Supplementary Table 1. Examples of DNA polymerase and nicking enzyme-involved sensors for biomolecule detection ^a												
No. of example (Ref, Fig.)	Detection process ^b	Enzyme used	Role of enzyme	Features of strategy	Target	Sensing approach (The type of biosensor)	LOD	Linear range				
1 (39; Figure 2a)	 Use of a double-hairpin molecular beacon as probe DNA Uncoiled one stem of beacon upon exposure of target Binding of trigger DNA to an uncoiled region and bidirectional polymerization by KFP, producing an extended strand containing G-rich and Nt.BbvCl-specific regions Nicking site recognition on the extended strand and nick-site cleavage by Nt.BbvCl Binding of KFP to a nicking site and G-rich region in signal DNA released by SDA Colorimetric detection 	 Klenow fragment polymerase (3'-5' exo-) Nt.BbvCl endonuclease 	 SDA which peels off target from the probe, leading to TRR SDA which peels off G-rich region from the extended region, leading to signal probe amplification Generation of a nicking site where KFP binds 	 Enhanced LOD by TRR (steps 1-3) and signal DNA amplification (steps 4,5) Use of probe DNA containing a target recognition domain, an Nt.BbvCI recognition sequence, sequences complementary to trigger DNA, and C-rich sequences which can fold into G-quadruplex structures responsible for the formation of HRP- mimicking DNAzyme 	K-Ras gene mutatio n	Colorimet ric assay, use of hemin/G- quadruple x HRP- mimickin g DNAzym e (absorban ce)	4 pM	15 pM to 370 pM				
2 (35; Figure 2b)	 Use of a hairpin molecular beacon as probe DNA Uncoiled stem of beacon upon target exposure Binding of trigger DNA to an uncoiled region and bidirectional polymerization by KFP, producing an extended strand containing a Nt.BbvCl-specific region and a primer region for RCA Recognition of a nicking site on an extended strand and cleavage by Nt.BbvCl Binding of KFP on a nicking site and primer region in signal DNA released by SDA RCA with signal DNA (primer) and padlock DNA (template) for exponential 	 Klenow fragment polymerase (3'- 5' exo-) Nt.BbvCl endonuclease 	 Nick-mediated SDA for peeling off target and signal DNA Generation of a nicking site 	 Enhanced LOD by three different cycling reactions: TRR (steps 1-3), signal DNA amplification (steps 4-6), and RCA (steps 6,7) Use of padlock DNA-containing sequences complementary to signal DNA and the extended strand originated from step 3 	p53 gene mutatio n	Fluoresce nce-based assay, use of quencher (fluoresce nt)	1 pM	100 pM to 40 nM				

Nt.BbvCl-specific and primer regions to be recycled

3 1. Use of linear DNA as probe DNA

recognition site and trigger DNA

DNA amplification by SDA

fragments)

fragment

3. Recognition of nicking site on an extended

strand and Nt.BstNBI-mediated cleavage

5. Binding of amplified trigger DNA to signal

Mg²⁺ and digesting signal DNA to two

6. Separation of biotin-modified fragments by

fluorescence measurement of dye-labeled

streptavidin-coated magnetic bead and

DNA, forming DNAzyme in the presence of

fragments (biotin-modified and dye-labeled

4. Binding of phi29 to a nicking site and trigger • Nt.BstNBI

(36; Figure 2c)

- Phi29 2. Binding of a target to probe DNA, producing polymerase an extended strand containing an Nt.BstNBI-(3'-5' exo+)
- Nicking-mediated
 - polymerization

• Generation of a

nicking site on

which phi29

• Enhanced LOD by trigger miRNA amplification reaction via SDA (steps 1-4) and signal DNA amplification via DNAzyme cleavage reaction (steps 5,6)

• Composition of probe DNA:target-recognition domain and a nicking polymerase binds domain for Nb.BbvCI recognition.

