Supplementary Material

Two new triterpenoid-chromones hybrids from the rhizomes of *Cimicifuga foetida* and their cytotoxic activity

Qiang-Qiang Shi^{a,b,c} Ya Gao^{a,b,c} Jing Lu^{a,b,c} Lin Zhou^{a,b} and Ming-Hua Qiu^{a,b,c}

^aState Key Laboratory of phytochemistry and plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China; ^bUniversity of the Chinese Academy of Sciences, Beijing, China; ^cYunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Yunnan, China.

Corresponding author: Ming-Hua Qiu

E-mail: mhchiu@mail.kib.ac.cn (M-H Qiu); Tel/Fax: +86-0871-65223327

Abstract: Two new triterpenoid-chromones hybrids Cimitriteromone H (1) and I (2) and one known analogue were isolated from the phytochemical research on the *n*-Butyl alcohol extracts of *Cimicifuga foetida* rhizoma. The new compounds were elucidated by spectroscopic experiments and chemical method. The cytotoxic activity of the isolated compounds were tested on A-549/Taxol cell line. Cimitriteromone I (2) showed cytotoxicity with IC₅₀ value of 27.14 $\pm 1.38 \ \mu$ M comparable to positive control group cisplatin (IC₅₀ value of 25.80 $\pm 1.15 \ \mu$ M).

Keywords: Cimicifuga foetida; Triterpenoid-chromones hybrid; Cytotoxicity

Contents

Table 1S. ¹ H NMR Spectroscopic Data of Compounds 1-3.
Table 2S. ¹³ C NMR Spectroscopic Data of Compounds 1-3
Table 3S. Comparison of the chemical shifts of compounds 2, 4, cimifoetidanoside G and (16S,20S,24R)5
Figure 1S. Key 2D NMR correlations of cimitriteromone H (1)
Figure 2S. Key 2D NMR correlations of cimitriteromone I (2)
Figure 3S. The cleavage pattern of the epoxy ring in 3
Figure 4S. ¹ H NMR spectrum of cimitriteromone H (1) in pyridine- <i>d</i> ₅ (600 MHz)
Figure 5S. ¹³ C NMR spectrum of cimitriteromone H (1) in pyridine- <i>d</i> ₅ (150 MHz)
Figure 6S. HSQC spectrum of cimitriteromone H (1) in pyridine-d ₅
Figure 7S. ¹ H- ¹ H COSY spectrum of cimitriteromone H (1) in pyridine- <i>d</i> ₅
Figure 8S. HMBC spectrum of cimitriteromone H (1) in pyridine-d59
Figure 9S. ROESY spectrum of cimitriteromone H (1) in pyridine-d ₅ 9
Figure 10S. HRESIMS spectrum of cimitriteromone H (1)
Figure 11S. IR spectrum of cimitriteromone H (1)
Figure 12S. UV spectrum of cimitriteromone H (1)11
Figure 13S. ¹ H NMR spectrum of cimitriteromone I (2) in pyridine- <i>d</i> ₅ (600 MHz)
Figure 14S. ¹³ C NMR spectrum of cimitriteromone I (2) in pyridine- <i>d</i> ⁵ (150 MHz)
Figure 15S. HSQC spectrum of cimitriteromone I (2) in pyridine-d5
Figure 16S. ¹ H- ¹ H COSY spectrum of cimitriteromone I (2) in pyridine- <i>d</i> ₅
Figure 17S. HMBC spectrum of cimitriteromone I (2) in pyridine-d ₅ 14
Figure 18S. ROESY spectrum of cimitriteromone I (2) in pyridine-d5
Figure 19S. HRESIMS spectrum of cimitriteromone I (2)15
Figure 20S. IR spectrum of cimitriteromone I (2)
Figure 21S. UV spectrum of cimitriteromone I (2)
Figure 22S. ¹ H NMR spectrum of compound 4 in pyridine- <i>d</i> ₅ (600 MHz)17
Figure 23S. ¹³ C NMR spectrum of compound 4 in pyridine- <i>d</i> ₅ (150 MHz)17

