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A Derivations of the score

A.1 General set-up

The general set-up of the (multi) factor copulas is given by equation (2). We are interested in

the score st, defined as

st = ∂ log ct(xt;Rt,ψC)/∂ft (A.1)

where ft holds all unique dynamic factor loadings, and with a slight abuse of notation ct(·)
is related to the conditional copula density. Note that the dimension of ft (and hence st)

depends on the chosen factor structure.

We consider a Student’s t and a Gaussian copula density for xt = (x1,t, . . . , xN,t)
> =

(T−1ν (u1,t), . . . , T
−1
ν (uN,t))

> for the vector of PITs (u1,t, . . . , uN,t)
>, with T−1ν ( · ) the inverse

Student’s t cdf with ν degrees of freedom, zero mean, and unit variance, where ν →∞ for the

Gaussian case. We have the following specifications:

log cStud,t(xt;Rt,ψC) = −1

2
log |Rt| −

ν +N

2
log

(
1 +

x>t R
−1
t xt

ν − 2

)
+ aStud(ν,xt),(A.2)

log cGauss,t(xt;Rt,ψC) = −1

2
log |Rt|+−

1

2
x>t R

−1
t xt + aGaus, (A.3)

where aStud(ν,xt) and aGaus are constants that do not depend on Rt. Further, the dependence

matrix Rt is modeled as

Rt = L̃>t L̃t +Dt, L̃t =
(
λ̃1,t, . . . , λ̃N,t

)
, Dt = diag

(
σ2
1,t, . . . , σ

2
N,t

)
, (A.4)

with

λ̃i,t =
λi,t√

1 + λ>i,tλi,t
= λi,t · σit, σ2

it =
1

1 + λ>i,tλi,t
(A.5)

for a vector λi,t ∈ Rk×1. This ensures that xi,t has unit variance by design.

Define Lt = (λ1,t, . . . ,λN,t) ∈ Rk×N , then ft contains the unique factor loadings of Lt. For

example, for the 1-equi-factor specification, there is only one time-varying parameter, such

that ft is scalar, and λi,t = ft for all i = 1, . . . , N . Also for other models, the dimension of

ft is typically much smaller than that of vec(Lt) due to the factor structure and the group
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allocation. Using the chain rule we obtain

∂ log ct(xt;Rt,ψC)

∂f>t
=
∂ log ct(xt;Rt,ψC)

∂ vec(Rt)>
· ∂ vec(Rt)

∂ vec(Lt)>
· ∂ vec(Lt)

∂f>t
. (A.6)

The first two components in (A.6) are generic for any factor structure. The last component,

by contrast, strongly depends on the factor and group structure and will be dealt with in

separate subsections. A further component might be added to (A.6) in case some elements

of ft are restricted to be positive, or lie in some range. This can for instance be obtained by

specifying that element of ft as the exponential function of a new, unrestricted time varying

parameter, and by taking the derivative with respect to this new parameter. The derivative

of this last type of transformation can be added as a final chain rule term in (A.6) and will

typically take the form of a simple, diagonal matrix.

The first component in (A.6) only depends on the conditional copula density specification.

For the Student’s t case, we obtain

d logcStud,t(xt;Rt,ψC) = −1

2
tr
(
R−1t dRt

)
− ν +N

2

1

1 +
x>t R−1

t xt
ν−2

d

(
x>t R

−1
t xt

ν − 2

)
= −1

2

(
vec(Rt)

−1)> d vec(Rt) +
1

2

(
ν +N

ν − 2 + x>t R
−1
t xt

)
x>t R

−1
t (dRt)R

−1
t xt

= −1

2

(
vec(Rt)

−1)> d vec(Rt) +
1

2

(
ν +N

ν − 2 + x>t R
−1
t xt

x>t R
−1
t ⊗R−1t xt

)>
d vec(Rt)

=

(
−1

2

(
vec(Rt)

−1)> +
1

2

(
ν +N

ν − 2 + x>t R
−1
t xt

vec
(
R−1t xtx

>
t R

−1
t

))>)
d vec(Rt),

(A.7)

and hence

∂ log cStud,t(xt;Rt, νC)

∂ vec(Rt)>
= −1

2

(
vec(Rt)

−1)> +
1

2

(
ν +N

ν − 2 + x>t R
−1
t xt

vec
(
R−1t xtx

>
t R

−1
t

))>
.

(A.8)

For the Gaussian case, we let νC →∞ and obtain

d logcGaus,t(xt;Rt,ψC) =

(
−1

2

(
vec(Rt)

−1)> +
1

2
vec
(
R−1t xtx

>
t R

−1
t

)>)
d vec(Rt), (A.9)
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such that

∂ log cGaus,t(xt;Rt,ψC)

∂ vec(Rt)>
= −1

2

(
vec(Rt)

−1)> +
1

2
vec
(
R−1t xtx

>
t R

−1
t

)>
. (A.10)

For the second term in (A.6) we obtain

d vec(Rt) = d vec(L̃>t L̃t +Dt)

=
(
L̃>t ⊗ IN

)
d vec(L̃>t ) +

(
IN ⊗ L̃>t

)
d vec(L̃t) + d vec(Dt)

=
(
L̃>t ⊗ IN

)
Kk,N d vec(L̃t) +

(
IN ⊗ L̃>t

)
d vec(L̃t) + d vec(Dt)

=
((
L̃>t ⊗ IN

)
Kk,N +

(
IN ⊗ L̃>t

))
d vec(L̃t) + d vec(Dt), (A.11)

where Kk,N is the commutation matrix, i.e., vec(A>) = Kk,N vec(A) for a general k×N matrix

A. We write KN ≡ KN,N . As a result, we obtain

∂ vec(Rt)

∂ vec(Lt)>
=
((
L̃>t ⊗ IN

)
Kk,N +

(
IN ⊗ L̃>t

))
· ∂ vec(L̃t)

∂ vec(Lt)>
+

∂ vec(Dt)

∂ vec(Lt)>
. (A.12)

Let SD be an N2 × N selection matrix, such that for a diagonal N × N matrix A with the

N × 1 vector a on the diagonal we have vec(A) = SD · a. Then

∂ vec(Dt)

∂ vec(Lt)>
= SD

∂diag(Dt)

∂ vec(Lt)>
= −2SD D2


λ>1,t 0 · · · 0

0 λ>2,t · · · 0
...

. . .
...

0 0 · · · λ>N,t

 , (A.13)

where diag(A) ∈ RN×1 holds the diagonal elements of the N × N matrix A. Similarly, we

obtain

∂ vec(L̃t)

∂ vec(Lt)>
=


Q1,t · · · 0

...
. . .

...

0 · · · QN,t

 , Qi,t =
Ik

(1 + λ>i,tλi,t)
1/2
−

λi,tλ
>
i,t

(1 + λ>i,tλi,t)
3/2
, (A.14)
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for i = 1, . . . , N . Note due to the special structure in (A.14), we have that

(
IN ⊗ L̃>t

) ∂ vec(L̃t)

∂ vec(Lt)>
=


L̃>t Q1,t · · · 0

...
. . .

...

0 · · · L̃>t QN,t

 . (A.15)

We now turn to the last component in (A.6) for the factor models considered in this paper.

A.2 1-Equi-Factor

In the 1-Factor equi-copula, we have Lt = λtι
>
N and λt = ft = ft ∈ R. We then have

∂ vec(Lt)

∂ft
= ιN . (A.16)

The final score st is now obtained by combining (A.16), (A.6), (A.8) or (A.10), and (A.12)–

(A.15).

A.3 1-Factor model with heterogeneous loadings

In this case we have ft = (ft,1, ft,2 . . . , ft,G)> ∈ RG×1 and Lt = f>t (Sgr1 )> with

Sgr1 =


ιN1 · · · 0

...
. . .