- Use of signal DNA containing biotin and AMCA dye at each terminus
- Separation time (step 6): 45 min

Fluoresce 0.27 nce-based fM assay, use of AMCA dye (fluoresce

nt)

1 fM to 50 pM

4 (31; Figure 2d)	 1. 2. 3. 4. 5. 6. 	Use of hairpin molecular beacon as probe DNA Uncoiled stem of beacon upon exposure of target Binding of trigger DNA to an uncoiled region and polymerization by phi29, producing an extended strand containing an Nt.BbvCl-specific region and signal DNA Recognition of nicking site on an extended strand and cleavage of this site by Nt.BbvCl Binding of phi29 to the nicking site and primer region in signal DNA and release by SDA TMSD reaction using short DNA fragments instead of enzyme	 Phi29 polymerase (3'-5' exo+) Nt.BbvCl endonuclease 	 Nicking-mediated extension, leading to peel off a DNA fragment which triggers TMSD Generation of a nicking site where phi29 polymerase binds 	 Use of TMSD causes rapid amplification efficiency, flexible design, excellent thermostability, and robust resistance to complex environment. Use of probe DNA containing target- recognition domains, an amplification domain to produce triggers, and a nicking domain for Nb.BbvCI recognition. Assay time: 30 min 	miRNA	Fluoresce nce-based assay, use of quencher, (fluoresce nt)	0.18 fM	1
5 (32)	1. 2. 3. 4. 5.	Use of linear DNA as probe DNA Binding of target to probe DNA, producing an extended strand containing an Nt.BbvCl- specific region and trigger DNA Recognition of nicking site on an extended strand and cleavage by Nt.BbvCl Binding of a Vent (exo-) to a nicking site and primer region in trigger DNA release by SDA Consecutive binding of trigger DNA to two different hairpin DNAs (signal DNA) labeled with a fluorescence dye and quencher, leading to fluorescence emission and release of trigger DNAs to be recycled	 Vent (exo-) polymerase Nt.BbvCl endonuclea se 	 Nicking-mediated polymerization Generation of a nicking site on which Ven polymerase binds 	 Use of probe DNA containing a nicking site for Nb.BbvCI recognition and an amplification domain to produce trigger DNA Use of two hairpin DNA as signal DNA Assay time: > 1 h 	miRNA	Fluoresce nce-based assay, use of quencher (fluoresce nt)	3 fM	10 fM to 100 pM

6 (69)	 1. 2. 3. 4. 5. 6. 	Use of linear DNA as probe DNA Binding of target to probe DNA, thereby producing an extended strand containing an Nt.BstmAI-specific region and trigger DNA Recognition of nicking site on an extended strand and cleavage by Nt.BSmAI Binding of phi29 to the nicking site and trigger DNA amplification by SDA Binding of amplified trigger DNA to hairpin DNA (signal DNA) immobilized on a GO electrode and consecutive binding of an invading stacking primer to the stem region of hairpin DNA, generating an untied stem and an ECL signal-on of a Ru complex/TPrA SDA of bound DNA fragment and release of trigger DNA to be recycled	 Phi29 polymerase (3'-5' exo+), high fidelity Nt.BstmAI 	 Nicking-mediated polymerization Invading primer- mediated polymerization Generation of a nicking site on which phi29 polymerase binds 	 Enhanced LOD by trigger DNA amplification reaction (steps 1-4) and signal DNA amplification reaction (steps 5-6) via SDA Use of signal on-off mode depending on the distance from the Ru complex and the electrode surface because GO acts as a quencher of the Ru complex 	miRNA	ECL (chemilu minescenc e)	0.14 fM	0.5 to 1 pM
7 (112)	 1. 2. 3. 4. 5. 	Use of a hairpin molecular beacon as probe DNA Untied stem of beacon upon exposure to target Binding of trigger DNA to an untied region and polymerization by KFP, peeling off target by RCA and producing an extended strand containing a KpnI-specific region Recognition of a specific sequence site on an extended strand by KpnI and cleavage into two fragments Reuse of separated quencher-attached DNA by binding with probe DNA and fluorescence measurement of dye-labeled fragment	 Klenow fragment polymerase (3'-5' exo-) Restriction endonuclease Kpn I 	 The trigger DNA-mediated SDA, generating ds DNA and displacing target Cleavage of ds DNA to two dsDNA fragments with cohesive ends 	 Enhanced LOD by TRR via SDA (steps 1-3) and signal DNA amplification via a KpnI-based dsDNA cleavage reaction (steps 4,5) Polymerization time: 1 h Restriction enzyme cleavage time: 3 h 	p53 gene	Fluoresce nce-based assay, use of quencher (fluoresce nt)	0.1 pM	0.1 pM to 200 nM

