
Supplement to Mathematics of Nested
Districts: The Case of Alaska

Sophia Caldera∗

Harvard University
Daryl DeFord

CSAIL, Massachusetts Institute of Technology
Moon Duchin

Department of Mathematics, Tufts University
Samuel C. Gutekunst

Cornell University
Cara Nix

University of Minnesota

April 9, 2020

Abstract
This supplement contains additional plots and technical descriptions of the algo-

rithms used in the paper for enumerating and sampling perfect matchings. Appendix
A shows reference figures of the state House dual graphs for the non-Alaska states
with strict nesting rules. Further information about the FKT algorithm is given
in Appendix B while Appendix C introduces the new Prune–and–Choose algorithm
and provides a proof of correctness. In Appendix D, these algorithms are applied
to all states with a nesting rule to compare the relative scales of the enumeration
problem. Finally, in Appendix E we implement and validate a uniform sampling
procedure for matchings that can be applied even in the states where generating all
of the matchings would be computationally infeasible.

∗Author order is alphabetical. The authors acknowledge the Prof. Amar G. Bose Research Grant at MIT
and the Jonathan M. Tisch College of Civic Life at Tufts University for ongoing support. MD is partially
supported by NSF DMS-1255442. SG is partially supported by NSF DGE-1650441. SG thanks David
P. Williamson and Kenrick Bjelland for helpful discussions. We thank Coly Elhai, Mallory Harris, Claire
Kelling, Samir Khan, and Jack Snoeyink for substantial joint work and conversations on other approaches
to modeling Alaska redistricting, and particularly acknowledge Samir Khan for his initial implementation
of prune-and-choose. Hakeem Angulu, Ruth Buck, and Max Hully provided excellent data and technical
support. Finally, we thank Anchorage Assemblyman Forrest Dunbar for bringing this problem to our
attention.

1

A Dual Graphs of States with Nesting Rules

In this appendix we show the dual graphs for the other states that require two-to-one
nesting. Corresponding plots for Alaska are shown in Figure 7 of the main text. The left-
hand column shows the House districts, with the dual graph overlaid, and the right-hand
column shows a nearly-planar embedding with accurate district labels. Given these House
districts, valid Senate plans in these states correspond to perfect matchings of these graphs.

Illinois

Iowa

Minnesota

2

Montana

Nevada

Oregon

Wyoming

3

B FKT algorithm for enumerating perfect matchings

As described in Section 1.2 of the main text, Fisher, Kasteleyn, and Temperley designed
a method now known as the FKT algorithm for enumerating the perfect matchings of a
planar graph. This allows us to quickly determine the number of perfect matchings in a
dual graph, allowing us to evaluate whether it is computationally tractable to explicitly list
all matchings. FKT takes a planar embedding of a graph G as input, then assigns signs to
the edges in what is called a Pfaffian orientation (every face should have an odd number
of counterclockwise edges) to create a signed, skew-symmetric adjacency matrix A. Then
√
detA counts the perfect matchings.1

This algorithm runs in fractions of a second on each graph, which is fast enough to
incorporate at each step of a Markov chain. Our implementation is freely available at [7],
and timing details are provided in §D.

C Prune-and-choose algorithm for constructing per-

fect matchings

In order to evaluate the partisan properties of the pairings of House districts, it is not suf-
ficient to count matchings; we also need to generate and examine the full list of matchings.
In this section, we describe a simple method to create a list of all possible perfect matchings
of a graph. This is a recursive method that simplifies the search by looking for forced pairs.

The first step is to prune the graph. This means finding all leaves of the graph (nodes of
degree one, i.e., House districts that are only connected to one other district) and matching
each with its only neighbor. We call these matches forced pairs. One round of pruning may
create new nodes of degree one in the resulting graph, and so we iteratively prune forced
pairs until there are no nodes of degree one left.

The second step is a simple check to rule out a parity obstruction to the existence of
a matching. If any connected component has an odd number of nodes, then it cannot be
perfectly matched, so the whole graph also fails to have a perfect matching. If all connected

1The Pfaffian is a general matrix operation that agrees with
√
detA for skew-symmetric matrices. See

[6] for more mathematical details.

4

components have even numbers of nodes, then we proceed.
Next is a choice step. From the remaining graph, we choose a node of minimum degree,

then consider pairing it with each of its neighbors. For each of those pairings, we remove
both nodes from the graph and apply our algorithm to what remains. We prune, check,
choose, and iterate, in sequence, until the process terminates at a connected graph of two
nodes, producing a perfect matching of the original graph. We provide a proof of correctness
in Appendix C.2 and an example run of the algorithm on a small graph below.