...

0 · · · ιNG

 ∈ RN×G, (A.17)

where Ng for g = 1, . . . , G is the number of firms in group g. We then have

∂ vec(Lt)

∂f>t
=
∂ vec

(
f>t (Sgr1 )>

)
∂f>t

= Sgrt
∂ vec(f>t )

∂f>t
= Sgrt

∂ vec(ft)

∂f>t
= Sgrt . (A.18)

A.4 2-factor model

The 2F model consists of an equi-loading vector, and a set of heterogeneous loadings. In this

case we have ft = (ft,0, ft,1, ft,2, . . . , ft,G)> ∈ R(G+1)×1. Let δi,j be the kronecker delta, i.e.,
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δi,j = 1 if i = j and zero otherwise. Also define

S2f
i =


δ0,iιN1 δ1,iιN1

...
...

δ0,iιNG δG,iιNG

 ∈ RN×2. (A.19)

Then

Lt =
G∑
i=0

ft,i · (S2f
i )>, (A.20)

and

∂ vec(Lt)

∂f>t
=
(

vec
(
(S2f

0 )>
)
, vec

(
(S2f

1 )>
)
, . . . , vec

(
(S2f

G )>
) )
∈ R2N×(G+1). (A.21)

A.5 MF model

The MF model consists of two types of factors: an equi-factor, and G industry factors, each

with a group-specific loading. In this case we have ft = (ft,0, ft,1, ft,2, . . . , ft,G)> ∈ R(G+1)×1.

Define

Smfi =


δ0,iιN1 δ1,iιN1 · · · 0

...
...

. . .
...

δ0,iιNG 0 · · · δG,iιNG

 ∈ RN×(G+1). (A.22)

Then

Lt =
G∑
i=0

ft,i · (Smfi )>, (A.23)

and

∂ vec(Lt)

∂f>t
=
(

vec
(
(Smf0 )>

)
, vec

(
(Smf1 )>

)
, . . . , vec

(
(SmfG )>

) )
∈ R(G+1)N×(G+1).

(A.24)
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A.6 MF LT model

For the MF LT model, we have ft = (ft,1, ft,2, . . . , ft,G(G+1)/2)
> ∈ RG(G+1)/2×1. Also define

Slti =


δ1,iιN1 0 · · · 0

δ2,iιN2 δG+1,iιN2 · · · 0
...

...
. . .

...

δG,iιNG δ2G−1,iιNG · · · δ 1
2
G(G+1),iιNG

 ∈ RN×G. (A.25)

Then

Lt =

G(G+1)/2∑
i=1

ft,i · (Slti )>, (A.26)

and

∂ vec(Lt)

∂f>t
=
(

vec
(
(Slt1 )>

)
, vec

(
(Slt2 )>

)
, . . . , vec

(
(Slt1

2
G(G+1)

)>
) )
∈ RGN× 1

2
G(G+1).

(A.27)

A.7 Information matrix derivations

In our paper, we use unit scaling for the score. If one prefers to scale by a power of the inverse

conditional Fisher information matrix, one can use the following results.

It−1 = Et−1
[
∂ log ct(xt;Rt,ψC)

∂ft

∂ log ct(xt;Rt,ψC)

∂f>t

]

=
∂ vec(Lt)

>

∂ft
· ∂ vec(Rt)

>

∂ vec(Lt)
· Et−1

[
∂ log ct(xt;Rt,ψC)

∂ vec(Rt)

∂ log ct(xt;Rt,ψC)

∂ vec(Rt)>

]
×

× ∂ vec(Rt)

∂ vec(Lt)>
· ∂ vec(Lt)

∂f>t
.

The first and last two factors in this expression are known from our score derivations. The

only remaining component is the expectation in the middle. This can be computed using a

similar approach as in Creal et al. (2011). Let x̃t have a Student’s t distribution with ν degrees
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of freedom, zero mean, and unit covariance matrix. Then

Et−1
[
∂ log ct(xt;Rt,ψC)

∂ vec(Rt)

∂ log ct(xt;Rt,ψC)

∂ vec(Rt)>

]
=

1

4

(
R
−1/2
t ⊗R−1/2t

)
×

Et−1

 (
ν+N
ν−2

)2
(1 +

x>t R−1
t xt

ν−2 )2
vec
(
R
−1/2
t xtx

>
t R

−1/2
t

)
vec
(
R
−1/2
t xtx

>
t R

−1/2
t

)>
− vec (IN) vec (IN)>


×

(
R
−1/2
t ⊗R−1/2t

)>
=

1

4

(
R
−1/2
t ⊗R−1/2t

)
× Et−1

[ (
ν+N
ν−2

)2
(1 +

x̃>t x̃t
ν−2 )2

vec
(
x̃tx̃

>
t

)
vec
(
x̃tx̃

>
t

)> − vec (IN) vec (IN)>
]

×
(
R
−1/2
t ⊗R−1/2t

)>
=

1

4

(
R
−1/2
t ⊗R−1/2t

)
Et−1

[(
ν+N
ν−2

)2 (
x̃tx̃

>
t ⊗ x̃tx̃>t

)
(1 +

x̃>t x̃t
ν−2 )2

− vec (IN) vec (IN)>
](
R
−1/2
t ⊗R−1/2t

)>
=

1

4

(
R
−1/2
t ⊗R−1/2t

)
Et−1

[(
ν+N
ν−2

)2 (
x̃tx̃

>
t ⊗ x̃tx̃>t

)
(1 +

x̃>t x̃t
ν−2 )2

](
R
−1/2
t ⊗R−1/2t

)>
− 1

4
vec
(
R−1t

)
vec
(
R−1t

)>
=

1

4

(
R
−1/2
t ⊗R−1/2t

)
G?
(
R
−1/2
t ⊗R−1/2t

)>
− 1

4
vec
(
R−1t

)
vec
(
R−1t

)>
.

We index G? as (i, j, k, `) according to the x̃i,tx̃j,t⊗ x̃k,tx̃`,t element of x̃tx̃
>
t ⊗ x̃tx̃>t . Using our

Kronecker delta notation again, we have

G?i,j,k,` =
(ν +N)

(ν + 2 +N)
· (δi,jδk,` + δi,kδj,` + δi,`δj,k)

To see this, we first note

Et−1

[(
ν+N
ν−2

)2
(x̃i,tx̃j,tx̃k,tx̃`,t)

(1 +
x̃>t x̃t
ν−2 )2

]
=

∫ (
ν+N
ν−2

)2
(x̃i,tx̃j,tx̃k,tx̃`,t)(

1 +
x̃>t x̃t
ν−2

)2 ·
Γ
(
ν+N
2

)
Γ
(
ν
2

)
((ν − 2)π)N/2

1(
1 +

x̃>t x̃t
ν−2

)(ν+N)/2
d x̃t =

(
ν+N
ν−2

)2
Γ
(
ν+N
2

)
Γ
(
ν+4
2

)
Γ
(
ν
2

)
Γ
(
ν+4+N

2

) ∫
Γ
(
ν+4+N

2

)
Γ
(
ν+4
2

)
((ν − 2)π)N/2

(x̃i,tx̃j,tx̃k,tx̃`,t)(
1 +

x̃>t x̃t
ν−2

)(ν+4+N)/2
d x̃t. (A.28)
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The latter integral gives the 4th order and 2nd order cross moments of a Student’s t random

variable with ν + 4 degrees of freedom and scaling matrix (ν − 2)(ν + 4)−1IN . Using the

construction of a Student’s t random variable as the ratio of a vector normal with mean zero

by a square root of a χ2
ν+4/(ν + 4) random variable, we obtain

∫
Γ
(
ν+4+N

2

)
Γ
(
ν+4
2

)
((ν − 2)π)N/2

(x̃i,tx̃j,tx̃k,tx̃`,t)(
1 +

x̃>t x̃t
ν−2

)(ν+4+N)/2
d x̃t

= (δi,jδk,` + δi,kδj,` + δi,`δj,k)
(ν − 2)2

(ν + 4)2
×
∫

(ν + 4)2z−2

Γ
(
ν+4
2

)
2(ν+4)/2

z0.5(ν+4)−1 exp(−z/2) d z

= (δi,jδk,` + δi,kδj,` + δi,`δj,k)
(ν − 2)2Γ

(
ν
2

)
2ν/2

Γ
(
ν+4
2

)
2(ν+4)/2

×
∫
z0.5ν−1 exp(−z/2)

