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Appendix 1 - Full description of the search strategies 
 

1.1. Cochrane Library 
 
The search was done in "Search Manager" in "Advanced Search". 
 
The used search terms were: 
 
( (electroporation OR electropermeabilization OR nanoknife) AND ("in silico" OR mathemat* OR 
numeric* OR parametric* OR simulation OR theoretic* OR theory OR computation* OR "finite el-
ement" OR "finite difference" OR thermal OR temperature) ):ti,ab,kw 
 
1.2. Embase 
 
The search was done in "Basic Search". In section "Limits" the check boxes were not checked off.  
 
The used search terms were: 
 
( (electroporation OR electropermeabilization OR nanoknife) AND ("in silico" OR mathemat$ OR 
numeric$ OR parametric$ OR simulation OR theoretic$ OR theory OR computation$ OR "finite 
element" OR "finite difference" OR thermal OR temperature) ).ti,ab,kw. 
 

1.3. IEEE Xplore Digital Library 
 
The search was done in "Command Search" in "Advanced Search". Here, the check circle of 
“Metadata Only” was checked off. The used search terms were: 
 
( ( (electroporation OR electropermeabilization OR nanoknife) AND ("in silico" OR mathemat* 
OR numeric* OR parametric* OR simulation OR theoretic* OR theory OR computation* OR "finite 
element" OR "finite difference" OR thermal OR temperature) ) ) 
 

1.4. PubMed 
 
The search was done in "Basic Search". The used search terms were: 
 
( (electroporation[Text word] OR electropermeabilization[Text word] OR nanoknife[Text 
word]) AND ("in silico"[Text word] OR mathemat*[Text word] OR numeric*[Text word] OR par-
ametric*[Text word] OR simulation[Text word] OR theoretic*[Text word] OR theory[Text word] 
OR computation*[Text word] OR "finite element"[Text word] OR "finite difference"[Text word] 
OR thermal[Text word] OR temperature[Text word]) ) 
 
1.5. Science Direct 
 
The search was done in "Title, abstract or keywords" in "Advanced search". The check boxes in 
"Show more fields" were not checked off. The used search terms were: 
 
( (electroporation OR electropermeabilization OR nanoknife) AND ("in silico" OR mathemat OR 
numeric OR parametric OR simulation OR theoretic OR theory OR computation OR 
"finite element" OR "finite difference" OR thermal OR temperature) ) 
 
1.6. Scopus 
 
The search was done in the tab "Advanced" in “Search”. The used search terms were: 
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TITLE-ABS-KEY( ( (electroporation OR electropermeabilization OR nanoknife) AND ("in silico" 
OR mathemat* OR numeric* OR parametric* OR simulation OR theoretic* OR theory OR compu-
tation* OR "finite element" OR "finite difference" OR thermal OR temperature) ) ) 
 

1.7. Web of Science 
 
The search was done in "Advanced search". The following check boxes, and circles were checked 
off: 
 

 All languages 
 All document types 
 All Years 
 More Settings 
 Science Citation Index Expanded (SCI-EXPANDED) --1975-present 
 Social Sciences Citation Index (SSCI) --1975-present 
 Arts & Humanities Citation Index (A&HCI) --1975-present 
 Emerging Sources Citation Index (ESCI) --2015-present 

 
The used search terms were: 
 
TS=( ( (electroporation OR electropermeabilization OR nanoknife) AND ("in silico" OR mathe-
mat* OR numeric* OR parametric* OR simulation OR theoretic* OR theory OR computation* OR 
"finite element" OR "finite difference" OR thermal OR temperature) ) )  
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Appendix 2 - Definitions of abbreviations, symbols and extracted parameters 
 

Table A2.1 
 
Table A2.1 Definitions of the used symbols. 

Abbreviations and 
symbols of quantities 

Unit [sym-
bol] 

Definition 

BC  Boundary condition. 
BEM  Boundaries between the electrodes and the 

media. 
BOS  Boundaries at the outer surface of the model. 
CAR  Cardiac autosynchronous rate. 

CEM43°C [min] Cumulative equivalent minutes at 43 °C. 
CEM43°C(th) [min] Threshold of cumulative equivalent minutes at 

43 °C that can results in thermal damage. 
IPE  Irreversible permeabilization effect (we chose 

IPE instead of IRE effect to distinguish between 
only the permeabilization effect, and the per-
meabilization and the thermal effects jointly 
produced by IRE). 

IRE  Irreversible electroporation. 
IRE-TR  Region treated by IRE. 
MH  Mild hyperthermia. 
MWA  Microwave ablation. 
NA  Not applicable. 
NC  Not clear. 
ND  Not defined. 
NR  Data is not reported in the included study. 
NTA  No thermal analysis. 
RE  Reversible electroporation. 
RFA  Radiofrequency ablation. 
TA  Thermal ablation. 
n [m] Normal vector that is perpendicular to any sur-

face in a model. 
E [V⋅m-1] Electric-field vector. 
J [A⋅m-2] Electric-current density. 
Je [A⋅m-2] Externally generated electric-current density. 
J · E [W⋅m-3] The Joule Heating term; the heat generation 

rate per unit volume.  
H [A⋅m-1] Magnetic-field vector. 
∇ [m-1] Gradient. 
∇ ⋅ [m-1] Divergence. 
∇  × [m-1] Curl. 
∇ 2 [m-2] Laplace operator. 
∇  Dimensionless gradient. 
∇ ⋅  Dimensionless divergence. 
∇ 2 

 
Dimensionless Laplace operator. 