5

C.1 Prune-and-Choose Example

A run of our algorithm on a sample graph with ten nodes proceeds as follows.

Initiate.
J

IHG

F
ED

C
B

A

A has degree one, so we record

AB as a forced pair. Remove

A,B from the graph. Test for

parity. There is one remaining

component with eight nodes,

so we pass the parity check.

J
IHG

F
ED

C
B

A

C is lowest-indexed node of de-

gree 2, so try to pair with E.

However, one complementary

component (FIJ) has an odd

number of nodes, so we aban-

don this branch of the decision

tree.

J
IHG

F
ED

C
B

A

Pairing C instead with F and

removing both from the graph

forces the IJ pairing. J
IHG

F
ED

C
B

A

Now E is the lowest-indexed

node of minimal degree. By

pairing ED, the next forced

pairing completes the match-

ing. Similarly for EH.

J
IHG

F
ED

C
B

A

J
IHG

F
ED

C
B

A

In the end, we find the two perfect matchings AB/CF/IJ/ED/GH and AB/CF/IJ/EH/GD.

6

C.2 Prune-and-choose algorithm validity

In this section we formally describe the prune-and-choose method and provide a proof
of correctness. Pseudo-code for the algorithm is given here and our implementation in
Python is available at [7]. We introduce some additional notation to describe the method.
The subgraph of G induced by deleting nodes u and v will be denoted G \ {u, v}. We will
represent a matching as a set of edges M = {(u1, v1), (u2, v2), . . . , (uℓ, vℓ)}. We assume that
the vertices of G are ordered in order to provide a deterministic algorithm. To generate
the full set of matchings for a graph G, we would call FindMatchings(G, ∅).

Algorithm 1 Pseudo-code for Prune-and-Choose Algorithm to Find All Perfect Matchings
in a Graph G

1: procedure FindMatchings(G,M) ▷ Input a graph G and the current set of
matched edges M

2: if G is connected and has exactly two vertices u, v then
3: return G \ {u, v}, M ∪ (u, v)
4: else if G has any vertex with exactly one neighbor then
5: prune: let u be the first degree-one vertex; let v be its neighbor
6: return FindMatchings(G \ {u, v},M ∪ (u, v)) ▷ Pair forced vertices and

recurse.
7: else if G contains a component with an odd number of vertices then
8: break ▷ There are no perfect matchings in G
9: else

10: let u be first vertex with a minimum number of neighbors v1, ..., vk
11: for 1 ≤ i ≤ k, let Gi = G \ {u, vi} and Mi = M ∪ (u, vi)
12: return

∪k
i=1FindMatchings(Gi, Mi) ▷ Recurse to find all perfect matchings

with each pair

We next show that the algorithm returns the correct set of perfect matchings on any
graph. They key idea of the algorithm and the proof is that for any edge of the graph, the
set of perfect matchings that contain edge (u, v) can be computed by finding all perfect
matchings in the subgraph G \ {u, v}. This is an example of the self–reducible nature of
the perfect matching problem which is discussed in more detail below.

Theorem 1. The prune-and-choose algorithm correctly finds all perfect matchings in the
input graph.

Proof. We consider any graph G with n = 2k vertices and proceed by induction on k.
When k = 1, G is either connected (in which case the algorithm correctly finds the unique

7

perfect matching at lines 2-3) or has two isolated vertices and no perfect matchings (which
the algorithm correctly reports in lines 7-8).

For k > 1 the algorithm proceeds according to exactly one of the following three cases:

1. If G contains a leaf u with neighbor v, then u must be matched to v in any perfect
matching. Line 6 then calls FindMatchings on G\{u, v} which returns the correct
set of matchings of G \ {u, v}, by our inductive hypothesis. Adding (u, v) to each
matching returned by this function gives the full set of matchings for G.

2. If G contains no leaves and some connected component of G has an odd number
of vertices, then there are no perfect matchings in G and the algorithm correctly
terminates at lines 7-8.

3. If G contains no leaves and each connected component of G has an even number of
vertices, then there exists a vertex of minimal index u which has a minimum number
of neighbors. Since G has no leaves and no odd components, u has degree at least 2.
In any perfect matching, it must be matched to one of its neighbors v1, ..., vk. The
algorithm considers each possibility calling FindMatchings on G \ {u, vi} which
returns the correct set of matchings by our inductive hypothesis. As in step 1, adding
(u, vi) to the matchings returned on G \ {u, vi} provides a complete set of matchings
for G.