8 (52; Figure 2e)	 1. 2. 3. 4. 5. 	Use of a hairpin molecular beacon as probe DNA labeled with dye and quencher at ends. Binding of target to the hairpin beacon, opening the large hairpin structure and forming a small hairpin. ICSDP by KFP, displacing the target to be recycled Recognition of nicking site on an extended strand and cleavage by Nt.BbvCI. Binding of KFP on a nicking site and trigger DNA amplification by reverse SDA Binding of amplified trigger DNA to hairpin DNA (probe DNA), opening the large hairpin structure Producing an extended strand by KFP and emitting a fluorescence	 Klenow fragment polymerase (3'-5' exo-) Nt.BbvCI 	 ICSDP Nicking-mediated reverse SDA Generation of a nicking site on which KFP binds 	 Enhanced LOD by target recycling reaction via ICSDP (steps 1,2) and trigger DNA amplification via reverse SDR (step 3) Rapid read-out by simultaneous binding of a hairpin beacon to target and amplified trigger DNA Use of only one probe DNA in one reaction without the addition of any DNA High signal-to-noise ratio because of self-assembly of the hairpin beacon Assay time: > 30 min 	p53 gene	Fluoresce nce-based assay, use of quencher (fluoresce nt)	1 nM	1 to 100 nM
9 (37)	 1. 2. 3. 4. 5. 6. 	Use of a magnetic bead-attached hairpin molecular beacon as probe DNA Binding of target to the hairpin beacon, opening the hairpin structure Binding an HRP-tagged trigger DNA to the untied stem Production of the extended dsDNA strand KFP-based SDA and the release of target to be recycled Recognition of nicking site on an extended strand and cleavage by Nt.BbvCI Binding of KFP to a nicking site and target	 Klenow fragment polymerase (3'-5' exo-) Nb.BbvCI 	 Nicking-mediated reverse SDA Generation of a KFP-binding nicking site 	 Enhanced LOD by TRR via trigger-induced SDA (steps 1-4) and target amplification by nicking-mediated SDA (steps 5,6) Enabling multiplexed detection Assay time: > 2 h 	miRNA	CL, use of HRP/lumi nol/H ₂ O ₂ + PIP (chemilu minescenc e)	5.8 fM- 8.3 fM	10 fM to 100 pM
	0. 7. 8. 9.	amplification by SDA Magnetic separation of the extended strand Release of the HRP-tagged strand from extended dsDNA strand by binding a signal DNA to the extended strand CL measurement by mixing of HRP-attached strand with luminol/ H_2O_2 +PIP		mexing site					

^aAbbreviations: LOD, limit of detection; KFP, Klenow fragment polymerase; SDA, strand displacement amplification; TRR: target recycling reaction; TMSD, toehold-mediated strand displacement; RCA, rolling circle amplification; HRP, horseradish peroxidase; miRNA, microRNA; AMCA, aminomethylcoumarin acetate; GO, graphene oxide; ECL,

electrochemiluminescence; TPrA, tripropylamine; ICSDP, isothermal circular strand-displacement polymerization; PIP, *p*-iodophenol; ; CL, chemiluminescence ^b Number indicates the order of procedure for the detection of biomolecule. Ref 112: Xu H, Jiang Y, Liu D, et al. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene. Anal Chim Acta. 2018; 1011:86-93.

