three parts. The first part proves the relationship between
nominal confidence δN and real confidence δR. The second part proves that
when the nominal confidence is the same, the widths of the confidence bands
B and B′ are also of the same order. The third part proves that when the real
confidence is the same, the width of the confidence band B is narrower than B′

for some δN .

1.1.1. part i

Without loss of generality, we assume the nominal confidence of B and B′

are the same, δN = δ′N = δ. Following the discussion in Sec. 2.2, the confidence
at point x is

P{(X,m(X)) ∈ B(α)|X = x} = Cn(x, α)

= Φ

(
Z(1+δN )/2 +

b(x)

s(x)σ̂

)
− Φ

(
−Z(1+δN )/2 +

b(x)

s(x)σ̂

)
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Let πα(x) = Φ(x+ Zα)− Φ(x− Zα). We have proved that

dπα(x)

dx
= 0 ⇐⇒ x = 0, (1)

πα(0) is the global maximum, and πα(x) is strictly monotonically decreasing
in |x|. Since δN is the same, the probability that the confidence band holds at
point x depends mainly on the item b(x)/s(x)σ̂.

According to Thm. 3.1 of He et al. (2018), the data-sharpening estimator
m̂ has the property

b(x) = O(hr), s(x) = O

(
1√

nhfX(x)

)

if m is r−2 times differentiable. Simultaneously the properties of the local-linear
estimator

b′(x) = O(h2), s′(x) = O

(
1√

nhfX(x)

)
are proved in Fan (1992). The estimation of σ is an independent problem, so
we may assume that B and B′ use the same σ̂ estimation. Thus

lim
n→∞,h(n)→0

b(x)/s(x)σ̂

b′(x)/s′(x)σ̂
= O(hr−2) (2)

In particular, when r = 2, the data-sharpening estimator degenerates to the
local-linear case, and B and B′ are the same. In other cases, O(hr−2) → 0,
which means for ∀x ∈ I∗, ∃N ∈ N, ∀n > N∣∣∣∣ b(x)

s(x)σ̂

∣∣∣∣ < ∣∣∣∣ b′(x)

s′(x)σ̂

∣∣∣∣ (3)

Define

d(x) =

∣∣∣∣ b′(x)

s′(x)σ̂

∣∣∣∣− ∣∣∣∣ b(x)

s(x)σ̂

∣∣∣∣ ; . (4)

Note that d(x) is continuous with respect to x, so that ∀ε > 0, ∃η > 0, if
|x1 − x2| < η, |d(x1)− d(x2)| < ε.

For any x ∈ I∗, chooseNx to satisfy Eq. 3. Choose εx = d(x), ∃ηx > 0, ∀x′ in
open interval (x−ηx, x+ηx) satisfies d(x′) > 0 when n > Nx. Consider all open
intervals {(x−ηx, x+ηx)}x∈I∗ , I∗ ⊆ ∪(x−ηx, x+ηx). These intervals constitute
an open cover of I∗. By the HeineBorel theorem, we can choose a finite number
of intervals {(xj − ηxj , xj + ηxj )}Mj=1, I∗ ⊆ ∪Mj=1(xj − ηxj , xj + ηxj ), which is a
finite open cover of I∗. Let N0 = max

j=1,2...M
Nxj . When n > N0, d(x) > 0 is true

for any interval (x− ηx, x+ ηx), thus is true on I∗.
Note the real confidence δR =

∫
Cn(x, α)fX(x)dx. Because d(x) > 0 always

holds, Cn(x, α) > C′n(x, α), δR > δ′R always holds, too.
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Next we consider the case δR = δ′R. For the old confidence band B′, a simple
fact is

d
∫
Cn(x, α)fX(x)dx

dδN
> 0 . (5)

We proved this in Thm. 2.2. Let δN = 1 − α be the nominal confidence of
B, and construct an old band B′′ with nominal confidence δ′′N = δN . From
the discussion above we know δN = δ′′N , so δR > δ′′R. Next we compare two
similar confidence bands B′ and B′′. We know δ′R = δR > δ′′R, and by Eq. 5, δR
monotonically increases with respect to δN . Because δ′R > δ′′R, δ′N > δ′′N = δN .

