
Supplement for
Estimating Mixed Memberships with Sharp

Eigenvector Deviations

Abstract

In this document we present technical details and accompanying lemmas which
are necessary for the main results in the main manuscript. When we make references
to equations or theorems etc. in the main document, we follow the numbering scheme
of the main document, and the references do not have any alphabets in them.

1



I Identifiability

Our proof links the MMSB parametersΘ and B to the eigen-decomposition of the probability

matrix P, and then exploits its geometric structure. Specifically, we show that the eigenvector

row corresponding to any node lies inside a polytope whose vertices correspond to pure nodes.

When B is full rank, the polytope has K linearly independent vertices, and the community

memberships θi of each node i are fixed by the position of its eigenvector row with respect

to these vertices. This proves part (a) of Theorem 2.1. When B is rank-deficient, the points

corresponding to the pure nodes are linearly dependent. However, under the conditions of

part (b), the constraints on Θ and B are shown to make the model identifiable. In other

cases, we construct a new Θ′ that still yields the same probability matrix P. This proves

part (c).

Proof of Theorem 2.1. Without loss of generality, we absorb ρ in B, and reorder nodes so

that the first K nodes contain one pure node from each community. Thus, Θ(1 : K, :) = IK .

Let P = VEVT be the eigen-decomposition of P, with V ∈ Rn×rank(B). Let VP =

V (1 : K, :). Lemma 2.3 shows that V = ΘVP . Thus, for any node i, V(i, :) lies in the

convex hull of the K rows of VP , that is, V(i, :) ∈ Conv(VP ). We will slightly abuse the

classical notation to denote by Conv(M) the convex hull of the rows of matrix M.

Now, suppose P can be generated by another set of parameters (Θ′,B′), where Θ′

has a different set of pure nodes, with indices I 6= 1 : K. By the previous argument,

we must have V(I, :) ⊆ Conv (VP ). Since (Θ′,B′) and (Θ,B) have the same probability

matrix P, they have the same eigen-decomposition up to a permutation of the communities.

Thus, swapping the roles of Θ and Θ′ and reapplying the above argument, we find that

VP ⊆ Conv (V(I, :)). Then Conv (VP ) ⊆ Conv (V(I, :)) ⊆ Conv (VP ), so we must have

Conv (VP ) = Conv (V(I, :)). This means the pure nodes in Θ and Θ′ are aligned up to a

permutation, that is, V(I, :) = MVP , where M ∈ RK×K is a permutation matrix.
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Now, V = ΘVP = Θ′V(I, :) = Θ′MVP , which implies

(Θ−Θ′M)VP = 0 (26)

Since V = ΘVP and rank(Θ) = K, we have rank(VP ) = rank(V) = rank(B). Hence,

if rank(B) = K, VP is full rank, so Θ = Θ′M. Thus, Θ and Θ′ are identical up to

a permutation. To have the same P, B and B′ must also be identical up to the same

permutation. Hence, the MMSB model is identifiable. This proves part (a).

Now, suppose rank(B) = K − ` < K. We first permute the columns of Θ, and the rows

and columns of B, so that

B =

 C CW

WTC WTCW

 , (27)

where C ∈ R(K−`)×(K−`) is full rank, and W ∈ R(K−`)×`. We see that

C
[

IK−` W
]

= V (1 : (K − `), :) EVT
P ,

WTC
[

IK−` W
]

= V ((K − `+ 1) : K, :) EVT
P .

The first equation shows that rank(V (1 : (K − `), :)) = rank(C) = K−`, so V (1 : (K − `), :)

is full rank. Hence,

V ((K − `+ 1) : K, :) = WTV (1 : (K − `), :)⇒ VP =

 IK−`

WT

V (1 : (K − `), :) (28)

Case 1: rank(B) = K − 1 (so W is a vector) and WT1K−` 6= 1.

Now using Eqs (26) and (28), we have

(Θ−Θ′M)

 IK−`

WT

V (1 : (K − `), :) = 0⇒ Θ = Θ′M. (29)

The above equation is derived using Θ1K = Θ′1K = 1n, and WT1K−` 6= 1.
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Clearly B′ = MBM′ as well, so the MMSB model is identifiable. From Eq (27), we

have B ((K − `+ 1) : K, :) = WTB (1 : (K − `), :), so WT1K−` 6= 1 if and only if the last

row of B is not a affine combination of the remaining rows. It is easy to see that the same

holds for any row of B. This proves part (b).

Case 2: rank(B) = K − 1 and WT1K−` = 1, or rank(B) < K − 1.

