Identification of FDA-approved antivirulence drugs targeting the *Pseudomonas aeruginosa* quorum sensing effector protein PqsE

Valerio Baldellia, Francesca D'Angeloa#, Viola Pavoncelloa#, Ersilia Vita Fiscarellib, Paolo Viscab, Giordano Rampionia*, Livia Leonia*

a Department of Science, University Roma Tre, Rome, Italy; b Laboratory of Cystic Fibrosis
 Microbiology, Bambino Gesú Hospital, Rome, Italy.
 # Current address: Institut Pasteur, Paris, France.

SUPPLEMENTAL MATERIAL

Table S1. Strains used in this study
Table S2. Plasmids used in this study
Table S3. MIC of selected antibiotics
Figure S1. Set up of the PqsE-Rep biosensor system
Figure S2. Primary and secondary screens of the PHARMAKON library
Figure S3. Growth curves of *P. aeruginosa* in the presence of PqsE inhibitors
Figure S4. Effect of the PqsE inhibitors on constitutive bioluminescence
Figure S5. Effect of PqsE inhibitors on *P. aeruginosa* tolerance to tobramycin

Strain	Description	References		
PAO1	wild type strain.	ATCC15692		
PAO1 $\Delta pqsE$	PAO1 derivative carrying an in-frame	[36]		
	deletion of the $pqsE$ gene.			
PAO1 PqsE-Rep	PAO1 derivative in which $pqsE$ expression is	[36]		
(pqsEind PpqsA::lux)	IPTG inducible and containing the			
	PpqsA::luxCDABE transcriptional fusion			
	integrated into the chromosome at the attB			
	neutral site; Tcr.			
PAO1 PpqsA::lux	PAO1 derivative containing the	[98]		
	PpqsA::luxCDABE transcriptional fusion			
	integrated into the chromosome at the $attB$			
	neutral site; Tcr.			
PAO1 $\Delta pqsE$ PpqsA::lux	PAO1 $\Delta pqsE$ derivative containing the	[36]		
	PpqsA::luxCDABE transcriptional fusion			
	integrated into the chromosome at the $attB$			
	neutral site; Tcr.			
PAO1 mini-CTX-lux	PAO1 derivative containing the mini-CTX-	[98]		
	lux empty vector integrated into the			
	chromosome at the <i>attB</i> neutral site; Tcr.			
PAO1 $\Delta pqsE$	PAO1 $\Delta pqsE$ derivative containing the mini-	[36]		
mini-CTX-lux	CTX-lux empty vector integrated into the			
	chromosome at the <i>attB</i> neutral site; Tcr.			

Table S2. Plasmids used in this study

Plasmid	Relevant characteristics	References		
pUCP18	pUC18-derivative containing a stabilising	[64]		
	fragment for maintenance in Pseudomonas spp.;			
	Apr, E. coli/Cbr, P. aeruginosa.			
pUCP-pqsE	pUCP18 derivative for pqsE complementation;	[36]		
	Apr, E. coli/Cbr, P. aeruginosa.			
pMRP9-1	pUC18 derivative allowing constitutive	[59]		
	expression of the Aequorea victoria GFP			
	protein; Cbr.			
mini-CTX-lux	Promoter-probe vector containing the <i>luxCDABE</i>	[99]		
	operon as reporter system; Tcr.			
mini-CTX-PpqsA::lux	mini-CTX-lux derivative used for the insertion	[80]		
	of the PpqsA::luxCDABE transcriptional fusion			
	into PAO1 chromosome; Tcr.			

References not included in the main text

[98] Fletcher MP, Diggle SP, Crusz SA, et al. A dual biosensor for 2-alkyl-4-quinolone quorumsensing signal molecules. Environ Microbiol. 2007;9:2683-2693.

[99] Becher A, Schweizer HP. Integration-proficient *Pseudomonas aeruginosa* vectors for isolation of single-copy chromosomal *lacZ* and *lux* gene fusions. Biotechniques. 2000;29:948-950.