Thus for any graph G, the first pass through the algorithm either returns ∅, which only
occurs if G has no perfect matchings, or it calls the algorithm recursively on a graph of
size 2(k − 1). These recursive calls satisfy our inductive hypothesis and hence we obtain
the complete set of matchings for G.

We note that well-known classes of planar graphs have exponentially many perfect
matchings. For example, this is true of the n× n grids [1, 5, 9]. This trivially implies that
there is no polynomial-time algorithm to list them all as output. As we discuss in Appendix
D, the dual graphs of real-world districting plans often have more perfect matchings than
a grid graph of comparable size. In that section we also provide timing results for our
algorithm that demonstrate that it is adequately fast for several problems at realistic scale,

8

but not all. In Appendix E below we show how a sampling approach can be employed to
those settings in which listing all perfect matchings is computationally infeasible.

D Enumerating matchings

Here we apply FKT and Prune-and-Choose to compute the number of potential matchings
for each of the eight states that require Senate districts to be formed from adjacent pairs
of House districts. We use the standard Census shapefiles to generate dual graphs for each
state, making them parallel to the permissive graph for Alaska. Visualizations of these
dual graphs are shown in Appendix A.

Alaska Illinois Iowa Minnesota
House districts 40 118 100 134

Dual edges 100 326 251 260
Matchings 108,765 9,380,573,911 1,494,354,140,511 6,156,723,718,225,577,984

FKT runtime 0.027 sec 0.39 sec 0.21 sec 0.53 sec

Montana Nevada Oregon Wyoming
House districts 100 42 60 60

Dual edges 269 111 158 143
Matchings 11,629,786,967,358 313,698 229,968,613 920,864

FKT runtime 0.24 sec 0.038 sec 0.079 sec 0.056 sec

Table 1: Number of matchings possible with respect to the current House plan for each
state (with dual graphs generated from census shapefiles) and timings for computing them
with FKT.

Alaska’s 108,765 (permissive) matchings are the fewest among the eight states. This is
partially due to the fact that Alaska has fewer House districts than the other states, and
partly due to lower edge density and several forced matchings.2 The number of matchings
varies greatly across the other states, with Minnesota having the most at 6.1 × 1018, over
six quintillion. By contrast, the number of matchings in a 10 × 10 grid with 100 nodes
is 258,584,046,368 (fewer than Iowa, which has 100 House districts) and a 12 × 12 grid
with 144 nodes has 53,060,477,521,960,000 (fewer than Minnesota, which has 134 House
districts). To understand why the states’ matching numbers exceed those of comparably

2The four districts in the Southeast corner of the state must be paired (33–34 and 35–36), further
restricting the possible matchings.

9

sized grids, consider the impact of just a few extra edges. Adding just four edges to the
10 × 10 grid—a single diagonal edge from each of the four corner vertices to its diagonal
neighbor—increases the number of matchings by 745,241,088.

Extrapolating the prune-and-choose timing from Nevada (299 seconds) and Wyoming
(851 seconds) suggests that generating all of the matchings for some of the other states
would take prohibitively long—even with linear scaling, the Wyoming timing suggests that
the Minnesota computation would take some 180 million years. However, it is possible to
sample matchings from planar graphs uniformly, allowing for good estimates of relevant
statistics. We have implemented the technique suggested in [4] for this purpose [7] and in
Appendix E we validate this approach on Alaska.

E Sampling and extremization over matchings

For Minnesota’s 6.1 quintillion matchings, it would be prohibitively inefficient to list them
all, no matter the algorithmic design. On the other hand, we can construct uniform samples
of the full set of matchings by making use of the self-reducible structure in the perfect
matching problem [4] as follows. We can compute the likelihood that a given edge appears
in a perfect matching by deleting the edge from the graph and enumerating the matchings on
the remaining nodes with FKT. The ratio of matchings on the leftover to total matchings
is the probability that the edge is used. With this, we can iterate, starting with the
original graph and adding a single edge to the matching at each step with appropriate
probability. Since FKT runs in polynomial time, so does our sampling procedure, since
a perfect matching requires n

2
edges and finding the probabilities used to select each edge

requires at most
(
n
2

)
FKT evaluations.