Γ
(
ν
2

)
2ν/2

d z

= (δi,jδk,` + δi,kδj,` + δi,`δj,k)
(ν − 2)2Γ

(
ν
2

)
2ν/2

Γ
(
ν+4
2

)
2(ν+4)/2

= (δi,jδk,` + δi,kδj,` + δi,`δj,k)
(ν − 2)2

(ν + 2)ν
. (A.29)

Combining (A.28) and (A.29), we obtain

G?i,j,k,` =

(
ν+N
ν−2

)2
Γ
(
ν+N
2

)
Γ
(
ν+4
2

)
Γ
(
ν
2

)
Γ
(
ν+4+N

2

) · (ν − 2)2

(ν + 2)ν
· (δi,jδk,` + δi,kδj,` + δi,`δj,k)

=

(
ν+N
ν−2

)2
(ν + 2)ν

(ν + 2 +N)(ν +N)
· (ν − 2)2

(ν + 2)ν
· (δi,jδk,` + δi,kδj,` + δi,`δj,k)

=
(ν +N)

(ν + 2 +N)
· (δi,jδk,` + δi,kδj,` + δi,`δj,k)

Combining all results, we have the conditional Fisher information matrix

It−1 =
∂ vec(Lt)

>

∂ft
· ∂ vec(Rt)

>

∂ vec(Lt)
·
(
R
−1/2
t ⊗R−1/2t

)
×(

G? − vec (IN) vec (IN)>
)
×(

R
−1/2
t ⊗R−1/2t

)>
· ∂ vec(Rt)

∂ vec(Lt)>
· ∂ vec(Lt)

∂f>t
.

A.8



We obtain the Gaussian case by letting ν →∞, such that G?i,j,k,` collapses to δi,jδk,` + δi,kδj,` +

δi,`δj,k.
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B Sample composition

B.1 Sample composition

Table B.1: Selected S&P500 constituents
This table lists ticker symbols of the 100 stocks in our dataset. All stocks are included in the S&P 500 index.
Tickers are grouped per industry.

Ind Nr. Industry # Comp. Tickers
1 Capital Goods 10 AA,BA,CAT,HON,F,NOC,UTX,A,IR,GD
2 Financials 19 AXP,JPM,AIG,BAC,C,KEY,MTB,COF,USB,

BBT,STI,WFC,GS,MS,MMC,HIG,PNC,
XL,MCO

3 Energy 12 GE,XOM,BHI,MUR,SLB,CVX,HAL,OXY,
APC,SU,CNX,PXD

4 Consumer Services 14 HD,MCD,WMT,TGT,BXP,DIS,JCP,NLY,
ANF,EQR,WY,RCL,WSM,TV

5 Consumer Non-Durables 9 KO,MO,SYY,PEP,CL,AVP,GIS,CPB,EL
6 Health Care 11 PFE,ABT,BAX,JNJ,LLY,THC,MMM,MRK,BMY,

MDT,CI
7 Public Utilities 7 AEP,AEE,DUK,SO,WMB,VZ,EXC
8 Technology 5 IBM,DOV,HPQ,TSM,CSC
9 Basic Industries 9 PG,DD,FLR,DOW,AES,IP,ATI,LPX,POT
10 Transportation 4 LUV,UPS,NSC,FDX

B.2 Full simulation results

This supplementary appendix presents the full details of the three Monte Carlo experiments

from Section 3.

In the first experiment, we simulate N = 100 dimensional time series of length T = 500

or 1, 000 with G = 10 equally sized groups holding N/G = 10 individual cross-sectional units

each. These sizes roughly correspond to the data dimensions in our empirical application.

As our data-generating process (DGP), we take the Multi-Factor copula

xi,t =
√
ζt

(
λ̃>i,tzt + σi,tεi,t

)
, (B.1)

L̃t =


λ̃eq1,t λ̃gr,f2,1,t · · · 0

...
...

. . .
...

λ̃eq1,t 0 · · · λ̃gr,f2,G,t

⊗ ιN/G
f eq1,t+1 = ωeq + Aeq seqt +B f eq1,t, (B.2)

f gr,f2,g,t+1 = ωgr,fg + Agr,f sgr,fg,t +B f gr,f2,g,t, g = 1, . . . , G, (B.3)
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with ⊗ denoting the Kronecker product, and where zt ∼ N(0, IG+1), εi,t ∼ N(0, 1), and

ζt ∼ Inv-Gamma
(
1
2
νC ,

1
2
νC
)
, and f eq1,t+1 together with f gr,f2,g,t+1 form the vectors λi,t, which are

finally scaled into λ̃i,t using (3). The expressions for the scores seqt and sgr,fg,t can be found in

Supplementary Appendix A.

The Multi-Factor copula model has two different types of factor loadings, each with its own

score-driven dynamics: one f eq1,t for the common equi-factor, and G different f gr,f2,g,ts for each of

the group-specific factors. Each of these 11 loadings has its own intercept. We use a pooled

persistence parameter B common to all factor loadings, and type-specific score parameters

Aeq and Agr,f .

Guided by the empirical application, we set ωeq = 0.07 and let ωg be equally spaced on

the interval [0.01 , 0.07]. For the Gaussian copulas, we set Aeq = 0.0085 and Agr,f = 0.0095,

while for the t-copula these parameters equal 0.015 and 0.01, respectively. For the copula’s

tail behavior, we use νC ∈ {35,∞}, where νC →∞ corresponds to the Gaussian factor copula.

Finally, in line with our empirical results later on we set B = 0.87 for normally distributed

factors (νC →∞) and B = 0.92 for the Student’s t case (νC = 35).

Table B.2 presents the results based on 1,000 replications. All parameters are estimated

near their true values. The standard deviations decrease in T . We also observe that the mean

of the estimated standard errors over all simulation runs matches closely the Monte-Carlo

standard error of the estimates, indicating that computed standard errors fairly reflect esti-

mation uncertainty. Overall, we conclude that the parameters of the Gaussian and Student’s

t factor copulas with score-driven dynamic factor loadings can be accurately estimated if the

model is correctly specified.

In the second Monte Carlo experiment, we investigate the two-step approach of estimating

the copula parameters of the Multi-Factor LT model. For this study, we simulate 1,000 time-

series of length T = 1, 000 and dimension N = 100 with G = 10 equally sized groups holding

N/G = 10 assets using the MF-LT model with Normal and Student’s t(35) distributed errors.

Based on empirical parameter estimates, we set A and B equal to 0.015 and 0.97 respectively

and allow for (10 × 11)/2 = 55 different ω parameters, ranging from -0.10 to 0.9. Table

B.3 presents the results based on 1,000 replications. The Monte Carlo averages of almost all

parameters again lie close to their true values. Note that the standard deviations of moment-

based estimators for ω are considerably higher than the standard errors of the ML estimators

for A,B, and νC . Using the two-step estimator thus implies a huge computational gain, but

at the cost of some efficiency loss. The average estimated standard errors for A, B for the
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Table B.2: Monte Carlo results of parameter estimates of the Multi-Factor-Copula
This table provides Monte Carlo results of parameter estimates using the multi-factor (MF) Gaussian and
t-copula model as given in (B.1)–(B.3). B(N) and B(t) denote the value of B in case of the Gaussian (N) and
Student’s t (t) factor copula model, respectively. The table reports the mean and standard deviation of the
estimated coefficients, as well as the mean of the computed standard error. Results are based on 1,000 Monte
Carlo replications.

