Supporting Information

Paratrimerin I, cytotoxic acridone alkaloid from the roots of Paramignya trimera

Mai Thanh Thi Nguyen^{a,b,d}, Phu Hoang Dang^{a,d}, Hai Xuan Nguyen^{a,d}, Tho Huu Le^{a,d}, Truong Nhat Van Do^{a,d}, Phuc Van Pham^{c,d}, Sinh Truong Nguyen^{c,d}, and Nhan Trung Nguyen^{a,b,d,*}

^aFaculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
^bCancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam
^cStem Cell Institute, University of Science, Ho Chi Minh City, Vietnam
^dVietnam National University, Ho Chi Minh City, Vietnam

Corresponding Author Email: nthan@hcmus.edu.vn

ABSTRACT:

Bioactivity-guided fractionation of the CHCl₃-soluble extract of the roots of *Paramignya trimera* was carried out to obtain a new acridone alkaloid, paratrimerin I. Its structure was elucidated based on NMR spectroscopic data interpretation. Paratrimerin I showed noteworthy cytotoxicity against the HepG2 human hepatocellular and MCF-7 human breast carcinoma cell lines, with the submicromolar IC₅₀ values of 0.43 and 0.26 μ M, respectively. The *N*-methyl, C-4 methoxy, and C-5 hydroxy groups in the acridone skeleton can be proposed as a structural feature for good cytotoxicity.

Keywords: Paramignya trimera, alkaloid, acridone, cytotoxicity.

position		1	2
	$\delta_{\rm C}$, type	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$
1	160.0, C		
2	94.1, CH	6.39, s	6.39, s
3	160.4, C		
4	130.3, C		
4a	142.3, C		
5	146.6, C		
6	120.6, CH	7.15, dd (7.6, 1.9)	7.12, dd (7.6, 2.0)
7	122.8, CH	7.12, t (7.6)	7.15, t (7.6)
8	118.1, CH	7.91, dd (7.6, 1.9)	7.93, dd (7.6, 2.0)
8a	124.9, C		
9	182.4, C		
9a	106.5, C		
10a	137.6, C		
<i>N</i> -Me	46.5, CH ₃	3.83, s	3.81, s
OH-1			14.03, s
OMe-1	56.4, CH ₃	3.96, s	
OMe-3			3.96, s
OMe-4	60.6, CH ₃	3.80, s	3.80, s

Table S1. 1 H (500 MHz) and 13 C (125 MHz) NMR Data of 1 and 2 in CDCl₃

 Table S2. Cytotoxicity of 1–4 against the HepG2 and MCF-7 Cell Lines

compound	$IC_{50}(\mu M)$	
	HepG2	MCF-7
1	0.43	0.26
2	0.54	0.22
3	1.19	0.40
4	> 10	3.92
doxorubicin ^a	0.28	1.31
^{<i>a</i>} Positive control.		

O OCH₃ 8 9 1 10 1 5 N 4

Figure S1. HMBC correlations observed for paratrimerin I.

OH

ĊH₃ OCH₃

7.920 7.916 7.7.905 7.7.905 7.7.905 7.7.905 7.7.169 7.7.164 7.7.144 7.7.144 7.7.144 7.7.146 7.7.146 7.7.146 7.7.146 7.7.146 7.7.146 7.7.106 7.7.106 7.7.106

3.9553.8283.797

Figure S3. ¹³C NMR spectrum of compound 1 (CDCl₃, 125 MHz)

Figure S7. ¹H NMR spectrum of compound 2 (CDCl₃, 500 MHz)