We will construct a Θ′ 6= Θ that yields the same probability matrix P. Let the

completely mixed node be m, so θmj > 0 for all communities j. We use

θ′j =

 θj if j 6= m

θm + εβT
[
−WT | Il

]
if j = m,

,

where ε is small enough that θ′mj ∈ (0, 1) for all communities j, and β ∈ R` 6= 0 is such

that βT
[
−WT1K−` + 1`

]
= 0. Note that such a β always exists when ` > 1 and can be

arbitrary vector when WT1K−` = 1`. Hence, each row of Θ′ sums to 1, and Θ′ is a valid

community-membership matrix. Additionally, Θ′VP = ΘVP .

Finally, we will show that (Θ′,B) and (Θ,B) generate the same probability matrix.

Note that B = P1:K,1:K = VPEVT
P . Hence,

ΘBΘT = ΘVPEVT
PΘ

T = VEVT = P = Θ′VPEVT
PΘ

′T = Θ′BΘ′T .

This proves part (c).

Proof of Theorem 2.2. Consider an MMSB model parameterized by (Θ(1),B(1)), with P =

Θ(1)B(1)Θ(1)T (we absorb ρ in B without loss of generality). We want to construct a

(Θ(2),B(2)) that gives the same probability matrix P. The idea is to construct a matrix M

such that Θ(2) = Θ(1)M and B(2) = M−1B(1)(MT )−1. The difficulty is in ensuring that all

constraints are satisfied: Θ(2)1K = 1n, Θ(2) ≥ 0, and 0 ≤ B(2)
ij ≤ 1 for all i, j.

Without loss of generality, suppose that the first community does not have any pure

nodes. In other words, for all nodes i ∈ [n], θ(1)
i1 ≤ 1 − δ for some δ > 0. Consider the
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following M:

M =

 1 + (K − 1)ε2 −ε21TK−1

0 ε1K−11TK−1 + (1− (K − 1)ε)IK−1

 ,
where ε is a small positive number (0 < ε < δ). It is easy to check that M is full rank (for

small enough ε) and M · 1K = 1K . Hence, Θ(2)1K = Θ(1)M1K = 1n
For any node i and for j > 1,

θ
(2)
i1 = θ

(1)
i1 (1 + (K − 1)ε2) ≥ 0,

θ
(2)
ij = −θ(1)

i1 ε
2 +

K∑
`=2

θ
(1)
i` M`j ≥ −θ(1)

i1 ε
2 + ε

K∑
`=2

θ
(1)
i` ≥ εδ2 > 0,

where we used ε < δ and θ
(1)
i 1K = 1. Hence, Θ(2) ≥ 0.

Finally, we must show that B(2) = M−1B(1)(MT )−1 has all elements between 0 and 1.

Note that

M− IK =

 (K − 1)ε2 −ε21TK−1

0 ε1K−11TK−1 − (K − 1)εIK−1

 ,
so ‖M− IK‖F → 0 as ε→ 0. Since M−1 is continuous in M, we have ‖M−1 − IK‖F → 0.

Thus, ∥∥∥B(2) −B(1)
∥∥∥
F

=
∥∥∥M−1B(1)(MT )−1 −B(1)

∥∥∥
F

≤
∥∥∥M−1 − IK

∥∥∥2

F

∥∥∥B(1)
∥∥∥
F

+ 2
∥∥∥M−1 − IK

∥∥∥
F

∥∥∥B(1)
∥∥∥
F

→ 0 as ε→ 0.

Since B(1)
ij ∈ (0, 1), we have B(2)

ij ∈ (0, 1) for ε small enough, completing the proof.

II Some Auxiliary Results, Proof of Lemmas 3.2

Definition II.1. (A construction of rotation matrix) Consider the discretization defined in

Definition 5.1. The Davis-Kahan Theorem states that there exists a rotation matrix Ô such
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that ‖V̂−VÔ‖F is small. In this definition we will carefully construct this matrix. Consider

the intervals resulting from the discretization of population eigenvalues in Definition 5.1.

Now, from Theorem 2 of [1], ∃Ôk such that

‖Rk‖F = ‖V̂Sk −VSkÔk‖F ≤
√

8nk‖A−P‖
gk

(30)

Typically the denominator is fk := min(λsk−λsk−1,min(λek−λek+1, λek)). We now construct

our Ô by stacking the Ôk matrices on the diagonal of a K ×K matrix. This is also a valid

rotation matrix. Now, let Ek by the submatrix of E corresponding to eigenvalues in Sk.

Similarly define Êk. Furthermore, let R := [R1| . . . |RI ].