i#, j#, k#, l#, m#, n#  Iteration numbers. 
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Abbreviations and 
symbols of quantities 

Unit [sym-
bol] 

Definition 

a [W∙m-2∙°C-4] Stefan-Boltzmann constant. 
an#  Parameters of sigmoid function. 
cb [J⋅kg-1⋅°C-1] Specific heat capacity of blood. 
cp [J⋅kg-1⋅°C-1] Specific heat capacity of a medium. 
d [m] Center-to-center distance between the elec-

trodes in case of cylindrical or spherical elec-
trodes; the distance between the electrodes in 
case of plate electrodes. 

dt [s] or [min] Time differential. 
fP [Hz] Pulse frequency. 
h [W⋅m-2⋅°C-1] Heat transfer coefficient. 
heq [W⋅m-2⋅°C-1] Equivalent heat transfer coefficient. 
j 

 
j = (-1)0.5. 

k [W⋅m-1⋅°C-1] Constant thermal conductivity of a medium. 
kinit [W⋅m-1⋅°C-1] Initial thermal conductivity of a medium before 

the start of a heating process. 
min  Minimum value. 
max  Maximal value. 
n [m] Magnitude of the normal vector. 
nP  Pulse number. 
q [C⋅m-3] Charge density. 
qe [W∙m-2] Evaporation rate. 
qBEM [W∙m-2] Heat flux through boundaries between elec-

trode and media. 
qBOS [W∙m-2] Heat flux through the outer surface of the 

model. 
r [m] Radial coordinate. 
rfit [m] Variable fitted to 1D temperature distribution. 
t [s] Time. 
t 

 
Dimensionless time. 

tinit [s] Start time of a heating process. 
t43 [min] Thermal isoeffect dose. 
tend [s] Ending time of a heating process. 
tMH [s] Start time of mild hyperthermia. 
tTA [s] Start time of thermal ablation. 
tP [s] Single pulse duration. 
u [J⋅m-3] Energy density. 
wb [kg⋅m-3⋅s-1] Blood perfusion. 
x [m] The Cartesian coordinate. 
x 

 
Dimensionless Cartesian coordinate. 

y [m] The Cartesian coordinate. 
y 

 
Dimensionless Cartesian coordinate. 

z [m] The Cartesian coordinate. 
z 

 
Dimensionless Cartesian coordinate. 

A [s-1] Pre-exponential factor (Collision frequency). 
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Abbreviations and 
symbols of quantities 

Unit [sym-
bol] 

Definition 

D [m] Distance between the electrodes in case of cy-
lindrical or spherical electrodes, excluding the 
electrode diameter; the distance between the 
electrodes in case of plate electrodes. 

E = |E | [V⋅m-1] Magnitude of an electric-field vector. 
Ealt [V⋅m-1] Electric-field magnitude at which the electrical 

conductivity starts to change. 
Erange [V⋅m-1] Electric-field magnitude range at which the 

electrical conductivity changes. 
ERE(th) [V⋅m-1] Electric-field threshold of reversible electro-

poration; minimum electric-field value that re-
versibly permeabilizes specific cells/tissue 
during RE. 

EIRE(th)  [V⋅m-1] Electric-field threshold of irreversible electro-
poration; minimum electric-field value that ab-
lates target cells/tissue during IRE. Even 
though EIRE(th) was only used as a minimum re-
quired E to extract SE-IRE(th),Σ for this analysis, it 
must be noticed that EIRE(th) in reality also de-
pends on pulse parameters (pulse voltage, 
pulse shape, pulse length, pulse number and 
pulse frequency, temperature and electrical 
conductivity of the target. 

I#, J#, K#, L#, M#, 
N# 

 
Total iteration number. 

IBOS [A] Electric current through outer surface of the 
model. 

L [m] Active length. 
N(tinit)  Number of intact substances in the tissue be-

fore the treatment. 
N(t)  Number of intact substances in the tissue at 

time point t. 
NP  Total number of pulses. 
P  Dimensionless Joule-Heating term. 
Qm [W⋅m-3] Metabolic heat generation. 
VP [V] Electric potential of the pulses. 
Ṙ [J⋅mol-1⋅K-1] Ideal gas constant. 
R 

 
Factor to compensate for a 1 °C temperature 
change. 

R3ΔT13 [%] Ratio between the sizes of the region with 
mild-hyperthermic temperature increase and 
irreversibly permeabilized region. 

RΔT13 [%] The ratio between the sizes of thermally ab-
lated region and irreversibly permeabilized re-
gion. 
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Abbreviations and 
symbols of quantities 

Unit [sym-
bol] 

Definition 

RΔtMH  Dimensionless ratio between the time duration 
of mild hyperthermia and total treatment time. 

RΔtTA  Dimensionless ratio between the time duration 
of thermal ablation and total treatment time. 

SΔT [m2] The surface area of the simulated temperature 
increase in a 2D plot. 

S3ΔT13 [m2] The surface area of the simulated temperature 
increase in a 2D plot within the range 3 ≤ ΔT 
[°C] < 13 excluding the surface area of the elec-
trodes. 

S3ΔT13,Σ [m2] The total surface area of the simulated temper-
ature increase in a 2D plot within the range 3 ≤ 
ΔT [°C] < 13 excluding the surface area of the 
electrodes. 

SΔT13 [m2] The surface area of the simulated temperature 
increase in a 2D plot that is at least 13 °C ex-
cluding the surface area of the electrodes. 