Table S3. MIC of selected antibiotics

	Ciprofloxacin		Colistin		Tobramycin		Piperacillin	
Strain	MHB	M9	MHB	M9	Μ	M9	MH	M9
P. aeruginosa PAO1	0.125	0.03125	2	4	0.5	0.5	8	2
P. aeruginosa $\Delta pqsE$	0.125	0.03125	2	4	0.5	0.25	8	2

Figure S1. Set up of the PqsE-Rep biosensor system

(A) Activity of the *PpqsA* promoter in the PqsE-Rep strain grown in LB supplemented with the indicated concentrations of IPTG, after 3 h (white bars), 5 h (light-grey bars) and 7 h (dark-grey bars) of incubation at 37°C. (B) Activity of the *PpqsA* promoter in the PqsE-Rep strain inoculated at starting optical density (OD₆₀₀) of 0.08 (white bars), 0.03 (light-grey bars) and 0.01 (dark-grey bars), after 5 h of incubation at 37°C in LB supplemented with the indicated concentrations of IPTG. (C) Activity of the *PpqsA* promoter in the PqsE-Rep strain inoculated at a starting OD₆₀₀ of 0.08 after 5 h of incubation in LB (white bars) or in LB supplemented with 50 µM IPTG (grey bars) at 30°C or 37°C, in static or shaking (120 rpm) conditions. For (A)-(C), biosensor activity is reported as relative light units (RLU) normalized to cell density (OD₆₀₀); the average of three independent experiments is reported with SD.

Figure S2. Primary and secondary screens of the PHARMAKON library

(A) Activity of the P*pqsA* promoter (bars) and cell density (diamonds) measured in the PqsE-Rep strain after 5 h incubation at 37°C in shaking conditions in LB supplemented with 50 μ M IPTG and with the molecules of the PHARMAKON library, indicated with codes from inhibitor 1 (I-1) to inhibitor 24 (I-24), at 20 μ M (white bars and diamonds) or 200 μ M (grey bars and diamonds) concentration. PqsE-Rep activity and cell density measured in the presence of 0.2% (v/v) and 2% (v/v) DMSO were considered as 100%, respectively. (B) Pyocyanin production measured in supernatants of the PqsE-Rep biosensor strain supplemented with 50 μ M IPTG and treated with the PHARMAKON library compounds nitrofurazone (I-2), erythromycin estolate (I-3) and diminazene aceturate (I-8) at 20 μ M (white bars) and 200 μ M (grey bars) concentration.

Figure S3. Growth curves of *P. aeruginosa* in the presence of PqsE inhibitors

Growth curves of *P. aeruginosa* PAO1 and its isogenic $\Delta pqsE$ mutant incubated at 37°C in shaking conditions in LB supplemented with: **(A)** 100 µM nitrofurazone (PAO1, blue; PAO1 $\Delta pqsE$, black) or 0.125% (v/v) DMSO (PAO1, red; PAO1 $\Delta pqsE$, green); **(B)** 50 µM erythromycin estolate (PAO1, blue; PAO1 $\Delta pqsE$, black), or 0.025% (v/v) EtOH (PAO1, red; PAO1 $\Delta pqsE$, green). The average of three independent experiments is reported with SD.

Figure S4. Effect of the PqsE inhibitors on constitutive bioluminescence

Percentage of light emitted by the indicated *P. aeruginosa* PAO1 strains carrying the mini-CTX-*lux* empty vector. The strains were grown at 37°C in shaking conditions in LB supplements with 100 μ M nitrofurazone (A) or 50 μ M erythromycin estolate (B). Bioluminescence emitted by the same strains grown in the presence of 0.125% (v/v) DMSO or 0.025% (v/v) EtOH was considered as 100%. The average of three independent experiments is reported with SD.

Figure S5. Effect of PqsE inhibitors on *P. aeruginosa* tolerance to tobramycin

Fraction of *P. aeruginosa* PAO1 cells tolerant to 4 μ g/mL tobramycin (8x MIC) untreated (white bar) or after the treatment with 100 μ M nitrofurazone (light-grey bar) or 50 μ M erythromycin estolate (dark-grey bar). The untreated PAO1 $\Delta pqsE$ strain was used as control (black bar). The tolerant fraction expressed as N-fold change was determined as the ratio between the CFU/mL values measured after antibiotic addition (24 h post-antibiotic) divided by CFU/mL values measured before antibiotic addition. The average of three independent experiments is reported with SD. Similar results were obtained 16 h post-antibiotic treatment.