Panel A: T = 500
MF N MF t

Coef. True mean std mean(s.e.) mean std mean(s.e.)
ωeq 0.0700 0.0761 0.0145 0.0159 0.0752 0.0121 0.0127

ω1 0.0100 0.0094 0.0074 0.0097 0.0097 0.0050 0.0051
ω2 0.0167 0.0172 0.0073 0.0076 0.0179 0.0044 0.0042
ω3 0.0233 0.0251 0.0070 0.0073 0.0250 0.0049 0.0049
ω4 0.0300 0.0326 0.0076 0.0081 0.0323 0.0060 0.0059
ω5 0.0367 0.0400 0.0090 0.0093 0.0395 0.0068 0.0070
ω6 0.0433 0.0471 0.0097 0.0106 0.0468 0.0079 0.0081
ω7 0.0500 0.0542 0.0108 0.0120 0.0540 0.0088 0.0092
ω8 0.0567 0.0617 0.0125 0.0134 0.0612 0.0100 0.0104
ω9 0.0633 0.0691 0.0135 0.0149 0.0684 0.0111 0.0115
ω10 0.0700 0.0763 0.0150 0.0162 0.0755 0.0121 0.0127

Aeq(N) 0.0085 0.0085 0.0012 0.0011
Agr,f (N) 0.0095 0.0089 0.0027 0.0025
Aeq(t) 0.0150 0.0146 0.0027 0.0026
Agr,f (t) 0.0100 0.0090 0.0025 0.0023

B(N) 0.8700 0.8584 0.0269 0.0296
B(t) 0.9200 0.9136 0.0137 0.0144
νC 35.000 35.445 2.828 2.702

Panel B: T = 1000
ωeq 0.0700 0.0739 0.0119 0.0134 0.0744 0.0115 0.0112

ω1 0.0100 0.0094 0.0058 0.0068 0.0104 0.0033 0.0032
ω2 0.0167 0.0173 0.0050 0.0054 0.0176 0.0036 0.0033
ω3 0.0233 0.0246 0.0051 0.0057 0.0248 0.0043 0.0042
ω4 0.0300 0.0314 0.0059 0.0065 0.0319 0.0052 0.0052
ω5 0.0367 0.0387 0.0069 0.0077 0.0389 0.0063 0.0061
ω6 0.0433 0.0458 0.0078 0.0088 0.0461 0.0073 0.0071
ω7 0.0500 0.0529 0.0088 0.0100 0.0531 0.0084 0.0081
ω8 0.0567 0.0599 0.0100 0.0112 0.0602 0.0094 0.0091
ω9 0.0633 0.0667 0.0110 0.0123 0.0673 0.0103 0.0101
ω10 0.0700 0.0738 0.0121 0.0136 0.0744 0.0115 0.0112

Aeq(N) 0.0085 0.0085 0.0009 0.0008
Agr,f (N) 0.0095 0.0093 0.0018 0.0018
Aeq(t) 0.0150 0.0149 0.0020 0.0019
Agr,f (t) 0.0100 0.0096 0.0016 0.0016

B(N) 0.8700 0.8626 0.0221 0.0248
B(t) 0.9200 0.9149 0.0129 0.0126
νC 35.00 35.1760 1.8629 1.8821
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Table B.3: Monte Carlo results of parameter estimates of the MF-LT model
This table provides Monte Carlo results of parameter estimates using the multi-factor (MF) LT Gaussian and
t-copula model with a loading matrix given in (6). The table reports the mean and standard deviation based
on 1,000 Monte Carlo replications. Since we have 55 different values of ω, we only report ω1, ω4, . . . , ω55 in
addition to A, B and νC .

MF-LT N MF-LT t
Coef. True mean std mean std
ω1 0.893 0.884 0.0530 0.886 0.0539
ω4 0.621 0.606 0.0538 0.607 0.0541
ω7 0.560 0.550 0.0526 0.551 0.0511
ω10 0.845 0.832 0.0524 0.830 0.0529
ω13 0.187 0.185 0.0485 0.186 0.0495
ω16 0.146 0.144 0.0491 0.149 0.0490
ω19 0.119 0.122 0.0478 0.127 0.0487
ω22 0.009 0.012 0.0473 0.013 0.0475
ω25 0.003 0.007 0.0492 0.005 0.0477
ω28 0.310 0.385 0.0434 0.384 0.0397
ω31 0.163 0.127 0.0508 0.127 0.0511
ω34 0.156 0.119 0.0483 0.123 0.0475
ω37 0.250 0.229 0.0477 0.230 0.0479
ω40 0.026 0.041 0.0466 0.042 0.0458
ω43 0.011 0.011 0.0453 0.007 0.0479
ω46 0.591 0.626 0.0447 0.622 0.0435
ω49 -0.020 -0.009 0.0466 -0.008 0.0457
ω52 0.016 0.017 0.0491 0.018 0.0493
ω55 0.347 0.504 0.0436 0.497 0.0431

A 0.015 0.016 0.0006 0.016 0.0007
B 0.970 0.970 0.0025 0.970 0.0024
νC 30.00 35.06 1.862

MF-LT N and for the MF-LT t model again lie close to their Monte-Carlo counterparts, such

that standard errors correctly reflect the estimation uncertainty. We further note that the

assumed distribution does not have a large impact on the moment estimator of ω.
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C Recap of benchmark MGARCH models

In this appendix we give a brief recap of the MGARCH benchmark models we use, in particular

the cDCC model (Engle, 2002) (with the correction of Aielli, 2013) and the (Block) DECO

model of Engle and Kelly (2012) in high dimensions. To maintain a fair comparison between

both classes of models, we also cast the MGARCH models into a copula framework. Hence the

innovations in these models are xi,t = P−1(ui,t), with ui,t estimated in a first step by the same

marginals, and P−1( · ) the inverse marginal CDF corresponding to the copula specification at

hand.

The cDCC model is given by

Qt+1 = Ω + AQ∗txtx
>
t Q

∗
t +BQt (C.1)

RcDCC
t = Q∗−1t QtQ

∗−1
t

with Q∗t a diagonal matrix with entries qii,t, A and B scalars and Ω a N × N matrix. The

DECO model assumes that the dependence between all assets is the same (equi-dependence)

and takes the average of all pairwise DCC correlations:

RDECO
t = ρtJN×N + (1− ρt)IN (C.2)

ρt =
1

N(N − 1)
(ι>RcDCC

t ι−N) (C.3)

where JN×N denotes a N ×N matrix of ones. As noted earlier, the DECO model corresponds

to a one-factor model, though the DECO and score-driven dynamics are different.

A third variant is the Block DECO model that allows for different intra-block correlations

ρg,g, and inter-block correlations ρg,h with g 6= h. Similar to the multi-factor models, the size

of each block may differ. The Block DECO correlation matrix is defined as

RBL−DECO
t =


(1− ρ1,1,t)In1 · · · 0

...
. . .

...

0 · · · (1− ρG,G,t)InG



+


ρ1,1,tJn1×n1 · · · ρ1,G,tJn1×nG

...
. . .

...