No. of example (Ref, Fig.)	Detection process ^b	Enzyme used	Role of enzyme	Features of strategy	Target	Sensing approach (The type of biosensor)	LOD	Linear range
1 (34; Figure 3b)	 Use of a hairpin molecular beacon as probe DNA Binding of target to hairpin beacon, creating a 5'-phosphorylated hairpin structure and digestion by λ exonuclease to generate trigger DNA Binding of trigger DNA to the P1 strand of the P1:P2 hybrid and subsequent binding of additional NMM to P2 strand 	• λ exonuclease	• Recognition of 3' phosphate of dsDNA and cleavage of dsDNA in the direction of 5' to 3' to generate trigger DNA	• Use of SDA strategy using different binding affinities of DNA fragment among P1, P2 and trigger DNA	T4 PNK activity	Fluoresce nce-based assay, use of NMM (fluoresce nt)	6.6×1 0 ⁻⁴ U/ml	0.005 to 5 U/ml
	 Recognition of nicking site on a P1:trigger DNA hybrid and cleavage by Nt.BbvCI, generating trigger DNA to be recycled 	• Nt.BbvCl	Generation of nicking site					
2 (33; Figure 3c)	 Use of linear, 5'-phosphorylated antisense strand-protruding dsDNA as probe DNA Binding of target to dsDNA, creating dsDNA with a 5'-phosphorylated sense strand, and cleavage of the sense strand by λ exonuclease Formation of a hairpin structure in the remaining antisense strand and extension of strand by KFP 	• λ exonuclease	• Recognition of 3' phosphate of dsDNA and cleavage of dsDNA from 5' to 3' to generate trigger DNA	• Enhanced LOD by two-step trigger DNA amplification by nicking-mediated SDA (step 3-4 and step 5)	T4 PNK activity	Fluoresce nce-based assay, use of SYBR green I (fluoresce nt)	2×10 ⁻ ⁴ U/ml	0.001 to 1 U/ml
	 Recognition of the nicking site on the extended dsDNA and cleavage by Nt.BbvCI, 	• Nt.BbvCI	 Generation of nicking site 					
	leading to amplification of trigger DNA5. Binding of trigger DNA to additional ssDNA and trigger DNA-mediated SDA by Nt.BbvCI and KFP	• Klenow fragment polymerase (3'-5' exo-)	 Nicking- mediated polymerization 					

Supplementary Table 2. Examples of DNA exonuclease-involved sensors for biomolecule detection^a

3 (18)	1.	Use of a hairpin molecular beacon incorporated with ATMND as probe DNA Binding of target to overhang at the 3'- terminus of the hairpin beacon, creating a ds region with blunt end at its 3'-terminus to be cleaved by exonuclease III, releasing ATMND and emitting fluorescence	• Exonuclease III	• Target recycling	 Use of specific bonding and the fluorescence quenching property of ATMND to the C-C mismatch contained DNA duplex Simple process requiring only one-step mixing without the addition of any exogenous reagents. Assay time: > 45 min 	Mismatc hed DNA	Fluoresce nce-based assay, the use of ATMND (fluoresce nt)	6 рМ	10 pM to 1 μM
4 (22)	 1. 2. 3. 4. 5. 6. 	Use of a hairpin molecular beacon as probe DNA Binding of target to hairpin (HP1), creating a G-quadruplex structure Binding of the additional hairpin (HP2) to the G-quadruplex structure, releasing target Binding of additional hairpin beacon 3 to HP1:HP2 duplex, generating a nicked dsDNA Recognition of nicking site on a dsDNA and cleavage by exonuclease III, leading an amplification of the HP1:HP2 duplex to be recycled and release of the signal probe Colorimetric detection using hemin/G- quadruplex HRP-mimicking DNAzyme	• Exonuclease III	• Target recycling	 Enhanced LOD by TRR (step 1-3) and trigger DNA/signal DNA amplification by exonuclease III-assisted cleavage (step 4,5) Assay time: 90 min 	Human α- thrombi n	CL (chemilu minescenc e)	0.92 pM	1 pM to 1 nM
5 (20; Figure 4a)	 1. 2. 3. 	Use of stem-loop structure with 5'-protruding termini as probe DNA Binding of target to probe DNA, exposing a G-quadruplex for hemin attachment and changing a 3'-protruding terminus, which is resistant to exonuclease III digestion. In the absence of target, no conformational change in probe DNA and cleavage by exonuclease III Binding of hemin to target:probe DNA duplex, which is responsible for the formation of HRP-mimicking DNAzyme	• Exonuclease III	Removal of background signal	• High signal-to-noise ratio	p53 gene	Colorimet ric assay, use of hemin/G- quadruple x HRP- mimickin g DNAzym e (absorban ce)	1 pM	1.25 pM to 125 nM