Table 1S. ¹ H NMR Spectroscopic Data of Compounds 1-3 (δ in ppm, J in Hz)
--

No.	1^b	2^b	3 ^c	No.	1^b	2^b	3 ^c
1	1.49 m 1.10 m	1.51 m 1.10 m	1.42 ^a 1.03 m	30	1.02 s	1.01 s	0.96 s
2	2.28 m 1.89 m	2.28 m 1.88 m	2.23 m 1.81 m	Xyl-1	4.85 d (7.8)	4.85 d (7.7)	4.85 d (7.6)
3	3.47 dd (11.6 4.2)	3.45 dd (11.7 4.3)	3.45 dd (11.5 4.5)	Xyl-2	4.03^{a}	4.03 m	4.02 m
5	1.24 m	1.23 m	1.21 m	Xyl-3	4.16 ^a	4.15 m	4.16 m
6	1.45 m 0.69 m	1.45 m 0.70 m	1.43 m 0.55 m	Xyl-4	4.21 m	4.22 ^{<i>a</i>}	4.21 m
7	1.24 m	1.22 m	1.13 m	Xyl-5	4.35 dd (11.2	4.36 ^{<i>a</i>}	4.34^{a}
	0.93 m	0.95 m	0.79 m		5.2)	3.74 t (10.7)	3.73 m
					3.73 t (10.7)		
8	1.60 m	1.70 m	1.54^{a}	-OAc	2.09 s	2.10 s	2.06 s
11	2.72 m	2.63 dd (16.0 9.1)	2.67 dd (16.0 9.0)	2´	4.90 m	4.87 ^{<i>a</i>}	4.96 m
	1.16 m	1.15 m	1.07 m				
12	5.10 dd (9.0 3.7)	5.30 dd (9.2 4.2)	5.07^{a}	3′	3.61 dd (15.9	3.60 dd (15.8 7.4)	3.68 dd (15.9 7.8)
					7.7)	3.32 dd (15.8 7.7)	3.42 dd (15.9 7.8)
					3.34 dd (15.8		
					9.4)		
15	1.95 m	2.00 dd (13.9 7.0)	1.99 m	6′	6.85 s	6.78 s	6.67 s
	1.72^{a}	1.89 m	1.78^{a}				
16	4.77 m	4.18 m	4.89 m	9′	6.64 s	6.59 s	6.77 s
17	1.75 m	2.08 m	1.78^{a}	4-OCH ₃	4.03 s	4.01 s	4.10 s
18	1.35 s	1.33 s	1.33 s	2‴	1.40 s	1.38 s	1.42^{a}
19	0.58 d (4.2)	0.61 d (4.2)	0.46 d (4.2)	3‴	1.49 s	1.48 s	1.51 s
	0.22 d (4.2)	0.18 d (4.3)	0.16 d (4.2)				
20	1.89 m	2.44 m	2.33 m	4‴	4.98^{a}	4.87 ^{<i>a</i>}	4.91 m
					4.87 d (14.6)	4.72 d (14.6)	4.56 m
21	0.97 d (6.3)	1.13 d (6.8)	1.09 d (6.6)	Glc-1	4.95 d (7.8)	4.97 ^a	4.95 d (7.4)
22	2.70 m	5.19 d (3.1)	2.61 dd (13.4 3.3)	Glc-2	4.16 ^a	4.09 m	4.15 m
	1.44 m		1.50 m				
24	3.75 m	4.52 s	4.13 m	Glc-3	4.16 ^a	4.22 ^{<i>a</i>}	4.18 m
26	1.62 s	1.61 s	1.65 s	Glc-4	3.99 m	4.18 m	4.09 m
27	1.72 s	1.47 s	1.53 s	Glc-5	3.98 m	3.98 m	3.96 m
28	0.85 s	0.87 s	0.75 s	Glc-6	4.40 m 4.03 ^a	4.36 ^a 4.15 ^a	4.53 m 4.34 ^a
29	1.32 s	1.31 s	1.34 s				