Lemma II.1. If Assumption 3.1 holds, then there exists an orthogonal matrix Ô ∈ RK×K

constructed using Definition II.1 that satisfies

‖R‖F ≤
√

8K‖A−P‖
λ∗(P) (31)∥∥∥Ê− ÔTEÔ

∥∥∥
F

= OP

(
K2√nρ

)
(32)

with probability larger than 1− n−3.

Proof. Consider the rotation matrix Ô, the residual matrix R constructed as in Defini-

tion II.1. This gives us the Frobenius norm of R as follows, since by construction gk ≥ λ∗(P).

‖R‖F ≤
√∑

k

‖Rk‖2
F ≤

√
8K‖A−P‖
λ∗(P)

Finally note that, using Lemma III.1, since λsk ≤
∑k
i=1 nigk ≤ Kgk,

‖RkÔT
kEk‖F ≤ ‖Rk‖F‖Ek‖ ≤

√
8nk‖A−P‖λsk

gk
= OP (K√nk

√
nρ) (33)
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Now we use these intervals as follows.
∥∥∥Ê− ÔTEÔ

∥∥∥
F

=
∥∥∥V̂ÊV̂T − V̂ÔTEÔV̂T

∥∥∥
F

= ‖AK − (V + RÔT )E(V + RÔT )T‖F

≤ ‖AK −P‖F + 2 ‖RÔTEVT‖F︸ ︷︷ ︸
P1

+ ‖RÔTEÔRT‖F︸ ︷︷ ︸
P2

= OP (
√
Knρ) + P1 + P2

The last step is true because ‖AK−P‖F ≤
√
K‖AK−P‖ ≤

√
K(‖A−AK‖+‖A−P‖) ≤

2
√
Knρ with probability at least 1− n−r using Weyl’s inequality and Theorem 5.2 of [2].

As for P1, note that: P1 ≤ ‖RÔTE‖F ≤
√∑

k ‖RkÔT
kEk‖2

F =: OP (K3/2√nρ).

As for P2, we have:

P2 ≤ ‖RÔTE‖F‖R‖F = OP

(
K2nρ

λ∗(P)

)

Thus the final bound is OP (K2√nρ(max(1/K3/2, 1/
√
K,
√
nρ/λ∗(P))) = OP (K2√nρ) using

Assumption 3.1. The failure probability comes from the failure of event ‖A−P‖ = OP (√nρ).

Taking r = 3 we get the required bound.

Lemma II.2. For Θ ∈ Rn×K, with ‖θi‖1 = 1 and θij ≥ 0, ∀i, j ∈ [n], λ1(ΘTΘ) ≤

maxj 1TnΘej ≤ n and λK(ΘTΘ) ≤ minj 1TnΘej.

Proof. By Proposition 2.4 of [3], as ΘTΘ is a nonnegative matrix, λ1(ΘTΘ) is upper

bounded by its largest row sum and λK(ΘTΘ) is lower bounded by its smallest row sum.

For the i-th row of ΘTΘ, its row sum is:

eTi ΘTΘ1K = eTi ΘT1n = 1TnΘei ≤ n.

Thus the result follows.

Lemma II.3. Under Assumption 2.1, we have ΘTΘ =
(
VPVT

P

)−1
, which implies λ1(VPVT

P ) =

1/λK(ΘTΘ), λK(VPVT
P ) = 1/λ1(ΘTΘ) and κ(VPVT

P ) = κ
(
ΘTΘ

)
.
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Proof. From Lemma 2.3, V = ΘVP , so

I = VTV = VT
PΘ

TΘVP .

As VP is full rank, we have ΘTΘ =
(
VPVT

P

)−1
, which gives

λ1(VPVT
P ) = 1

λK (ΘTΘ) and λK(VPVT
P ) = 1

λ1 (ΘTΘ) ,

so κ(VPVT
P ) = κ

(
ΘTΘ

)
.

Proof of Lemma 3.6. If θi ∼ Dirichlet(α), let us consider θi as a random variable. Denote

M̂ = ΘTΘ =
n∑
i=1

θiθ
T
i .

Note that M̂ − E[M̂] = ∑
i Xi where Xi are independent mean zero symmetric K × K

random matrices. We have

E[θiθTi ] = diag(α) + ααT

α0(1 + α0) Cov(θi) = α0diag(α)−ααT

α2
0(1 + α0) .