ρ1,G,tJnG×n1 · · · ρG,G,tJnG×nG

 . (C.4)
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The Block DECO model allows for G distinct within-group correlations ρg,g,t, g = 1, . . . , G as

well as for G(G− 1)/2 unique (off-diagonal) between-group correlations ρg,h,t for g 6= h. The

dynamic correlations are computed as

ρg,g,t =
1

ng(ng − 1)

∑
i∈g,j∈g,i6=j

qi,j,t√
qi,i,tqj,j,t

, (C.5)

ρg,h,t =
1

ngnh

∑
i∈g,j∈h

qi,j,t√
qi,i,tqj,j,t

, g 6= h, (C.6)

where qi,j,t is the i, j-th element of the matrix Qt from the cDCC model in (C.1). Put differ-

ently, the correlations of the Block DECO model are obtained by averaging all DCC correla-

tions within each block.

Similar to the multi-factor dynamic copula models, the Block DECO model allows for

different within-group and between-group correlations. This model comes with an additional

flexibility: via the matrix Ω each between-group correlation has its own intercept, while in

the factor copula approach the between-group correlations are spanned by a smaller set of

parameters. This flexibility comes at two important costs. First, it is hard to impose ex-

ante that the dynamic correlations from the Block DECO give rise to a positive definite

correlation matrix. Though in practice a maximum likelihood type approach will steer the

parameters away from a region where the predicted dependence matrix is indefinite, this is

not guaranteed by the structure of the model. By contrast, the factor copula models with

score-driven dynamics automatically ensure a positive semi-definite correlation matrix at all

times, which is particularly relevant when using the model for forecasting. Second, the Block

DECO model averages DCC correlations, which means that it relies heavily on the A and B

parameters from the cDCC model and its unconditional N ×N intercept Ω.
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D Models for the marginals

In our main analysis, we use the univariate t-GAS volatility model of Creal et al. (2011,

2013) for the marginal distributions. That is, we assume a Student’s t distribution for the

individual returns yi,t with νi degrees of freedom with the following return and volatility

dynamics (omitting the subscript i for the sake of exposition)

yt = φ0 +

p∑
j=1

φjyt−j + εt, εt ∼ t(0, ht, ν), (D.1)

ht+1 = ω + α (wtε
2
t − ht) + β ht, wt =

ν + 1

ν − 2 + ht
−1ε2t

, (D.2)

with ht the conditional variance at time t. This model updates the conditional variance by

the (scaled) score, i.e., the partial derivative of the log Student’s t density with respect to the

variance ht. We follow Creal et al. (2011, 2013) and scale the score by the inverse conditional

Fisher information matrix. The interpretation of the scaled score is highly intuitive in this

model: Large values of ε2t are downweighted by wt, since possible outliers (jumps) might not

only be attributed to an increase in variance, but also to the fat-tailed nature of the return

data. The estimation results for the marginal models are summarized in Table D.1.

Table D.1: Marginal distribution parameter estimates
This table reports summaries of the maximum likelihood parameter estimates of the t-GAS volatility models
in (D.1)-(D.2) for 100 daily time series of equity returns. The columns present the mean and quantiles of
the cross-sectional distribution of each parameter. Data are observed over the period January 2, 2001 until
December 31, 2014 (T = 3, 521 trading days).

Mean 5% 25% Med 75% 95%
φ0 0.027 -0.030 0.010 0.025 0.046 0.091
φ1 -0.009 -0.049 -0.027 -0.008 0.008 0.026
φ2 -0.012 -0.044 -0.028 -0.011 0.001 0.020
ω 0.025 0.009 0.014 0.021 0.029 0.060
α 0.091 0.062 0.077 0.088 0.104 0.129
β 0.991 0.983 0.988 0.992 0.995 0.998
ν 8.22 5.53 6.77 8.21 9.25 11.41

KS test for Student’s t dist of std. residuals
Number of rejections 5

As a robustness check, we also considered marginal distributions based on a GARCH model
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with a skewed Student’s t distribution for the innovations. The specification of that model is

yt = φ0 +

p∑
j=1

φjyt−j + εt, εt ∼ St(0, ht, ν, λ), (D.3)

ht+1 = ω + α ε2t + β ht, (D.4)

where the pdf of the skewed Student’s t distribution of Hansen (1994) for a zero mean variable

zt = (yt − µt)/
√
ht with µt = Et−1[yt] is given by

f(zt;λ, ν) =

 bc
(
1 + 1

ν−2( bzt+a
1−λ )2

)− ν+1
2 if zt < −a

b

bc
(
1 + 1

ν−2( bzt+a
1+λ

)2
)− ν+1

2 if zt ≥ −a
b

(D.5)

with

a = 4λc
ν − 2

ν − 1
, b2 = 1 + 3λ2 − a2, and c =

Γ(ν+1
2

)√
π(ν − 2)Γ(ν

2
)

such that f(yt|µt, ht, ν, λ) = 1/htf(zt;λ, ν). Further, λ is the skewness parameter and ν again

represents the degrees of freedom. A (positive) negative value of λ indicates (positive) negative

skewness.

The results for these marginals are given in Table D.2 and result in qualitatively similar

conclusions as the main results in Table 4 (see Appendix E).

Table D.2: Marginal distribution parameter estimates (skewed Student’s t distri-
bution)
This table reports summaries of the maximum likelihood parameter estimates of the GARCH skewed Student’s
t volatility models in (D.3)-(D.4) for 100 daily time series of equity returns. The columns present the mean
and quantiles of the cross-sectional distribution of each parameter. Data are observed over the period January
2, 2001 until December 31, 2014 (T = 3, 521 trading days).

Mean 5% 25% Med 75% 95%
φ0 0.025 -0.026 0.008 0.022 0.041 0.095
φ1 -0.009 -0.051 -0.030 -0.007 0.009 0.025
φ1 -0.013 -0.043 -0.029 -0.013 -0.001 0.018
ω 0.026 0.008 0.014 0.021 0.029 0.064
α 0.067 0.043 0.055 0.063 0.079 0.098
β 0.924 0.887 0.909 0.928 0.939 0.950
ν 7.84 5.28 6.47 7.74 8.92 11.13
λ -0.011 -0.071 -0.037 -0.010 0.013 0.055

KS test for Student’s t dist of std. residuals
Number of rejections 2
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E Additional In-sample Factor Copula results

This appendix provides supplementary results for multi-factor copula models with respect to

three issues: 1) the non-reported different ωi of our (multi-) factor copulas listed in Table 4,

2) parameter estimates of all factor models when the PITs are based on skewed Student’s t

GARCH model and 3) the sensitivity of the MF-LT t model with respect to the ordering of

the industries.

The intercepts reported in Table E.1 can be further interpreted. For instance, the in-

dustry intercepts of the MF model show that the within Financial and Energy correlations

are unconditionally much higher than for example within Capital Goods and Basic Industries

correlations. This holds for both the Gaussian and t copula models.

The second part of this appendix holds a robustness check with respect to the assumed

marginal distributions. As mentioned in Appendix D, in our main analysis we use the uni-

variate t-GAS volatility model of Creal et al. (2011, 2013) for the marginal distributions. In

the same appendix, we also presented the results for skewed Student’s t GARCH marginals.

Table E.2 contains the results for all Factor and MGARCH Copula models if the PITs of the

skewed t GARCH marginals are used in the copula analysis. The results confirm the analysis

of the main text, and the statistical ordering of the different copula specifications.

The third part of this appendix contains a robustness check with respect to the ordering

of the industries when estimating the MF-LT model. We re-estimated the MF-LT t model for

50 different random orderings to investigate the model’s sensitivity to this. Table E.3 presents

the average, minimum and maximum values of the estimates of A, B, and ν, as well as the

log-likelihood value.

We find that the estimated parameters are very stable with respect to the ordering chosen.

There appears to be some limited variation (< 1%) in the maximized log-likelihood value, such

that some further small gains in likelihood might be possible by optimizing over the ordering

of the industries.