No.	1 ^{<i>a</i>}	2^a	3 ^b	No.	1 ^{<i>a</i>}	2^a	3 ^b	
1	31.9, CH ₂	31.9, CH ₂	31.8, CH ₂	30	15.2, CH ₃	15.2, CH ₃	15.2, CH ₃	
2	29.6, CH ₂	29.8, CH ₂	29.8, CH ₂	Xyl-1	107.5, CH	107.5, CH	107.4, CH	
3	88.0, CH	88.0, CH	87.8, CH	Xyl-2	75.5, CH	75.5, CH	75.5, CH	
4	41.1, C	41.1, C	41.1, C	Xyl-3	78.5, CH	78.5, CH	78.5, CH	
5	47.0, CH	46.9, CH	47.1, CH	Xyl-4	71.2, CH	71.1, CH	71.1, CH	
6	20.4, CH ₂	20.3, CH ₂	20.5, CH ₂	Xyl-5	67.0, CH ₂	67.0, CH ₂	67.0, CH ₂	
7	25.8, CH ₂	25.7, CH ₂	25.6, CH ₂	-OAc	170.5, C	170.6, C	170.4, C	
					21.6, CH ₃	21.1, CH ₃	21.5, CH ₃	
8	45.8, CH	46.4, CH	46.0, CH	2´	92.2, CH	92.2, CH	92.4, CH	
9	20.0, C	20.5, C	19.8, C	3′	27.8, CH ₂	27.8, CH ₂	27.9, CH ₂	
10	26.6, C	27.0, C	26.5, C	3a´	118.4, C	118.4, C	118.5, C	
11	36.7, CH ₂	36.4, CH ₂	36.7, CH ₂	4′	156.2, C	156.1, C	156.3, C	
12	77.2, CH	76.9, CH	77.2, CH	4a´	112.8, C	112.7, C	112.9, C	
13	48.7, C	48.8, C	48.8, C	5′	176.3, C	176.3, C	176.2, C	
14	47.8, C	47.8, C	47.2, C	6′	111.2, CH	111.1, CH	111.5, CH	
15	43.8, CH ₂	45.6, CH ₂	43.4, CH ₂	7′	162.6, C	162.5, C	162.1, C	
16	71.1, CH	74.6, CH	70.7, CH	8a´	159.9, C	159.8, C	159.9, C	
17	56.8, CH	52.4, CH	55.7, CH	9′	94.1, CH	94.0, CH	94.1, CH	
18	13.5, CH ₃	12.9, CH ₃	13.5, CH ₃	9a´	165.2, C	165.2, C	165.4, C	
19	29.8, CH ₂	30.0, CH ₂	29.9, CH ₂	4-OCH ₃	60.9, CH ₃	60.8, CH ₃	60.9, CH ₃	
20	26.0, CH	24.6, CH	26.9, CH	1‴	70.7, C	70.6, C	70.6, C	
21	21.1, CH ₃	25.7, CH ₃	21.1, CH ₃	2‴	26.2, CH ₃	26.1, CH ₃	26.0, CH ₃	
22	41.9, CH ₂	106.0, CH	41.5, CH ₂	3‴	25.6, CH ₃	25.7, CH ₃	25.6, CH ₃	
23	101.9, C	152.9, C	104.2, C	4‴	66.3, CH ₂	66.5, CH ₂	66.3, CH ₂	
24	77.7, CH	75.9, CH	83.1, CH	Glc-1	103.9, CH	104.3, CH	101.7, CH	
25	81.3, C	78.2, C	79.1, C	Glc-2	74.8, CH	74.9, CH	74.5, CH	
26	23.7, CH ₃	22.3, CH ₃	19.4, CH ₃	Glc-3	78.2, CH	78.1, CH	79.1, CH	
27	24.9, CH ₃	23.1, CH ₃	29.8, CH ₃	Glc-4	72.0, CH	71.9, CH	69.3, CH	
28	19.5, CH ₃	20.7, CH ₃	19.4, CH ₃	Glc-5	76.8, CH	76.7, CH	78.4, CH	
29	25.6, CH ₃	25.6, CH ₃	25.6, CH ₃	Glc-6	62.9, CH ₂	62.7, CH ₂	62.4, CH ₂	
^a Recorded at 150 MHz in pyridine-d ₅ . ^b Recorded at 200 MHz in pyridine-d ₅								

Table 2S. $^{13}\mathrm{C}$ NMR Spectroscopic Data of Compounds 1-3 (δ in ppm, J in Hz)