Furthermore, since ‖θi‖1 = 1, and α0 = ∑
i αi, we have ‖Xi‖ ≤ θTi θi + ‖E[θiθTi ]‖ ≤

1 + αmax+‖α‖2

α0(1+α0) ≤ 2. Finally, since the operator norm is convex, Jensen’s inequality gives:

‖E[X2
i ]‖ ≤ E[‖X2

i ‖] ≤ E[‖Xi‖2] ≤ 4. Using standard Matrix Bernstein type concentration

results (Theorem 1.4 of [4]), for large n we get:

P(‖M̂− E[M̂]‖ ≥ t) ≤ K exp
(
− t2

8n+ 4t/3

)
=: δt

Now Weyl’s inequality gives, with probability at least 1− δt,

|λ1(M̂)− λ1(E[M̂])| ≤ t |λK(M̂)− λK(E[M̂])| ≤ t

For the population quantities,

λ1(E[M̂]) ≤ αmax + ‖α‖2

α0(1 + α0) n, λK(E[M̂]) ≥ αmin

α0(1 + α0)n
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For λ̂1(M̂) we take t = n
2
αmax+‖α‖2

α0(1+α0) ∈ [ n
2ν(1+α0) ,

n
2 ] and hence δt ≤ K exp

(
− n

36ν2(1+α0)2

)
.

For λ̂K(M̂), we take t = n
2

αmin
α0(1+α0) ∈ [ n

2ν(1+α0) ,
n
2 ]. Hence δt ≤ K exp(− n

36ν2(1+α0)2 ).

Hence the condition number of M̂ can also be bounded as:

κ(ΘTΘ) = λ1(ΘTΘ)
λK(ΘTΘ) ≤

3n
2
αmax+‖α‖2

α0(α0+1)
n
2

αmin
α0(α0+1)

= 3αmax + ‖α‖2

αmin

Lemma II.4. Let λ∗(P) denote the Kth largest singular value of P. We have λ∗(P) ≥

ρλ∗(B)λK(ΘTΘ).

Proof. First note that, by Theorem 1.3.22 of [5], we have (BΘT )Θ and Θ(BΘT ) have the

same K largest eigenvalues in magnitude, then

λ∗(P) = λ∗(ρΘBΘT ) = λ∗(ρBΘTΘ) ≥ ρλ∗(B)λK(ΘTΘ). (34)

The inequality holds because for all full rank positive definite matrix M1, M2 ∈ RK×K ,

‖(M1M2)−1‖ ≤ ‖M−1
1 ‖‖M−1

2 ‖, and as σK(M1) = 1/‖M−1
1 ‖ (same for M1 and M1M2),

where σK(.) denotes the Kth largest singular value of a matrix. Then we have:

σK(M1M2) ≥ σK (M1)σK (M2) .

Proof of Lemma 3.2. Note that ΘTΘ =
(
VPVT

P

)−1
by Lemma II.3, thus for pure nodes,

max
i

∥∥∥eTi VP

∥∥∥2
= max

i
eTi VPVT

Pei ≤ max
‖x‖=1

xTVPVT
Px = λ1

(
VPVT

P

)
= 1
λK (ΘTΘ)

As for other nodes, their rows are convex combinations of the rows of pure nodes and would

be smaller than or equal to the norm of the pure nodes. Thus the result follows.

Note that by Lemma 2.3, eTi V = θTi VP , then

min
i

∥∥∥eTi V
∥∥∥2

= min
i

θTi VPVT
Pθ

T
i = min

i
‖θi‖2 θTi

‖θi‖
VPVT

P

θi
‖θi‖

≥ min
i
‖θi‖2 min

‖x‖=1
xTVPVT

Px

= min
i
‖θi‖2λK

(
VPVT

P

)
= mini ‖θi‖2

λ1 (ΘTΘ) ≥
1

Kλ1 (ΘTΘ)
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where for the last inequality we use for any i ∈ [n], ‖θi‖ ≥ ‖θi‖1/
√
K = 1/

√
K. Thus the

result follows.

III Proofs for Section 5

III.1 Proofs of Lemma 5.1

Lemma III.1. Consider the intervals defined in Definition 5.1. We have for positive

eigenvalues: λsk ≤
∑k
i=1 nigk.

Proof. We prove this by induction. First, note that the smallest positive eigenvalue is larger

than λ∗(P) by definition. For k = 1, λs1 − λe1 ≤ (n1− 1)λe1 , and hence λs1 ≤ n1λe1 = n1g1.

Now assume that λsk ≤
∑k
i=1 nigk. Hence,

λsk+1 ≤ (nk+1 − 1)gk+1 + (λek+1 − λsk) + λsk = nk+1gk+1 +
k∑
i=1

nigk ≤
k+1∑
i=1

nigk+1.

The last step holds since gk < gk+1.