SΔT13,Σ [m2] The total surface area of the simulated temper-
ature increase in a 2D plot that is at least 13 °C 
excluding the surface area of the electrodes. 

SE [m2] The surface area of the electric field in a 2D 
plot with an electric-field magnitude at least 
EIRE(th) including the surface area of the elec-
trodes. 

SE-IRE(th) [m2] The surface area of the electric field in a 2D 
plot with an electric-field magnitude at least 
EIRE(th) excluding the surface area of the elec-
trodes. 

SE-IRE(th),Σ [m2] The total surface area of the electric field in a 
2D plot with an electric-field magnitude at 
least EIRE(th) excluding the surface area of the 
electrodes. 

Select [m2] The surface area of the electrode in a single 
IRE-TR in a 2D plot. 

Select,Σ [m2] The total surface area of the electrodes in a sin-
gle IRE-TR in a 2D plot. 

T [°C] Temperature. 
T 

 
Dimensionless temperature. 

Tart [°C] Arterial blood temperature. 
TBEM [°C] Temperature value at the boundaries between 

the electrode and the media. 
TBOS [°C] Temperature value at the outer surface of the 

model. 
Tdt [°C] The average temperature over the period dt. 
Tenv [°C] Temperature of the environment. 
Tfit [°C] Variable fitted to 1D temperature distribution. 
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Abbreviations and 
symbols of quantities 

Unit [sym-
bol] 

Definition 

Tinit [°C] Initial physiological temperature. 
Tmin [°C] Minimum obtained temperature. 
Tmax [°C] Maximum obtained temperature. 
TK(t) [K] Time dependent absolute temperature. 
Tth [°C] Thermally ablative threshold. 
X [°C] Temporarily variable. 
Ua [J⋅mol-1] Activation energy. 
VP [V] Scalar electric potential (voltage) of the pulses. 
α [m2⋅s-1] Thermal diffusivity. 
β1  First constants of the Fourier Series. 
βn#  Constants of the Fourier Series. 
ε [F⋅m-1] Permittivity of a medium. 
ε0 [F⋅m-1] Permittivity of free space. 
εr  Relative permittivity. 
εs  Emissivity of a surface area. 
μ [H⋅m-1] Permeability of a medium. 
μ0 [H⋅m-1] Permeability of free space. 
μr 

 
Relative Permeability. 

ξ [°C-1] Increase of (electrical or thermal) conductivity 
per 1 °C. 

ρ [kg⋅m-3] Mass density of a medium. 
ρb [kg⋅m-3] Blood density. 
σ [S⋅m-1] Constant electrical conductivity of a medium. 
σ 

 
Normalized electrical conductivity. 

σinit [S⋅m-1] Initial electrical conductivity; conductivity 
value before application of reversible or irre-
versible electroporation. 

σmax [S⋅m-1] Maximum electrical conductivity that can be 
obtained during or after irreversible electro-
poration. 

σt [S⋅m-1] Electrical conductivity of a target volume. 
σ(nP) [S⋅m-1] Electrical conductivity that depends on pulse 

number. 
σ(E) [S⋅m-1] Electrical conductivity that depends on elec-

tric-field magnitude. 
σ(T) [S⋅m-1] Electrical conductivity that depends on tem-

perature. 
σ(E, T) [S⋅m-1] Electrical conductivity that depends on both 

electric-field magnitude and temperature. 
τ [s] The time constant for heat conduction. 
τP [s] Duration between two pulses. 
ω [rad⋅s-1] Angular frequency. 
ωb [s-1 = 

mL⋅mL-1⋅s-1]  
Blood perfusion rate. 

Γ [m] Half thickness. 
Δ  Difference. 



 

8 
 

Abbreviations and 
symbols of quantities 

Unit [sym-
bol] 

Definition 

Δt [s] Time duration. 
ΔtMH [s] Time duration of mild-hyperthermic tempera-

tures. 
ΔtTA [s] Time duration of thermally ablative tempera-

tures. 
ΔT [°C] Temperature increase. 
ΔTmax [°C] Maximum temperature increase. 
ΔTMH [°C] Maximal temperature increase during mild hy-

perthermia. 
ΔTTA [°C] Maximal temperature increase during thermal 

ablation. 
Λ  Electroporation factor which considers the tis-

sue permeabilization. 
Ω(t)  Time dependent accumulated thermal damage. 
Ωth  Accumulated thermal damage threshold. 
Φ [V] Scalar electric potential. 
Φ 

 
Normalized scalar electric potential. 

ΦBEM [V] Scalar electric potential of the boundary condi-
tion at the medium electrode interface. 

ΦBEM 
 

Normalized scalar electric potential of the 
boundary condition at the medium electrode 
interface. 

ΦBOS [V] Scalar electric potential of the boundary condi-
tion at the outer surface of the model. 

ΦBOS  Normalized scalar electric potential of the 
boundary condition at the outer surface of the 
model. 

Υ [%] Probability of the thermal damage. 
∅ [m] Diameter of an electrode with a cylinder shape. 
ℝ 

 
Set of real numbers. 
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Table A2.2 
 
Table A2.2 Definitions of the extracted study characteristics. 

Category Study 
Charac-
teristic 

Definition 

Medium properties Compo-
sition 

The properties of the used mediums (or-
gan/tissue) could be: 

 Homogeneous: The volume is composed 
of the same tissue type. 

 Heterogeneous: The volume is com-
posed of at least two different tissue 
types. 

 Isotropic: The value of the property of 
the tissue is identical in all directions.  