1.1.2. part ii

In this part we discuss the width of the confidence band when the nominal
confidence is the same. Assume δN = δ′N = δ. From the discussion in Section
2, the width of B is

W(B)(x) = 2 ∗ s(x)σ̂ ∗ Z1/2+δ/2

where σ̂ is the estimator of σ and Zβ the β-quantile of the standard normal
distribution. Note

W(B)(x)

W ′(B)(x)
=

s(x)

s′(x)
.

We know from He et al. (2018) that

s(x)→
∫ {

K(u)−
∫
K ′(v)Nr(x− hv, u− v)fX(x− hv)dv

}2
du√

nhfX(x)
,

Nr(x, y) is a function determined by Xi, Yi and K, and Fan (1992) proves that

s′(x) =
∫
K2(u)du√
nhfX(x)

. When r = 2, s(x) = s′(x) and C = 1, otherwise

lim
n→∞

s(x)

s′(x)
=

∫ {
K(u)−

∫
K ′(v)Nr(x− hv, u− v)fX(x− hv)dv

}2
du/

√
nhfX(x)∫

K2(u)du/
√
nhfX(x)

= C

1.1.3. part iii

Assume B, B′ and B′′ are the confidence bands from 1.1.1, δN = δ′′N = δ,
δ′R = δR. The relationship between B and B′ is what we want to study. From
1.1.2 we know

lim
n→∞

s(x)

s′′(x)
= C
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Assume ∆ = δ′R − δ′′R > 0. We use B′′ as a bridge in the proof.

lim
n→∞

W(B)(x)

W ′(B)(x)
= lim
n→∞

W(B)(x)

W ′′(B)(x)
∗ lim
n→∞

W(B′′)(x)

W ′(B)(x)

= C ∗ lim
n→∞

W(B′′)(x)

W ′(B)(x)

= C ∗
2 ∗ s(x)σ̂ ∗ Z1/2+δ′′/2

2 ∗ s(x)σ̂ ∗ Z1/2+δ′/2

= C ∗
Z1/2+δ′′/2

Z1/2+δ′/2

= C ∗
Z1/2+δ′′/2

Z1/2+(δ′′+∆)/2

Let C ∗ Z1/2+δ/2

Z1/2+(δ+∆)/2
< 1. We try to find the appropriate δ′′N = δ. By the

definition of quantile we have∫ Z1/2+δ/2

0

1√
2π
e−

u2

2 du =δ/2∫ Z1/2+(∆+δ)/2

Z1/2+δ/2

1√
2π
e−

u2

2 du =∆/2

Let g(u) = 1√
2π
e−

u2

2 , and let g(u) be continuous. By the monotonically de-

creasing nature of g on (0,+∞), ∃u1 ∈ (0, Z1/2+δ/2),

δ/2 =Z1/2+δ/2 ∗ g(u1)

>Z1/2+δ/2 ∗ g(Z1/2+δ/2)

and ∃u2 ∈ (Z1/2+δ/2, Z1/2+(∆+δ)/2),

∆/2 =(Z1/2+(∆+δ)/2 − Z1/2+δ/2) ∗ g(u2)

<(Z1/2+(∆+δ)/2 − Z1/2+δ/2) ∗ g(Z1/2+δ/2)

Making a simple transformation,

Z1/2+δ/2 <
δ

2 ∗ g(Z1/2+δ/2)

Z1/2+(∆+δ)/2 − Z1/2+δ/2 >
∆

2 ∗ g(Z1/2+δ/2)

Obviously, both sides of the inequality sign are positive. So

Z1/2+(∆+δ)/2

Z1/2+δ/2
>

∆ + δ

δ

C ∗
Z1/2+δ/2

Z1/2+(δ+∆)/2
< C ∗ δ

∆ + δ
.
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If

C ∗ δ

∆ + δ
< 1

we have

δ <
∆

C − 1
. (6)

Next we discuss ∆. We know ∆ = δ′R−δ′′R, and the corresponding confidence
bands B′ and B′′ are same band with different δN . So the relation functions Qξ
are the same,

∆ =Qξ(δ′N )−Qξ(δ′′N )

=Q(1)
ξ (δ0) ∗ (δ′N − δ′′N )

where δ0 ∈ (δ′′N , δ
′
N ). Substituting ∆ into Eq. 6, we have

δ <
δ′N

(C − 1)/D + 1
(7)

for some D > 0.
If C ≤ 1, (7) is always true, which means W(B)(x) < W ′(B) always holds.