No.	2^a		4 ^{<i>a</i>}	4^a		anoside G ^a	(165,20	$(16S, 20S, 24R)^a$	
	$\delta_{\operatorname{H}}{}^{b}(J \operatorname{in} \operatorname{Hz})$	${\delta_{ ext{C}}}^{c}$	$\delta_{\mathrm{H}}{}^{b}(J \text{ in Hz})$	${\delta_{ m C}}^c$	$\delta_{\mathrm{H}}{}^{d}(J \text{ in Hz})$	${\delta_{ ext{C}}}^{e}$	$\delta_{\mathrm{H}}{}^{f}(J \text{ in Hz})$	$\delta_{ ext{C}}{}^{g}$	
20	2.44 m	24.6, CH	2.45 m	24.6, CH	2.45 m	24.6, CH	2.48 m	25.1, CH	
21	1.13 d (6.8)	25.7, CH ₃	1.15 d (7.1)	25.4, CH ₃	1.12 d (7.2)	25.6, CH ₃	1.16 d (7.2)	26.3, CH ₃	
22	5.19 d (3.1)	106.0, CH	5.21 d (3.2)	105.8, CH	5.19 d (3.1)	105.8, CH	5.22 d (3.3)	106.3, CH	
23		152.9, C		153.6, C		153.6, C		154.2, C	
24	4.52 s	75.9, CH	4.32 s	79.4, CH	4.32 d (4.6)	79.4, CH	4.34 d (4.3)	80.0, CH	
25		78.2, C		72.8, C		72.9, C		73.4, C	
26	1.61 s	22.3, CH ₃	1.66	27.4, CH ₃	1.65 s	27.4, CH ₃	1.68 s	28.0, CH ₃	
27	1.47 s	23.1, CH ₃	1.61	25.9, CH ₃	1.60 s	25.9, CH ₃	1.62 s	26.4, CH ₃	
^a Recorded in pyridine-d ₅ . ^b 600 MHz. ^c 150 MHz. ^d 400 MHz. ^e 100 MHz. ^f 500 MHz. ^g 125 MHz.									

Table 38. Comparison of the chemical shifts of compounds 2, 4, cimifoetidanoside G and $(16S, 20S, 24R) - 12\beta$ -acetoxy-16,23-epoxy-24,25-dihydroxy-3 β -(β -D-xylopyranosyloxy)-9,19-cyclolanost-22(23)-ene

Figure 3S. The cleavage pattern of the epoxy ring in 3

Figure 4S. ¹H NMR spectrum of cimitriteromone H (1) in pyridine-d₅ (600 MHz).

Figure 5S. ¹³C NMR spectrum of cimitriteromone H (1) in pyridine-d₅ (150 MHz).

Figure 6S. HSQC spectrum of cimitriteromone H (1) in pyridine-d₅.

Figure 7S. ¹H-¹H COSY spectrum of cimitriteromone H (1) in pyridine-*d*₅.

Figure 8S. HMBC spectrum of cimitriteromone H (1) in pyridine-*d*₅.

Figure 9S. ROESY spectrum of cimitriteromone H (1) in pyridine-d₅.

Formula Predictor Report - ksq77-1.lcd

Data File: E:\DATA\2018\0313\ksg77-1.lcd Min Max 0 0
 Elmt
 Val.
 Min
 Max

 H
 1
 50
 100

 C
 4
 50
 100
 Elmt Val. Br 1 I 3 Use Adduct H Elmt Val. Elmt Val. Min Max Min Max H C N 50 50 0 Si S Cl 4 2 1 0 F 50 0 000 000 1 0 4 3 0 ŏ 0 Na Error Margin (ppm): 5 HC Ratio: unlimited Max Isotopes: all MSn Iso RI (%): 75.00 Electron lons: both Use MSn Info: yes Isotope Res: 10000 Max Results: 10 DBE Range: -2.0 - 100.0 Apply N Rule: yes Isotope RI (%): 1.00 MSn Logic Mode: AND Event#: 2 MS(E-) Ret. Time : 0.467 Scan# : 72 1129.5588 3.000e4 2.500e4 2.000e4-1.500e4-1.000e4 5.000e3 1129.50 1129.52 1129.54 1129.56 1129.58 1129.60 Measured region for 1129.5588 m/z 1129.5588 100.0 1130 5551 50.0-1131.5713 0 1129.0 1129.5 1130.0 1130.5 1131.0 1131.5 1132.0 1132.5 1133.0 1133.5 1134.0 C59 H86 O21 [M-H]- : Predicted region for 1129.5589 m/z 1129.5589 100.0-1130,5623 50.0-1131 5653 1132.5681 0 1129.0 1129.5 1130.0 1130.5 1131.0 1131.5 1132.0 1132.5 1133.0 1133.5 1134.0
 Pred. m/z
 Df. (mDa)
 Df. (ppm)