To conclude, Figure E.1 shows the fitted within and between dependencies of Capital

Goods, Financials and Health companies according to our empirical specification against a

randomly chosen alternative ordering. Again, the differences are hardly noticeable. We con-

clude that the ordering of the groups does not materially affect our results.
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Table E.1: Intercept parameter estimates of (multi-) Factor Copula models
This table reports the maximum likelihood parameter estimation results of intercepts ωi for the 1F-Group,
2F and MF copula models listed in Table 4. The different intercepts correspond to the Capital Goods,
Finance, Energy, Consumer Services, Consumer Non-Durables, Health Care, Public Utilities, Technology,
Basic Industries, and Transportation industries respectively. We also list again the estimated B parameter.
Panel A (B) corresponds with the Gaussian (t) copula likelihood. Data are observed over the period January
2, 2001 until December 31, 2014 (T = 3, 521 trading days).

1F-Group 2F MF
Parameter ω̂g s.e. ω̂g s.e. ω̂g s.e.

Panel A: Gaussian factor copulas
ωeq 0.047 (0.005) 0.042 (0.005)

ωCapGoods 0.025 (0.005) 0.026 (0.004) 0.011 (0.001)
ωFin 0.030 (0.006) 0.054 (0.002) 0.056 (0.008)
ωEnergy 0.020 (0.005) 0.011 (0.003) 0.055 (0.007)
ωConsSer 0.020 (0.004) 0.017 (0.007) 0.021 (0.003)
ωConsNon−Dur 0.016 (0.004) 0.013 (0.005) 0.033 (0.005)
ωHealth 0.018 (0.004) 0.005 (0.007) 0.029 (0.004)
ωPublUtil 0.017 (0.004) 0.012 (0.003) 0.041 (0.005)
ωTech 0.023 (0.005) 0.011 (0.002) 0.021 (0.003)
ωBasicInd 0.022 (0.005) 0.009 (0.009) 0.008 (0.001)
ωTransport 0.024 (0.005) 0.014 (0.005) 0.038 (0.006)

B 0.970 (0.006) 0.941 (0.004) 0.930 (0.009)

Panel B: t factor copulas
ωeq 0.004 (0.002) 0.033 (0.002)

ωCapGoods 0.012 (0.001) 0.002 (0.001) 0.015 (0.001)
ωFin 0.014 (0.002) 0.006 (0.002) 0.034 (0.002)
ωEnergy 0.010 (0.001) -0.001 (0.001) 0.033 (0.002)
ωConsSer 0.009 (0.001) 0.002 (0.001) 0.011 (0.001)
ωConsNon−Dur 0.008 (0.001) 0.001 (0.001) 0.018 (0.001)
ωHealth 0.009 (0.001) 0.002 (0.001) 0.017 (0.001)
ωPublUtil 0.008 (0.001) 0.000 (0.000) 0.026 (0.001)
ωTech 0.011 (0.001) 0.003 (0.001) 0.012 (0.001)
ωBasicInd 0.010 (0.001) 0.002 (0.001) 0.008 (0.001)
ωTransport 0.011 (0.001) 0.003 (0.001) 0.020 (0.001)

B 0.986 (0.001) 0.993 (0.002) 0.957 (0.002)
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Table E.2: Parameter estimates of the full sample based on skewed Student’s t
errors
This table reports maximum likelihood parameter estimates of various factor copula models, the (block)
DECO model of Engle and Kelly (2012) and the cDCC model of Engle (2002), applied to daily equity returns
of 100 assets listed at the S&P 500 index. The marginals are modeled assuming a skewed t GARCH model.
We consider five different factor copula models, see Table 1 for the definition of their abbreviations. Panel
A.1 presents the factor models with a Gaussian copula density, Panel A.2 presents the parameter estimates
corresponding with the t-factor copula. Panel B.1 and B.2 present the estimates of the MGARCH class of
models. In case of the cDCC and Block DECO models, the table shows parameters estimates obtained by the
Composite Likelihood (CL) method. Standard errors are provided in parenthesis and based on the (sandwich)
robust covariance matrix estimator. We report the copula log-likelihood,the Akaike Information Criteria (AIC)
as well as the number of estimated parameters for all models. The sample comprises daily returns from January
2, 2001 until December 31, 2014 (3,521 observations).

Model ωeq Aeq Agr B ν LogL AIC ] para

Panel A.1: Gaussian factor copulas
1F-Equi 0.018 0.005 0.973 66,055 -132,105 3

(0.002) (0.000) (0.003)
1F-Group 0.007 0.969 68,221 -136,419 12

(0.001) (0.009)
2F 0.058 0.006 0.008 0.913 73,380 -146,733 14

(0.007) (0.000) (0.001) (0.010)
MF 0.080 0.007 0.005 0.896 82,329 -164,630 14

(0.004) (0.000) (0.001) (0.005)
MF-LT 0.009 0.962 83,401 -166,688 57

(0.001) (0.006)

Panel A.2: t-factor copulas
1F-Equi 0.060 0.012 0.920 34.39 69,790 -139,571 4

(0.010) (0.001) (0.013) (1.29)
1F-Group 0.004 0.986 30.12 72,420 -144,815 13

(0.000) (0.000) (0.99)
2F 0.035 0.011 0.011 0.946 36.80 76,607 -153,184 15

(0.004) (0.001) (0.001) (0.005) (1.52)
MF 0.070 0.014 0.010 0.909 42.83 84,804 -169,578 15

(0.002) (0.001) (0.001) (0.003) (1.48)
MF-LT 0.004 0.991 34.30 86,603 -173,091 58

(0.000) (0.002) (1.24)

Panel B.1: Gaussian copula-MGARCH models
cDCC (CL) 0.017 0.967 76,210 -142,515 4,952

(0.001) (0.003)
DECO 0.031 0.957 65,034 -120,165 4,952

(0.003) (0.005)
Block DECO 0.030 0.956 83,306 -156,707 4,952

(0.002) (0.003)

Panel B.2: t copula-MGARCH models
cDCC (CL) 0.018 0.967 13.92 84356 -158,807 4,953

(0.001) (0.003) (0.56)
DECO 0.038 0.949 29.97 69630 -129,354 4,953

(0.003) (0.005) (1.13)
Block DECO 0.031 0.955 21.82 86,450 -162,995 4,953

(0.002) (0.003) (0.57)

E.3



Table E.3: Estimated parameters of the MF-LT t model
This table contains summary statistics of the estimate parameters of a MF-LT t model with 50 different
random ordering of groups. We show the average, minimum and maximum values of the parameters and the
maximized log-likelihood over the 50 generated random orderings. The first row (current) corresponds with
the ordering used in the paper. Results are based on the full sample.

A B ν LogL
current 0.004 0.990 36.22 86,433

mean 0.005 0.990 36.35 86,463
min 0.004 0.988 35.82 86,314
max 0.006 0.992 36.79 86,551
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Figure E.1: Fitted dependencies of the MF-LT t model according to two different
orders
This figure shows within and between dependencies of Financials, Capital Goods and Energy according to the
MF-LT model. The red line is based on the group ordering used in the paper, while the blue line corresponds
with a randomly chosen group ordering. The sample spans the period from January 2, 2001 until December
31, 2014 (T = 3, 521 days).
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F Further derivations for numerical implementation

F.1 General shortcuts

The construction of the score in the Matlab code has a number of numerical efficiency en-

hancements compared to the notationally simple set-up from Appendix A. In particular, we

use several matrix algebraic identities to speed up the likelihood calculations.