 Anisotropic: The value of the property 
of the tissue is directionally depended.  

 Linear: The value of the property of the 
tissue is a constant.  

 Non-linear: The value of the property of 
the tissue depends on the electric-field 
strength, the number of pulses, the tem-
perature and/or time.  

Simulation results of the 
electric-field strength of 
irreversible electro-
poration 

Position 
of SE-

IRE(th) 

Position of SE-IRE(th) in a figure provided by an 
included study with respect to the center of the 
figure. 

Number 
of SE-

IRE(th) 

Number of electric-field areas with the condi-
tion E ≥ EIRE(th) in the provided figure. 

Simulation results of 
mild-hyperthermic effect 
where 03 ≤ ΔT [°C] < 13 

Position 
of S3ΔT13 

Position of S3ΔT13 in a figure provided by an in-
cluded study with respect to the center of the 
figure. 

Number 
of S3ΔT13 

Number of temperature areas with the condi-
tion 3 °C ≤ ΔT < 13 °C in SE-IRE(th). 

Simulation results of 
thermally ablative effect 
where ΔT ≥ 13 °C 

Position 
of SΔT13 

Position of SΔT13 in a figure provided by an in-
cluded study with respect to the center of the 
figure. 
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Number 
of SΔT13 

Number of temperature areas with the condi-
tion ΔT ≥ 13 °C in SE-IRE(th). 
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Appendix 3 - Extended mathematical description of IRE 
 
For convenience, overviews of the symbols and the mathematical notations were summarized in 
Appendix 2. 
 

3.1. Electric-field distribution  
 
3.1.1. Electric-field models 
 
To start with the calculation of the electric field, Maxwell’s equations were used by combining 
Faraday’s law of induction, and Ampère’s law  
 

 𝜵 × 𝑬 = −jωμrμ0𝑯 A3.1 

 
and 
 

 𝜵 ×𝑯 = 𝑱 + jωεrε0𝑬 + 𝑱𝒆 A3.2 

 
where ∇  × [m-1] is the curl, E  [V⋅m-1] is the electric field, ω [rad⋅s-1] is the angular frequency, μr 
is the dimensionless relative permeability, μ0 [H⋅m-1] is the permeability of free space, H  [A⋅m-1] 
is the magnetic field, J  [A⋅m-2] is the electric-current density, εr is the dimensionless relative per-
mittivity, ε0 [F⋅m-1] is the permittivity of free space, and Je  [A⋅m-2] is the externally generated 
electric-current density. Again, the vector quantities are expressed in bold and italic. According 
to Ohm’s law  
 

 𝑱 = σ𝑬 A3.3 

 
where σ [S⋅m-1] is the electrical conductivity. Since the energy density of the electric field is 
much larger than the energy density of the magnetic field, the electro-quasi-static approximation 
can be applied [103]. This approximation results in the neglect of the magnetic field, transform-
ing Eq. A3.1 into  
 

 𝜵 × 𝑬 = 0 A3.4 

 
and allowing the electric-field component to be expressed as 
 

 𝑬 = −𝜵Φ A3.5 

 
with∇  [m-1] as gradient applied to the scalar electric potential Φ [V] [26, 43, 68, 72, 74, 79, 80]. 
Combination of Eq. A3.2, A3.3 and A3.5 results in 
 

 𝜵 ×𝑯 = −σ𝜵Φ − jωεrε0𝜵Φ+ 𝑱𝒆 A3.6 

 
Since the magnetic field is neglected, we can apply the divergence to Eq. A3.6 to obtain 
 

 𝜵 ∙ (𝜵 × 𝑯) = −𝜵 ∙ (σ𝜵Φ) − 𝜵 ∙ (jωεrε0𝜵Φ) + 𝜵 ∙ 𝑱𝒆 A3.7 
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with ∇ ∙ [m-1] as the divergence applied to the vector field. Because of the absence of the electric-
current source to generate Je , and because ∇ ∙ ( ∇ × H  ) = 0, we can simplify Eq. A3.7 into the 
continuity equation that describes the conservation of the electrical charge 
 

 −𝜵 ∙ ((σ + jωεrε0)𝜵Φ) = 0 A3.8 

 
in the frequency domain, or  
 

 
−𝜵 ∙ (σ𝜵Φ) −

∂q

∂t
 = 0 A3.9 

 
in time domain with  
 

 q = 𝜵 ∙ (εrε0𝜵Φ) A3.10 

 
where q [C⋅m-3] is the charge density [28, 73, 74]. In case of IRE the pulse duration is considered 
sufficient long to simplify Eq. A3.8 into a steady-state form [3, 24, 26, 27, 29, 31, 33, 34, 36-48, 
50-59, 62, 63, 65, 66, 68-70, 75, 78-80], 
 

 𝜵 ∙ (σ𝜵Φ) = 0 A3.11 

 
3.1.2. Boundary conditions 
 
For the calculation of the electric-potential distribution, Dirichlet, Neumann and Robin boundary 
conditions were applied in the included studies. In case of the Dirichlet boundary condition, the 
electric-potential values at the BOS and BEM were assumed to be fixed [3, 24, 26-29, 31-48, 50-
55, 57-61, 64-66, 68-76, 78-80]. For example, 
 

 ΦBEM ∈ {VP, 0} A3.12 
 
in case one of the electrodes is active and the other one is grounded, or  
 

 
ΦBEM ∈ {−

VP
2
,
VP
2
} A3.13 

 
in case both of the electrodes are active. For Neumann boundary conditions, BC at BOS was as-
sumed to be electric insulative, such that 
 