In other cases, this is true only if δN is within a certain range.
Here we can only find a narrow range of δ, but this is not the true per-

formance of the new confidence band. In fact, in the simulation, the range
of δ where the new confidence band performs better than the old one is very
wide. The shortcoming here is mainly because our estimates of the quantiles of
the normal distribution Zβ are not accurate enough, which we will improve in
subsequent studies. The result here is just a sufficient condition.

1.2. Proof of Theorem 4.2

In this section we prove the strong approximation of m̂∗. For the sake of
clarity we give the proof only in the case r = 2.

We separate the derivation into two parts. First, because E{m̂∗(x)|Z} =
m(x) + b∗(x) and m̂(x) = m(x) + b(x) + Ψx, the formula E{m̂∗(x)|Z} − m̂(x)
equals

b∗(x)− b(x)−Ψx (8)

and b∗(x)− b(x) is not a random variable, E{Ψx} = 0. So

E {E{m̂∗(x)|Z} − m̂(x)} = b∗(x)− b(x) (9)

We also know

m̂(x) =
1

nh

N∑
i=1

Sn,2(x)− Sn,1(x)x−Xih

Sn,2(x)Sn,0(x)− Sn,1(x)2
K

(
x−Xi

h

)
Yi

=
1

n

N∑
i=1

Ai(x) ∗ Yi

(10)
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In the process of bootstrapping, we replaced Yi by m̂(Xi) + ε̃i and E{ε̃i} = 0.
So

E{m̂∗(x)} =
1

n

N∑
i=1

Ai(x) ∗ E{m̂(Xi) + ε̃i}

=
1

n

N∑
i=1

Ai(x) ∗ m̂(Xi)

=
1

n2

N∑
i=1

Ai(x)

N∑
j=1

Aj(x) ∗ (m(Xj) + εj)

=
1

n2

N∑
i=1

Ai(x)

N∑
j=1

Aj(x) ∗m(Xj) +
1

n2

N∑
i=1

Ai(x)

N∑
j=1

Aj(x) ∗ εj

=g(x) + e1

(11)

Consider the first part g,

g(x) =
1

n2

N∑
i=1

Ai(x)

N∑
j=1

Aj(x)

∗
[
m(Xi) + (Xi −Xj)m

′(Xi) +
1

2
(Xi −Xj)

2m′′(Xi) +R(x,Xi)

]
=

1

n

N∑
i=1

Ai(x)

[
m(Xi) +

1

2
h2m′′(Xi) +R(x,Xi)

]

=
1

n

N∑
i=1

Ai(x)

[
Yi − εi +

1

2
h2m′′(Xi) +R(x,Xi)

]
=m̂(x)− e2 +

h2
∫
u2K(u)du

2
+R(x)

(12)

where

R(x) =
1

n

N∑
i=1

Ai(x) ∗R(x,Xi)

is the sum of the Peano residual,

e2 =
1

n

N∑
i=1

Ai(x) ∗ εi

.
The bound of R(x) is given in Supplement 1.3 of He et al. (2018), for some

C > 0,
P{ sup

x∈I∗
|R(x)| > Chr+1} = O(h−λ)
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For any λ > 0, because E{e1} = E{e2} = 0, note that the order of R(x) is
higher than the constant term so we omit it. So

E {E{m̂∗(x)|Z} − m̂(x)} =
h2
∫
u2K(u)du

2
= b∗(x)− b(x) (13)

1.2.1. Proof of Lemma 2

The proof of Lemma 2 is trivial. We know from 1.2 that

E{m̂∗(x)|Z} − m̂(x) = b∗(x)− b(x)−Ψx =
h2
∫
u2K(u)du

2
+ e1 − e2 (14)

and −Ψx = e1 − e2. Noting Lemma 1, we can use the same transform as in Sec
1.2 and compare the two formulas. The constant term b∗ − b is different while
the random term e1 − e2 are same. In Lemma 1 it is proved that e1 − e2 →
D(nh)−1/2fX(x)−1/2W (x/h) when n→∞, and the e1, e2 are same as in Lemma
2, so Lemma 2 is true.

Combining the above-mentioned random variable part Ψx and non-random
variable part b∗ − b, the proof of Theorem 4.2 is completed.
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