In general we use formulas (A.1)–(A.11). We then deviate from Appendix A in three ways:

1. With respect to (A.11), we directly derive

∂ vec(L̃t)

∂ vec(ft)>
,

∂ vec(Dt)

∂ vec(ft)>
,

rather than

∂ vec(L̃t)

∂ vec(Lt)>
· ∂ vec(Lt)

∂f>t
,

∂ vec(Dt)

∂ vec(Lt)>
· ∂ vec(Lt)

∂f>t
.

This implies that we need not explicitly derive

∂ vec(L̃t)

∂ vec(Lt)>
,

∂ vec(Dt)

∂ vec(Lt)>
,

and hence we do not use (A.13)–(A.27). This also means that (A.6) changes into

∂ log ct(xt;Rt,ψC)

∂f>t
=
∂ log ct(xt;Rt,ψC)

∂ vec(Rt)>
· ∂ vec(Rt)

∂ vec(L̃t)>
· ∂ vec(L̃t)

∂f>t
. (F.1)

For the 1-factor model with an equi-loading, ∂ vec(L̃t)/∂f
>
t and ∂ vec(Dt)/∂ vec(ft)

>

are relatively easy to derive at once. For the 1F-Gr, 2F, MF and MF-LT models, this is

more involved. We provide more detailed information in the next sections.

2. Let Kk,N be a commutation matrix such that Kk,N vec(L̃) = vec(L̃>) for a general

matrix L̃ ∈ Rk×N . We use KN for KN,N . Let us define Bt to rewrite (A.10) as

vec(Bt) =
∂ log ct(xt;Rt,ψC)

∂ vec(Rt)
.
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Then we have

∂ log ct(xt;Rt,ψC)

∂ vec(Rt)>
· ∂ vec(Rt)

∂ vec(L̃t)>
= vec(Bt)

>
(
L̃>t ⊗ IN

)
Kk,N + vec(Bt)

>
(
IN ⊗ L̃>t

)
+ vec(Bt)

> ∂ vec(Dt)

∂ vec(L̃t)>

Using the rule vec(B)>(C ⊗A>) = vec (ABC)> for arbitrarily chosen matrices C and

A, provided that the matrix product ABC exists, and using vec(L>) = Kk,N vec(L)

for L ∈ Rk×N and Kk,N = K>N,k, we obtain

∂ log ct(xt;Rt,ψC)

∂ vec(Rt)>
· ∂ vec(Rt)

∂ vec(L̃t)>
=

= vec(BtL̃
>
t )>Kk,N + vec(L̃tBt)

> + vec(Bt)
> ∂ vec(Dt)

∂ vec(L̃t)>

= vec(BtL̃
>
t )>K>N,k + vec(L̃tBt)

> + vec(Bt)
> ∂ vec(Dt)

∂ vec(L̃t)>

= vec(L̃tB
>
t )> + vec(L̃tBt)

> + vec(Bt)
> ∂ vec(Dt)

∂ vec(L̃t)>

= vec(L̃tBt)
> + vec(L̃tBt)

> + vec(Bt)
> ∂ vec(Dt)

∂ vec(L̃t)>

= 2 vec(L̃tBt)
> + vec(Bt)

> ∂ vec(Dt)

∂ vec(L̃t)>
(F.2)

3. Finally, we simplify the last term of (F.2). Given that Dt is a N × N diagonal matrix

with diagonal vector σ2
t we have vec(Dt) = SDσ2

t with SD a N2 × N selection matrix

such that element(i+ (i− 1)N, i) equals 1. This implies that

∂ vec(Dt)

∂ vec(L̃t)>
= SD

∂ diag(Dt)

∂ vec(L̃t)>
= SD

∂σ2
t

∂ vec(L̃t)>
.

The last term in (F.2) now equals

vec(Bt)
>SD

∂ diag(Dt)

∂ vec(L̃t)>
= diag(Bt)

>∂ diag(Dt)

∂ vec(L̃t)>
. (F.3)

The benefit is twofold: computing diag(Bt) is much faster than computing vec(Bt)
>SD.

Second, the matrix ∂ diag(Dt)/∂ vec(L̃t)
> is much smaller than ∂ vec(Dt)/∂ vec(L̃t)

>.
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F.2 1-Factor-equi model

We have

Rt = λ̃2
t ιNι

>
N +

(
1− λ̃2

t

)
IN =

f 2
t

1 + f 2
t

ιNι
>
N +

1

1 + f 2
t

IN ,

where ιN ∈ RN×1 is a vector of ones. As a result,

∂ log cStud,t(xt;Rt, νC)

∂ vec(Rt)>
· ∂ vec(Rt)

∂ft
= vec(Bt)

> · vec
(
ιNι

>
N − IN

) ∂ vec(λ̃2
t )

∂ft

=
2ft

(1 + f 2
t )

2 · tr
(
B>t ·

(
ιNι

>
N − IN

))
=

2ft

(1 + f 2
t )

2 ·
(
ι>NBtιN − tr (Bt)

)
. (F.4)

F.3 1-Factor-Gr model

We have

Rt = L̃>t L̃t +Dt,

L̃>t = SLλ̃grt , λ̃grt =
(
λ̃1,t, . . . , λ̃G,t

)>
diagDt = SL diagσ2,gr

t , σ2,gr
t =

(
σ2
1,t, . . . , σ

2
G,t

)>
,

with SL a N × G selection matrix such that SLi,g = 1 if asset i belongs to group g and 0

elsewhere. Hence λ̃grt and σ2,gr
t are vectors containing the unique values of L̃>t and diag(Dt)

respectively. Finally, we have f>t =
(
f1,t, . . . , fG,t

)
and λ̃g,t = fg,t/

√
1 + f 2

g,t.

As a result,

∂ vec L̃t
∂f>t

= SL diag
(∂λ̃1,t
∂f1,t

, . . . ,
∂λ̃G,t
∂fG,t

)
(F.5)

∂ diagDt

∂f>t
= SL diag

(∂σ2
1,t

∂f1,t
, . . . ,

∂σ2
G,t

∂fG,t

)
(F.6)

with
∂λ̃g,t
∂fg,t

=
1

(1 + f 2
g,t)

3/2
,

∂σ2
g,t

∂fg,t
=
−2fg,t

(1 + f 2
g,t)

2
.

The total score in the code is now obtained by combining (F.2), (F.3), (F.5) and (F.6).
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F.4 2-Factor model

We have

Rt = L̃>t L̃t +Dt,

L̃>t =
(
λ̃1,t SLλ̃gr2,t

)
, λ̃gr2,t =

(
λ̃2,1,t, . . . , λ̃2,G,t

)>
diagDt = SL diagσ2,gr

t , σ2,gr
t =

(
σ2
1,t, . . . , σ

2
G,t

)>
,

with SL a N × G selection matrix defined earlier. Further, define f gr2,t =
(
f2,1,t, . . . , f2,G,t

)>
such that ft =

(
f1,t (f gr2,t)

>)>. Moreover, λ̃1,t is an N × 1 vector with λ̃1,i,t = f1,t/(1 +

f 2
1,t + (SLi,·f

gr
2,t)

2)1/2 for i = 1, . . . , N with SLi,· the i-th row of the matrix SL; and λ̃2,g,t =

f2,g,t/(1 + f 2
1,t + (SLi,·f

gr
2,t)

2)1/2 . It is convenient to define the two vectors ft,de and ft,degr as

ft,de = ιN + f 2
1,tιN + SL(f gr2,t � f

gr
2,t), (F.7)

ft,degr = ιG + f 2
1,tιG + (f gr2,t � f

gr
2,t), (F.8)

where � is the (element-wise) Hadamard product. The 2N × (G + 1) matrix ∂ vec L̃t/∂f
>
t

consists of the following four building blocks:

∂ vec λ̃1,t

∂f1,t
=

(
1/
√
f1,t,de, . . . , 1/

√
fN,t,de

)>
−
(
f 2
1,t/f

3/2
1,t,de, . . . , f

2
1,t/f

3/2
N,t,de

)>
= SL

(
diag

(
1/
√
f1,t,degr, . . . , 1/

√
fG,t,degr

)
− diag

(
f 2
1,t/f

3/2
1,t,degr, . . . , f

2
1,t/f

3/2
G,t,degr

))
(F.9)

∂ vecSLλ̃gr2,t
∂(f gr2,t)

> = SL
(

diag

(
1/
√
f1,t,degr, . . . , 1/

√
fG,t,degr

)
− diag

(
f 2
2,1,t/f

3/2
1,t,degr, . . . , f

2
2,G,t/f

3/2
G,t,degr

))
(F.10)

∂ vec λ̃1,t

∂(f gr2,t)
> = SL diag

(
− f1,t

(
f2,1,t/f

3/2
1,t,degr, . . . , f2,G,t/f

3/2
G,t,degr

)>)
(F.11)

∂ vecSLλ̃gr2,t
∂f1,t

= SL

(
−f1,t

(
f2,1,t/f

3/2
1,t,degr, . . . , f2,G,t/f

3/2
G,t,degr

)>)
(F.12)
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More specifically, these building blocks are inserted as follows:(
∂ vec L̃t
∂f>t

)
2i−1, ·

=

(
∂ vec λ̃1,t

∂f1,t

∂ vec λ̃1,t

∂(f gr2,t)
>

)
i, ·

(F.13)(
∂ vec L̃t
∂f>t

)
2i, ·

=

(
∂ vecSLλ̃gr2,t

∂f1,t
,

∂ vecSLλ̃gr2,t
∂(f gr2,t)

>

)
i, ·

(F.14)

for i = 1, . . . , N . In words, the odd rows of ∂ vec L̃t/∂f
>
t are filled with (F.13), while its even

rows are filled with (F.14).

Finally, the N × (G+ 1) matrix ∂ diagDt/∂f
>
t is given by

∂ vecDt

∂f>t
= −2

((
f1,t/f

2
1,t,de, . . . , f1,t/f

2
N,t,de

)>
SL diag

(
f2,1,t/f

2
1,t,degr, . . . , f2,G,t/f

2
G,t,degr

))
.

(F.15)

F.5 MF model

We have

Rt = L̃>t L̃t +Dt,

L̃>t =
(
λ̃1,t SL diag λ̃gr2,t

)
, λ̃gr2,t =

(
λ̃2,1,t, . . . , λ̃2,G,t

)>
diagDt = SL diagσ2,gr

t , σ2,gr
t =

(
σ2
1,t, . . . , σ

2
G,t

)>
,

with SL a N × G selection matrix defined earlier. Note that this model differs only slightly

from the 2F model: here we have SL diag λ̃gr2,t instead of SLλ̃gr2,t. Hence the industry loadings

are now allocated over G columns instead of only 1 column such that we have G+ 1 different

factors.

The vectors f gr2,t, ft and λ̃1,t are exactly similar as defined in the 2F model. This also

holds for ft,de and ft,degr as defined in (F.7) and (F.8) respectively. Moreover, we can use

the three building blocks ∂ vec λ̃1,t/∂f1,t ∂ vecSLλ̃gr2,t/∂(f gr2,t)
> and ∂ vec λ̃1,t/∂(f gr2,t)

> of (F.9),

(F.10) and (F.11).
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As a result, the (G+ 1)N × (G+ 1) matrix ∂ vec L̃t/∂f
>
t has to be filled as follows:(

∂ vec L̃t
∂f>t

)
(i−1)(G+1)+1, ·

=

(
∂ vec λ̃1,t

∂f1,t

∂ vec λ̃1,t

∂(f gr2,t)
>

)
i, ·

(F.16)(
∂ vec L̃t
∂f>t

)
(i−1)(G+1)+gi+1 , ·

=

(
∂ vecSLλ̃gr2,t

∂f1,t

∂ vecSLλ̃gr2,t
∂(f gr2,t)

>

)
i , ·

(F.17)

for i = 1, . . . , N , and gi denoting the group number of asset i. All other elements of

∂ vec L̃t/∂f
>
t are equal to zero. In words: starting from row 1, every (G + 1)st row of

∂ vec L̃t/∂f
>
t is filled by (F.13). For the blocks between these rows, only the row corre-

sponding the group of the ith asset has a non-zero row equal to the 2ith row of the derivative

from the 2F-model’s derivative.

Finally, the N×(G+1) matrix ∂ diagDt/∂f
>
t does also not change and is given by (F.15).

F.6 MF-LT model

We have

Rt = L̃>t L̃t +Dt,

L̃>t =


λ̃t,1ιN1 0 · · · 0

λ̃t,2ιN2 λ̃t,G+1ιN2 · · · 0
...

...
. . .

...

λ̃t,GιNG λ̃t,2G−1ιNG · · · λ̃t, 1
2
G(G+1)ιNG

 (F.19)

diagDt = SL diagσ2,gr
t , σ2,gr

t =
(
σ2
1,t, . . . , σ

2
G,t

)>
,

withNg the number of assets in industry g,(g = 1, . . . , G) and ft = (ft,1, ft,2, . . . , ft,G(G+1)/2)
> ∈

RG(G+1)/2×1. We define λ̃t = (λ̃t,1, λ̃t,2, . . . , λ̃t,G(G+1)/2)
>

We first decompose ∂ vec L̃t/∂ft into

∂ vec L̃t
∂f>t

=
∂ vec L̃t

∂λ̃>t

∂λ̃t
∂f>t

(F.20)

where ∂ vec L̃t/∂λ̃
>
t is a NG× 1

2
G(G + 1) matrix of zeros and ones and ∂λ̃t/∂f

>
t a 1

2
G(G +

1)× 1
2
G(G+ 1) square matrix.

We refer to the Matlab code how to construct ∂ vec L̃t/∂λ̃
>
t . Here we continue with some
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aspects about ∂λ̃t/∂f
>
t .

Note that each asset within a certain industry has a different number of factor loadings.

For example, an asset from to industry 1, only has 1 factor loading λ̃1, while an asset from

industry G has G factor loadings λ̃G, λ̃2G−1, . . . , λ̃G(G+1)/2.

Setting Ng = 1 for each g in (F.19), we obtain a G×G matrix L̃grt with unique elements

(λ̃1, . . . , λ̃G(G+1)/2). Denote λ̃g,t as column g from this matrix L̃grt . Then element g of the

unique group specific G× 1 denomimator vector ft,degr is defined as

ft,g,degr = 1 + λ̃>g,tλ̃g,t (F.21)

The square matrix ∂λ̃t/∂f
>
t now consists of two building blocks. Suppose λ̃t,j, j =

1, . . . , G(G+ 1)/2, belongs to column g of L̃grt Then

∂λ̃t,j
∂ft,j

=
1√

ft,g,degr
−

f 2
t,j

f
3/2
t,g,degr

(F.22)

for all values of j.

Further we know that column g of L̃grt contains (g − 1) other values of λ̃t,j. Let indices

j, o = 1, . . . , G(G + 1)/2 with o 6= j both come from column g of L̃grt . The second building

block now becomes

∂λ̃t,j
∂ft,o

= − ft,oft,j
f
3/2
t,g,degr

. (F.23)

Finally, we have

∂ diagDt

∂f>t
= SL

∂σ2,gr
t

∂f>t
(F.24)

Similar as before, suppose that ft,j belongs to column g of L̃grt . Then σ2
g,t depends on exactly

g different values of ft,j. Now we have

∂σ2
g,t

∂ft,j
=
−2ft,j
f 2
t,g,degr

. (F.25)

for g = 1, . . . , G, and zero otherwise.
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