 −𝒏 · 𝑱 = 0 A3.14 
 
where n [m] is the normal vector perpendicular to the electrode surface or to the outer surface 
of the model [3, 24, 26, 28, 29, 31-34, 36-45, 48, 53, 57-61, 66, 69, 70, 73-75, 78-80]. This equa-
tion is equivalent to  
 

 𝒏 · (𝜎𝜵Φ) = 0 A3.15 
 
and can further simplified into 

 
𝜎
∂Φ

∂n
= 0 A3.16 
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with n [m] as the magnitude of n. In contrast to the BC at BEM, a Neumann boundary condition 
was generally applied to the BOS and therefore Eq. A3.15 was applied to the outer surface of the 
model. Otherwise, they were assumed to be grounded [47, 51, 52, 55, 72, 75] 
 

 ΦBOS = 0 V A3.17 
 
In the remaining parts of the model the continuity boundary condition was applied,  
 

 𝒏 ∙ (𝑱𝟏 − 𝑱𝟐) = 0 A3.18 
 
where n is the normal vector, perpendicular to the surface of interest, J1 [A⋅m-2] is the current 
density in medium 1 and J2 [A⋅m-2] is the current density in medium 2. 
 
3.1.3. Non-dimensional representation 
  
A non-dimensional representation could be used to simplify the differential equation by remov-
ing the variability due to the size and reducing the number of parameters, and therefore, to focus 

on the physics of the process [104]. According to [47, 55, 75] Eq. A3.11 can be dimensionless 
such that 
 

 𝜵 ∙ (σ ∙ 𝜵Φ) = 0 A3.19 
 
with 
 

 σ =
σ

σt
 A3.20 

 

 
Φ =

Φ

(VP/2)
 A3.21 

 
where ∇ ⋅ is dimensionless divergence, ∇  is dimensionless gradient, σ is dimensionless electrical 
conductivity, σt [S⋅m-1] is the electrical conductivity of target volume, and Φ is the dimensionless 
scalar electrical potential. For example, assuming ∇  depends on Cartesian coordinate system, it 
can be described as, 
 

 
𝜵 =

∂

∂x
𝒖𝒙 +

∂

∂y
𝒖𝒚 +

∂

∂z
𝒖𝒛 A3.22 

 
with 
 

 x =
x

∅
 A3.23 

 
where x is dimensionless distance and ∅ is the diameter of a cylinder electrode. Here, ∅ was used 
as an example. Instead, it is also possible to use d (distance between the electrodes) [27]. As-
suming Eq. A3.13 and A3.17 were applied as the Dirichlet boundary conditions, the BEM and the 
BOS were defined as: 
 

 ΦBEM ∈ {−1,1} A3.24 
 
and  
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 ΦBOS = 0 A3.25 
 

3.2. Temperature distribution 
 
3.2.1. Pennes bioheat transfer equation 
 
The calculation of thermal distributions was mostly done using the Pennes Bioheat equation  
 

 
ρcp

∂T

∂t
= 𝜵(k ∙ 𝜵T) − ρbωbcb(T − Tart) + Qm + 𝑱 · 𝑬 A3.26 

 
where ρ [kg⋅m-3] is the mass density, cp [J⋅kg-1⋅°C-1] is the specific heat capacity, T [°C] is the tem-
perature, t [s] is the time, k [W⋅m-1⋅°C-1] is the thermal conductivity, cb [J⋅kg-1⋅°C-1] is the specific 
heat capacity of the blood, ρb [kg⋅m-3] is the blood density, ωb [s-1] is the blood perfusion rate, 
and Tart [°C] is the arterial blood temperature, Qm [W⋅m-3] is the metabolic heat generation, and J 
·E  [W⋅m-3] is the heat generation rate per unit volume, or the Joule Heating [3, 24, 26-29, 31, 33, 
34, 36, 37, 39, 41-44, 48, 53, 55, 58, 61, 62, 66, 70, 73, 76, 80]. The Pennes Bioheat model was in-
tended for the calculation of temperature distribution in solid materials, extending the model 
with metabolic heat generation Qm and heat sink term ρbωbcb(T – Tart) to describe convection. 
Considering an elementary small tissue volume, the blood was assumed to enter the capillaries 
in this volume at temperature equals the arterial blood temperature Tart, after which the blood 
temperature instantaneously equilibrate with the temperature of the surrounding tissue. Subse-
quently, the blood leaves the capillaries at temperature T into the venous system. 
Over the intrapulses, the Joule Heating term was described as 
 

 𝑱 · 𝑬 = (σ + jωε0εr)E
2 A3.27 

 
This equation could be simplified into  
 

 𝑱 · 𝑬 = σE2 A3.28 
 
since the pulse duration in IRE is considered sufficient long [3, 24, 26-28, 31, 33, 34, 39-41, 105]. 
However, the application of Eq. A3.28 over the intrapulse only requires more complex time-step-
ping algorithms [43, 45], which can increase the calculation costs. Therefore, the heating can be 
averaged over the entire intra- and interpulse duration [40, 43, 61, 62, 66, 70, 73, 80], by scaling 
the Joule heating to 
 

𝑱 · 𝑬 = σE2tPfP A3.29 
 
 
3.2.2. Simplification of blood perfusion term 
 
If software packages cannot handle the blood perfusion term in Eq. A3.26, then according to [26] 
the temperature variable can be substituted to obtain 
 

 
T − Tart = Xe

−wbcbt
ρcp  A3.30 

 
resulting in  
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ρcp

∂(Xe
−wbcbt
ρcp )