We next demonstrate that the uniform sampling method can attain good accuracy with
a reasonably small number of samples, using the case of Alaska where we can compare
to the ground truth from the full matching set. For each of our three dual graphs, we
sample 100 matchings uniformly and compare the resulting statistics to those of the full
set of matchings. Figure 1 shows these comparisons. Although the distributions are not
identical, they are quite similar and the sample means vary only by small fractions of a
seat from the actual values.

10

Cong18-A D Senate seats Gov 18-A D Senate seats

abs. error Tight Restricted Permissive
Cong18-A 0.0082 0.0234 0.0868
Gov18-A 0.0203 0.0361 0.0814

Figure 1: Comparison of number of Democratic Senate districts in a uniform sample of 100
(permissive) matchings to the full collection of matchings. The table shows the absolute
error in the average seats total for this and the other two Alaska dual graphs. The his-
tograms show more detail, and illustrate how close the averages are with only 1/1000 of
the space being sampled.

This example shows that even a sample of modest size produces a good estimate of the
full distribution. This provides support for our assertion that this procedure can be carried
out successfully on states like Minnesota, where it would be computationally infeasible to
generate all matchings. We note that all materials are available in our code repositories for
others to perform this sampling for the other matching states, but there will be a non-trivial
data setup cost in choosing appropriate election data and cleaning it for the analysis.

Though the histograms above are quite similar, the sample fails to capture the full
range of seat outcomes in the Governor’s race: a small number of possible matchings result
in five D seats, but that is never observed in the sample. A second algorithm may be
employed to provably find the correct range of seats outcomes possible, again without
fully listing the matchings. Finding perfect matchings of extremal weight, given an edge-
weighted graph, is a classic problem in combinatorics, solved for instance with the Blossom
algorithm developed by Edmonds in the 1960s [2, 3]. To apply that in this setting, we
use any given pattern of votes to assign a weight to each edge of our dual graph: an edge
{u, v} linking two House districts u and v is given weight 1 if there are more D than R
votes in the hypothetical Senate district that combines u and v. Otherwise, assign weight
0. The weight of the perfect matching is defined as the sum of the weights of its edges.

11

By construction, this is the number of D seats in that matching. For more background on
extremal perfect matchings, see for instance Chapters 25-26 of [8].

As a final note, knowing these extremes also informs the size of a uniform sample nec-
essary to estimate the true distribution to a desired precision. A detailed discussion of the
precise number of samples needed for various estimates is presented in [10]. In particular,
Theorem 5.3 shows that with failure rate δ, taking max

(
4
ε2
,
4 ln(1

δ
)

ε2

)
samples suffices to es-

timate the probability of each individual outcome to within ε (i.e., an L∞ bound) whereas
max

(
4n
ε2
,
8 ln(1

δ
)

ε2

)
samples suffice to bound the sum of the absolute differences between the

individual estimates and the true probabilities (an L1 bound).

References

[1] Anders Björner and Richard P Stanley. A combinatorial miscellany. L’Enseignement
mathématique, 2010.

[2] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
research of the National Bureau of Standards B, 69(125-130):55–56, 1965.

[3] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–
467, 1965.

[4] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of
combinatorial structures from a uniform distribution. Theoretical Computer Science,
43:169 – 188, 1986.

[5] P. W. Kasteleyn. The statistics of dimers on a lattice : I. The number of dimer
arrangements on a quadratic lattice. Physica, 27:1209–1225, December 1961.

[6] Nicholas Loehr. Bijective Combinatorics. CRC Press, 2011.

[7] Metric Geometry and Gerrymandering Group. Alaska. GitHub repository, 2019.
https://github.com/mggg/Alaska.

[8] Alexander Schrijver. Combinatorial optimization: Polyhedra and efficiency, volume 24.
Springer Science & Business Media, 2003.

12

[9] H. N. V. Temperley and Michael E. Fisher. Dimer problem in statistical mechanics-an
exact result. The Philosophical Magazine: A Journal of Theoretical Experimental and
Applied Physics, 6(68):1061–1063, August 1961.

[10] Bo Waggoner. Lp testing and learning of discrete distributions. In Proceedings of the
2015 Conference on Innovations in Theoretical Computer Science, ITCS ’15, pages
347–356, New York, NY, USA, 2015. ACM.

13

	Dual Graphs of States with Nesting Rules
	FKT algorithm for enumerating perfect matchings
	Prune-and-choose algorithm for constructing perfect matchings
	Prune-and-Choose Example
	Prune-and-choose algorithm validity

	Enumerating matchings
	Sampling and extremization over matchings