 1129.5589
 -0.1
 -0.09
 Formula (M) C59 H86 O21 DBE 17.0 Ion [M-H]-Meas. m/z 1129.5588

Figure 10S. HRESIMS spectrum of cimitriteromone H (1).

Figure 11S. IR spectrum of cimitriteromone H (1).

Figure 12S. UV spectrum of cimitriteromone H (1).

Figure 13S. ¹H NMR spectrum of cimitriteromone I (2) in pyridine-d₅ (600 MHz).

Figure S78. ¹³C NMR spectrum of triteromone I (9) in Pyridine-d₅ (201 MHz).

Figure 14S. ¹³C NMR spectrum of cimitriteromone I (2) in pyridine-d₅ (150 MHz).

Figure 15S. HSQC spectrum of cimitriteromone I (2) in pyridine-d₅.

Figure 16S. ¹H-¹H COSY spectrum of cimitriteromone I (2) in pyridine-d₅.

Figure 17S. HMBC spectrum of cimitriteromone I (2) in pyridine-d₅.

Figure 18S. ROESY spectrum of cimitriteromone I (2) in pyridine-*d*₅.

Formula Predictor Report - ksq41-1.lcd

Data File: E:\DATA\2018\0313\ksq41-1.lcd
 Elmt
 Val.
 Min
 Max

 H
 1
 50
 100

 C
 4
 50
 100

 N
 3
 0
 0

 Elmt
 Val.
 Min
 Max

 Br
 1
 0
 0

 I
 3
 0
 0
 Use Adduct Elmt Val. Min Max Elmt Val. Min Max Si 4 0 0 50 0 0 000 Si S Cl 4 2 1 0 F 0 2 1 1 0 Na 0 Error Margin (ppm): 5 HC Ratio: unlimited Max Isotopes: all MSn Iso RI (%): 75.00 Electron lons: both Use MSn Info: yes Isotope Res: 10000 Max Results: 10 DBE Range: -2.0 - 100.0 Apply N Rule: yes Isotope RI (%): 1.00 MSn Logic Mode: AND Event#: 2 MS(E-) Ret. Time : 0.560 Scan# : 86 1111.5486 3.000e3 2.500e3 2.000e3-1.500e3-1.000e3-5.000e2 1111.50 1111.52 1111.54 1111.56 1111.58 Measured region for 1111.5486 m/z 1111.5486 100.0 1112.5443 50.0-0.L 1111.0 1111.5 1115.0 1116.0 1112.0 1112.5 1113.0 1113.5 1114.0 1114.5 1115.5 C59 H84 O20 [M-H]- : Predicted region for 1111.5483 m/z 1111.5483 100.0-1112.5517 50.0-1113.5547 1114.5576 ∕∩ 0<u>1111.0</u> 1116.0 1111.5 1112.0 1112.5 1113.0 1113.5 1114.0 1114.5 1115.0 1115.5 Formula (M) C59 H84 O20
 Meas. m/z
 Pred. m/z
 Df. (mDa)
 Df. (ppm)

 1111.5486
 1111.5483
 0.3
 0.27
 DBE 18.0 Ion [M-H]-

Figure 19S. HRESIMS spectrum of cimitriteromone I (2).

Figure 20S. IR spectrum of cimitriteromone I (2).

Figure 21S. UV spectrum of cimitriteromone I (2).

Figure 22S. ¹H NMR spectrum of compound 4 in pyridine-*d*₅ (600 MHz).

Figure 23S. ¹³C NMR spectrum of compound 4 in pyridine-d₅ (150 MHz).