∂t
= 𝜵(k ∙ 𝜵(Xe

−wbcbt
ρcp ) ) − wbcbXe

−wbcbt
ρcp + Qm + 𝑱 · 𝑬 

A3.31 

 
with wb [kg⋅m-3⋅s-1] as the blood perfusion, where 
 

 wb = ρbωb A3.32 
 
Assuming a homogeneous, linear and isotropic tissue, we can simplify Eq. A3.31 into 
 

 
ρcp

∂X

dt
= 𝜵(k ∙ 𝜵X ) + (Qm + 𝑱 · 𝑬)e

wbcbt
ρcp  A3.33 

 
3.2.3. Non-dimensional Pennes bioheat transfer equation 
 
When Qm is negligible and the domain of interest is approximately homogeneous and  
 

 cb = cp A3.34 
 
the Pennes bioheat equation can be dimensionless [27, 55]. The Joule heating term can be di-
mensionless by normalizing the electric field with the pulse voltage-to-distance ratio 
 

 
P =

1

σinit(VP d⁄ )2
σinitE

2 A3.35 

 
where P is the dimensionless Joule heating term, σinit [S⋅m-1] is the electric conductivity of the tis-
sue before electroporation, and d [m] is the center-to-center distance between the electrodes in 
case of cylindrical or spherical electrodes. In case of plate electrodes d is the distance between 
the electrodes. The temperature, the coordinate space (assuming the use of Cartesian coordinate 
system) and time are dimensionless by 
 

 
T =

k

d2σinit(VP d⁄ )2
T A3.36 

 

 
x =

1

d
x A3.37 

 

 
t =

k

ρcpd2
t A3.38 

 
where T is dimensionless temperature, x is dimensionless distance, and t is dimensionless time. 
After combining Eq. A3.26 with A3.34-A3.38, we obtain 
 

 ∂T

∂t
= 𝜵2T − ρbωbcp

d2

k
T + P A3.39 

 
with ∇ 2 as dimensionless Laplace operator. For example, assuming ∇ 2 depends on Cartesian co-
ordinate system, it can be described as, 
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𝜵2 =

∂2

∂x2
+
∂2

∂𝑦2
+
∂2

∂z2
 A3.40 

 
3.2.4. Analytical calculation of heat transfer equation 
 
While Pennes Bioheat equation was used in almost all of the included studies, the blood perfu-
sion and the metabolic heat generation were sometimes neglected [33, 41, 43, 106]. When both 

are neglected and in case of short tP, we can simplify Eq. A3.26 into  
 

 
ΔT =

𝑱 · 𝑬

ρcp
tP A3.41 

 
with ΔT [°C] as the temperature increase [26, 42]. In case of t ≫ tP in a 2D homogeneous model, 
the heat transfer equation can be analytically calculated [64], resulting in  
 

 ∂T

∂t
= α𝜵2T +

σE2

ρcp
 A3.42 

 
where α [m2⋅s-1] is the thermal diffusivity. This equation can be used to estimate the tempera-
ture distribution between two cylindrical electrodes in a 2D model. According to van Gemert et 
al [64], this can be done using a Gaussian radial function in the cylindrical coordinate system 
 

 
ΔT(r, tp) = Tfit exp (−(

r

rfit
)
2

) A3.43 

 
with r [m] as radial coordinate, and Tfit [°C] and rfit [m] are variables that were fitted to the meas-
ured temperature distribution in Figure 3B of [27], and ΔT [°C] is the obtained temperature in-
crease at the end of tP. The Gaussian function in Eq. A3.43 can be considered as cooling in the ra-
dial direction of a heat source line during time period of  
 

 
τ =

rfit
2

4α
 A3.44 

 
where τ [s] is the time constant for heat conduction. For an IRE pulse Eq. A3.42 was analytically 
solved to 
 

 

∆T(r, t) ≈ Tfit

exp (− (
r
rfit
)
2

(1 +
t
τ
) ⁄ )

1 +
t
τ

 A3.45 

 
Since ∆T(r,t) is linear, the authors added the responses to multiple pulses to obtain  
 

 

∆T (r,
NP − 1

fP
) ≈ ∆Tfit ∑

exp (− (
r
rfit
)
2

(1 +
nP
fPτ
)⁄ )

1 +
nP
fPτ

NP−1

nP=0

σNP−nP
σinit

 A3.46 

 
where fP is pulse rate, and σ(NP - nP) is the conductivity at the pulse nP. Here, the ratio between 
σ(NP - nP) and σinit was obtained by fitting the conductivity increase in [107]. 
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In case of a blood vessel parallel and in between a cylindrical electrode pair (see Figure A3.1), 
assuming that the blood flow removes the heat by keeping the intima at 37 °C, if the cooling of 
the vessel wall is approximated by 1D diffusion in x-direction (intima at x = 0m), then we can 
describe ∆T for a single pulse as 
  

 ∆T(x, t) ≈ Tfit erf (
x

√4𝛼𝑡
) A3.47 

 
For multiple pulses, we can describe ∆T as 

 
 

∆T(x,
NP − 1

fP
) ≈ Tfit ∑ erf

(

 
x

√4αnP
f )

 

NP−1

nP=0

σNP−nP
σinit

 A3.48 

 

 
Figure A3.1 2D view of IRE simulation including a vessel wall in between the needle pair. 
 