6 (21; Figure 4b)	 1. 2. 3. 4. 	Use of two different hairpins (HP1 and HP2) as probe DNA Binding of target to HP1, opening the hairpin structure and sequential binding of HP2 to HP1:target duplex with 3'-protruding ends, which is resistant to exonuclease III digestion. In the absence of target, cleavage of HP1 and HP2 by exonuclease III Toehold-mediated SDR, releasing a target to be recycled Fluorescence measurement by adding SYBR green I dye	• Exonuclease III	Removal of background signal	 Enhanced LOD by TRR and toehold-mediated SDR (step 4,5) High signal-to-noise ratio HP1/HP2 incubation time: 10 min Enzyme treatment time: 25 min Dyeing time: 10 min 	p53 gene	Fluoresce nce-based assay, use of SYBR green I (fluoresce nt)	5.34 pM	0.01 to 1 nM
7 (24)	 1. 2. 3. 4. 	Use of a hairpin (HP1) with a 3'-protruding terminus as probe DNA, which is resistant to exonuclease III digestion Binding of target to HP1, changing 3'- blunted end of HP1, which is digested by exonuclease III, resulting in a trigger DNA amplification and target recycling Binding of the amplified trigger DNA to another hairpin (H2, signal DNA) immobilized on the electrode, opening the loop structure and producing blunt-end H2, which is digested by exonuclease III, resulting in trigger DNA recycling and signal DNA amplification Liberation of quadruplex-forming signal DNA on the electrode and generation of G- quadruplex-hemin complexes with the help of K ⁺ and hemin to give an electrochemical response due to the oxidation of Fe(II) in hemin.	• Exonuclease III	 Target recycling Trigger DNA recycling Signal DNA amplification 	• Label-free detection	HIV gene	Electroche mical assay (potentio metric)	4.83 fM	0.01 pM to 10 pM

8 (25; Figure 4d)	 1. 2. 3. 4. 5. 	Use of stem-loop structures immobilized on the AuNCs@GNRs of GCE substrates as probe DNA TMSD and binding of target to probe DNA, opening the loop structure Target-triggered exonuclease III digestion, resulting in dissociation of target DNA from probe:target DNA duplex Transport of target DNA from one location to another on the electrode surface driven by exonuclease III, giving rise to TRR Addition of ferrocene-labeled signal DNA and electrochemical detection of the change of oxidation current response of ferrocene	• Exonuclease III	Target recyclingDNA walking	 Use of DNA walking machine Use of electrode with porous structure and large surface area High signal-to-noise ratio 	Mismatc hed DNA	Electroche mical assay (potentio metric)	0.6 fM	1 fM to 100 pM
9 (43)	 1. 2. 3. 4. 5. 6. 	Use of DNA duplex (DNA1:DNA2) with different lengths as probe DNA Binding of target to ssDNA region of the DNA1:DNA2 duplex Target-mediated SDA by KFP and Nt.BbvCI, release, and amplification of DNA2 Binding of the amplified trigger DNA on a hairpin (DNA3) and trigger DNA-mediated exonuclease III digestion of DNA3 and the release of the trigger DNA for recycling Recognition of nicking site on an extended strand and cleavage of this site by Nt.BbvCl Change in G-quadruplex structure of	 Klenow fragment polymerase (3'-5' exo-) Nt.BbvCI 	 Target-mediated SDA for a trigger DNA release Nick-mediated SDA for a trigger DNA amplification Generation of a nicking site 	 Enhanced LOD by trigger DNA amplification reaction by target-mediated SDA (step 1-3) and trigger DNA/signal DNA amplification by exonuclease III-mediated cleavage (step 4,5) High signal-to-noise ratio Assay time: 4 h 	HIV and HCV DNA	 Fluoresce nce-based assay (fluoresce nt) Colorimet ric assay (absorban ce) 	10 fM 0.5 pM	10 fM to 5 pM 0.5 pM to 1 nM
		amplified trigger DNA and binding NMN or hemin to its structure to emit fluorescence and colorimetric signal	• Exonuclease III	 Trigger DNA amplification Signal DNA amplification 					

^aAbbreviations: LOD, limit of detection; NMM, N-methyl mesoporphyrin IX; SDA, strand displacement amplification; PNK, polynucleotide kinase; KFP, Klenow fragment polymerase; ATMND, 2-amino-5,6,7-trimethyl-1,8-naphthyridine; TRR: target recycling reaction; HRP, horseradish peroxidase; CL, chemiluminescence; HIV, human immunodeficiency virus; AuNCs, gold nanocages; GNRs; graphene nanoribbons; GCE, glassy carbon electrode; HCV, hepatitis C virus; NAD, nicotinamide adenosine dinucleotide; aTF, allosteric transcription factor; ThT, thioflavin T; 4-HBA, 4-hydroxybenzoic acid. ^b Number indicates the order of procedure for the detection of biomolecule.