 
3.2.5. Temperature distribution between rectangular electrodes 
 
In case of a finite slab between two rectangular electrodes (a slab can be a piece of a tissue or 
cell suspension), it is possible to describe the temperature distribution for a single pulse in 
which the electrodes serve as infinite fins that dissipate the heat from the slab [30]. See Figure 
A3.2. 
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Figure A3.2 A finite slab in between two rectangular electrodes that act as infinite fins. The infin-
ity symbols means that the thickness of the electrodes is infinitely extended. 
 
The heat transfer solution that describes this transient conduction is 
 

 T − Tenv
Tmax − Tenv

= ∑ Cn# exp (−
βn#
2 αt

Γ2
) cos (

βn#x

Γ
)

∞

n#=1

 A3.49 

 
where Tmax [°C] is the maximum temperature after application of IRE for the pulse duration tP, 
Tenv [°C] is the temperature of the environment, Γ [m] is the half thickness of the slab, x [m] is the 
distance from the centerline of the slab, the dimensionless Cn# equals 
 

 
Cn# =

4 sin(βn#)

2βn# + sin(2βn#)
 A3.50 

 
and the dimensionless constants βn# are calculated from 
 

 
βn# tan(βn#) =

heqΓ

k
 A3.51 

 
where heq [W⋅m-2⋅°C-1] is the equivalent heat transfer coefficient assuming that the stainless steel 
electrodes act as infinite fins in free convection. Assuming a homogeneous temperature distribu-
tion in the slab equals the temperature at the centerline of the slab (x = 0 m), and assuming the 
first term (n# = 1) of the Fourier series, we can simplify Eq. A3.49 into 
 

 T − Tenv
Tmax − Tenv

= C1 exp (−
β1
2αt

Γ2
) A3.52 

 
The temperature rise due to the Joule heating of the slab for parallel plate electrode configura-
tion can be calculated according to Eq. A3.41 as 
 

 
Tmax − Tenv =

σE2

ρcp
tP A3.53 

 
resulting in  
 

 
T =

σE2

ρcp
tPC1 exp(−

β1
2αt

Γ2
) + Tenv A3.54 
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3.2.6. Boundary conditions 
  
Similar to the calculation of the electric potential distribution, for the temperature distribution 
the boundary condition at the BEM and BOS are important. In the included studies, Dirichlet, 
Neumann, and Robin boundary conditions were used. The Dirichlet boundary condition was ap-
plied when the temperatures were assumed to be e.g. 37 °C at the electrode-medium interface 
(TBEM [°C]) [28], and/or at the outer surface of the model (TBOS [°C]) [28, 33, 34, 36, 41, 53, 55]. If 
the boundaries were assumed to be adiabatic (thermal insulative) at the electrode-medium in-
terface [3, 24, 26, 27, 39, 73], and/or at the outer surface of the model [3, 24, 26, 27, 29, 31, 39, 
40, 43, 58, 61, 73, 80], then the Neumann boundary conditions were applied, such that 
 

 −𝒏 · (k𝜵T) = 0 A3.55 

 
This equation can be simplified to  
 

 
∂T

∂n
= 0 A3.56 

 
In case of the Robin boundary condition, the authors assumed that their model exchanged heat 
by convection at the electrode-medium interface [29, 30, 40, 59], and/or at the outer surface of 
the model [25, 37, 43-45, 59], such that 
 

 
−𝒏 ∙ (k𝜵T) = h(T − Tenv) A3.57 

 
where h [W⋅m-2⋅°C-1] is the heat transfer coefficient, and Tenv [°C] is the temperature of the envi-

ronment. Mandel et al. [44] for example furtherly expanded Eq. A3.57 for the eye model to con-
sider tear evaporation and the radiation. This was done by adding the new terms  
 

 
−𝒏 ∙ (k𝜵T) = h(T − Tenv) + qe + εa(T

4 − Tenv
4 ) A3.58 

where qe [W⋅m-2] is the evaporation rate, a [W⋅m-2⋅°C-4] is the Stefan-Boltzmann constant, and εs 
is the dimensionless emissivity of the corneal surface (transparent front part of the eye). 
In the remaining parts of the model the continuity boundary condition was applied,  
 

 𝒏 ∙ (k1𝜵T1 − k2𝜵T2) = 0 A3.59 
 
where k1∇ T1 [W⋅m-2] is the heat flux in medium 1 and k2∇ T2 [W⋅m-2] is the heat flux in medium 
2. 
 

3.3. Tissue properties  
 
To give an overview of the applied models, we summarize in this section the non-linear proper-
ties used to model the electrical and thermal conductivities.  
 
3.3.1. Dependence on electric field 
 
First of all, the author in [77] simply modeled the dependence of the electrical conductivity on 
the electric field, σ(E), as 
 

 σ(E) = σinit + (σmax − σinit)𝟙(E − EIRE(th)) A3.60 
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with σmax [S⋅m-1] as the electrical conductivity of the maximally permeabilized tissue, and 𝟙(E - 
EIRE(th)) as the unit function, where 
 

 
𝟙(E − EIRE(th)) = {

0, E < EIRE(th)
1, E ≥ EIRE(th)

 A3.61 

 
Similarly, the authors in [42, 63] assumed σ(E) to have linear dependence, such that 
 

 σ(E) =
σmax − σinit

EIRE(th) − ERE(th)
E + σinit A3.62 

 
where ERE(th) [V⋅m-1] is the threshold of the reversible electroporation in the tissue. Further in-
crease of the complexity of the electrical conductivity was done by fitting σ(E) into a sigmoid 
functions [45, 53, 56, 57, 59, 63, 70, 71, 78]. For example, according to the authors in [53, 71], 
σ(E) could be fitted in the form 
 

 
σ(E) = σinit + (σmax − σinit)

1

1 + a1 exp (−
E − a2
a3

)
 

A3.63 

 
with 
 

 
a2 =

EIRE(th) + ERE(th)

2
 A3.64 

 
and 
 

 
a3 =

EIRE(th) − ERE(th)

a4
 A3.65 

 
where a1 and a4 are the sigmoid function parameters. Next, to further increase the complexity, 
σ(E) can be fitted into 
 

 σ(E) = σinit + (σmax − σinit) exp(−a5exp(a6(E − a7))) A3.66 

 
where a5, a6, and a7 are the sigmoid function parameters [45, 56, 57, 63, 70, 78]. Finally, it is pos-
sible to express σ(E) as hyperbolic function such that 
 

 

σ(E) = σinit (1 + a8 (1 + tanh (
E − ERE(th)

ERE(th)
))) 

 

A3.67 

with a8 as a dimensionless parameter [79]. 
 
3.3.2. Dependence on temperature 
 
Besides the dependence of the electrical conductivity on the electric field, other authors in [40, 
43, 45, 60] assumed the linear dependence on temperature,  
 

 σ(T) = σinit(1 + ξ(T − Tinit)) A3.68 
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where ξ [°C-1] (with unit often written as [%⋅°C-1]) is the increase of conductivity per 1°C.  
 
Dependence on Electric Field and Temperature 
 
The electrical conductivity can also be presented as function both electric-field strength and 
temperature, σ(E, T), [31, 37, 40, 45, 73, 76, 80]. Examples of applied σ(E, T) are 
 

 
σ(E, T) = (σinit + (σmax − σinit) exp(−a5exp(−a6(𝐸 − a7))))

⋅ (1 + ξ(T − Tinit)) 
A3.69 

 
which was applied in [45],  
 

 
σ(E, T)  =  (σinit + (σmax − σinit)

1

1 + a1 exp (−
E − a2
a3

)
)

⋅ (1 +  ξ(T − Tinit)) 

A3.70 

 
which was applied in [80], and 
 

 σ(E, T) =  (σinit + (σmax − σinit)
1

1 + a1 exp (−
E − a2
a3

)
) ⋅ (a8

T − Tinit) A3.71 

 
which was applied in [76]. 
 
3.3.3. Other types 
 
Furthermore, electrical conductivity can be depended on pulse number [64], time [46, 78], and 
directions [35, 59]. An example of σ(nP) was shown in Eq. A3.46. In case of the use of anisotropic 
tissue properties, such as muscle in which the longitudinal electrical conductivity differs from 
the transversal one [35, 59], the electrical conductivity turns into a tensor (boldly expressed 
without use of italic) with the general form 
 

 
𝛔 = [

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

] A3.72 

 
If certain conditions are met that allow the electrical conductivity to be written with respect to 
the oriented local coordinate system, we can simplify Eq. A3.72 to 
 

 

𝛔 = [

σxx 0 0
0 σyy 0

0 0 σzz

] A3.73 
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Appendix 4 - Additional clarification of figures 
 
In this section an extended version of Figure 8 and 9 were presented for proper clarification of 
the data points. 
 

 
Figure A4.1 An extended version of Figure 8A to clarify the presented data points. 
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Figure A4.2 An extended version of Figure 9 to clarify the presented data points. 
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Appendix 5 - Extended mathematical description applied to methods of analysis 
 
To determine the k#th SE-IRE(th), we determined the total surface area of the electrodes (Select,Σ | k# 
[m2]) within the k#th SE-IRE(th) using  
 

Select,Σ | k#= ∑ Select | k#,n#

N#

n# =1

 A5.1 

 
where Select | k#,n# [m2] is the surface area of the n#th electrode within the k#th SE-IRE(th). The k#th SE-

IRE(th) was then determined using the condition  
 

SE-IRE(th) | k# ∈ {(SE | k# - Select,Σ | k# ∈ ℝ) | E ≥ EIRE(th)}  A5.2 

 
where SE | k# is the surface area of the k#th IRE-TR including the total surface area of the elec-
trodes. The extraction of temperature distributions satisfied the conditions 
 

S3ΔT13 | l# ∈ {(SΔT | l# - Select,Σ | l#) ∈ ℝ | 3 ≤ ΔT [°C] < 13} A5.3 
 
and 
 

SΔT13 | m# ∈ {(SΔT | m# - Select,Σ | m#) ∈ ℝ | ΔT [°C] ≥ 13} A5.4 
 
where SΔT | m# and SΔT | l# are the m#th and the l#th selected surface area of the temperature in-
crease distribution. If the imported figure includes E- and ΔT-contours showing the conditions 

mentioned in Eq. A5.2, A5.3, and A5.4, then we manually selected SE, SΔT and Select using the 
“Freehand selections” tool or “Polygon selections” tool. In case of no contours, we used the 
“Threshold Color” tool to set the threshold of the surface color to the minimum value mentioned 

in Eq. A5.2, A5.3, and A5.4. Finally, the ratios were calculated as 
 

R3ΔT13 = ∑
∑ S3ΔT13 | k#,l#
L#
l#=1

SE-IRE(th) | k#
100%

K#

k#=1

 A5.5 

and 

RΔT13 = ∑
∑ SΔT13 | k#,m#
M#
m#=1

SE-IRE(th) | k#
100%

K#

k#=1

 A5.6 

 
 