No. of example (Ref, Fig.)	Detection process ^b	Enzyme used	Role of enzyme	Features of strategy	Target	Sensing approach (The type of biosensor)	LOD	Linear range
1 (19; Figure 5a)	 Use of dumbbell hairpin with two stem-loop structures and nicking sites as probe DNA In the presence of NAD⁺(cofactor), NAD⁺ binding DNA ligase induces a removal of the 	• DNA ligase	Binding of NAD+Nick filling	• Use of ligase for the detection of NAD ⁺ , a cofactor of enzymatic activity	NAD ⁺	Fluoresce nce-based assay, use of SYBR	0.1 nM	0.5 to 1500 nM
3	nick in the dumbbell hairpin, which is resistant to both exonuclease I and III digestion. In the absence of NAD ⁺ , nick remains, which is digested by exonucleases I	Exonuclease	• Digestion of probe DNA with nick site (5'-3')			(fluoresce nt)		
	 Integration of SYBR green I dye into the stem of a ligated dumbbell hairpin, emits a fluorescence signal 	III	• Digestion of probe DNA with nick site (3'-5')					
2 (58; Figure 5b)	 Use of short capture probe (CP):long signal probe (SP) labeled with methylene blue dye duplex immobilized on an electrode. In the presence of Ag⁺, the conformational change of SP into a folded structure via cutosing Ag⁺ cutosing interactions and the 	• T4 DNA ligase	 Ligation of a nick into Ag⁺-triggered folded DNA. 	• Enables the reuse of electrode by conformational change of a ligated CP:SP hairpin via endonuclease-assisted nick formation at a ligated sita	Ag^+	Electroche mical assay, use of methylene blue	0.1 nM	0.5 to 100 nM
ć	 cytosme-Ag -cytosme interactions and the ligation of a nick in folded SP by T4 DNA ligase. In the absence of Ag⁺, no change in duplex. 3. Denaturation and removal of unligated SP and annealing for reconstruction of remaining probe 	• Nt.CviPII	• Formation of a nick at a ligated site in CP:SP hairpin duplex	iormation at a figated site		(potentio metric)		

Supplementary Table 3. Examples of DNA ligase-involved sensors for biomolecule detection^a

3 (59; Figure 5c)	 1. 2. 2. 3. 	Use of linear DNA as a probe In the presence of target DNA, probe and target DNA hybridize, with probe existing in a opened circular form. In the absence of target, no change of probe DNA Change of linear probe to closed circular probe by T4 DNA ligase Newly added primer DNA-triggered RCA by DNA relevance and target DNA relevance	• T4 DNA ligase	• Ligation of a nicked circular probe, which initiates an RCA reaction	• Addition of primer to facilitate the RCA reaction	Pathoge n DNA	• Electrical assay, addition of HAuCl ₄) (Conduct ometric)	 0.5 nM 1 μM 	-
	4.	and recycling Filling the gap of amplified DNAs between the two electrodes	• Pm29 DNA polymerase	• Primer DNA- triggered RCA			• Colorimet ric assay (absorban ce)		
4 (38)	 1. 2. 3. 	Use of nicked dsDNA as starting material, which binds to the DNA binding domain of aTF In the presence of target, an effector-binding domain of aTF binds to the target and is then dissociated from nicked dsDNA. In the absence of target, aTF still binds to nicked dsDNA The nick in liberated dsDNA is filled by T4 DNA ligase DNA occupied by aTE cannet	T4 DNA ligaseNb.BbvCl	 Circularization of nicked dsDNA Cutting amplified specific sequences to generate G- quadruplexes and additional primers 	• Enhanced LOD by T4 DNA ligase-mediated circularization and phi29 DNA polymerase- mediated RCA reaction	4-HBA	Fluorescenc e-based assay, use of peroxidase- mimicking DNAzyme or G- quadruplex- bound ThT	3.48 nM or 1.73 nM	10-100 nM or 5 to 200 nM
	4.	repair its nick Incorporation of RCA and nicking enzyme- triggered DNA amplification					dye (fluorescent)		

^aAbbreviations: LOD, limit of detection; NAD, nicotinamide adenosine dinucleotide; RCA, rolling circle amplification; aTF, allosteric transcription factor; ThT, thioflavin T; 4-HBA, 4-hydroxybenzoic acid. ^bNumber indicates the order of procedure for the detection of biomolecule.