Proofs of Lemma 5.1. First consider positive eigenvalues. By Lemma III.1, λsk ≤ gk
∑k
i=1 ni ≤

gk
∑I+

i=1 ni ≤ gkK and by definition λsk/gk ≤ κ(P), so λsk/gk ≤ min{K,κ(P)}. From

construction of the eigenvalue intervals, we have: λsk − λsk−1 ≤ nkgk. Also note that∑I+

k=1

(
λsk − λsk−1

)
/gk = ∑I+

k=1

(
λsk − λsk−1

)
/λ∗(P) = λsI+/λ

∗(P) ≤ σ1(P)/λ∗(P) =

κ(P), where σ1(P) is the largest singular value of P, we have ∑I+

k=1

((
λsk − λsk−1

)
/gk

)
≤

min{K,κ(P)}. A similar argument can be made for negative eigenvalues. So ψ(P) ≤

2 min{K,κ(P)}2.

If eigenvalues of P can be divided by a constant number of bins where in each bin the

eigenvalues are of the same order, for each bin, there will be at most a constant of intervals

defined in Definition 5.1, or the eigenvalues can not be of the same order. In that case, λsk ,

λek and gk are of the same order and I+ + I− is a constant, so ψ(P) = O(1).
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III.2 Proof of Lemma 5.2

Proof. Since GA(z)−GP(z) = GP(z)(P−A)GA(z),

GA(z)−GP(z) =
(
Mz −

I
z

)
(P−A)(GA(z)−GP(z)) + GP(z)(P−A)GP(z)

Bringing A−P
z

(GA(z) −GP(z)) to the LHS, and using the definition of the resolvent of

A−P we get:

GA(z)−GP(z) = zGA−P(z)

Mz(A−P)(GA(z)−GP(z))︸ ︷︷ ︸
R0

+ GP(z)(A−P)GP(z)︸ ︷︷ ︸
R


(35)

As it turns out, each of the rows of zR either have small Frobenius norm or they

disappear when combined with zGA−P(z) post integration. We will show this step by step.

Note that, using Eq (9), R in the above equation can be decomposed as:

GP(z)(A−P)GP(z) = A−P
z2︸ ︷︷ ︸
R1

+ Mz(A−P)GP(z)︸ ︷︷ ︸
R2

− A−P
z

Mz︸ ︷︷ ︸
R3

Next, we show that zGA−P(z)R1 disappears upon integration. Since by construction

∀z ∈ Ck,∀k, |z| ≥ ak > ‖A−P‖, none of the contours contain zero, Eq (21) immediately

gives:

1
2π
√
−1

∮
Ck
zGA−P(z)R1dz = −

∑
t≥1

∮
Ck

1
z

(A−P
z

)t
dz = 0 (36)

Thus Eqs (12), (35) and (36) give us,

eTx (VkVT
k − V̂kV̂T

k ) = − 1
2π
√
−1

∮
Ck

eTxGA−P(z)z(R0 +R2 −R3)dz

‖eTx (VkVT
k − V̂kV̂T

k )‖ ≤ bk − ak + 2γk
π

max
z∈Ck
‖eTxGA−P(z)z(R0 +R2 −R3)‖
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Now we bound each part individually.

‖eTxGA−P(z)z(R0 +R2)‖ = ‖eTxGA−P(z)zMz(A−P)GA(z)‖

≤ ‖eTxGA−P(z)zMz‖F‖A−P‖‖GA(z)‖
(i)
≤ |z|‖GA(z)‖‖A−P‖‖Ez‖‖eTxGA−P(z)V‖ =: P1(z)

Step (i) uses Eq (8). Finally we also have:

‖eTx zGA−P(z)R3‖ ≤ ‖eTxGA−P(z)(A−P)V‖‖Ez‖ =: P2(z)

Thus, the statement of the lemma follows.

III.3 Proof of Lemma 5.3

Proof. For ease of notation we will first prove this for one population eigenvector v. Recall

that H := (A−P)/√nρ. Let Xj = (Aij −Pij)vj, where vj is the jth component of v. We

have |Xj| ≤ ‖v‖∞ =: M . Since Θ is assumed to be fixed for this lemma, P is fixed and Xj

are mean zero independent random variables. Also note that, since ‖v‖ = 1 and Pij ≤ ρ,

∑
j

var(Xj) =
∑
j

E
[
(Aij −Pij)2v2

j

]
=
∑
j

Pij(1−Pij)v2
j ≤ ρ

An application of Bernstein’s inequality gives us:

P
|∑

j

Xj| ≥ t

 ≤ 2 exp
(
− t2

2(∑j var(Xj) + tM/3)

)
=: 2 exp(−A)

First note that the RHS of the above equation is a decreasing function of t. We set

t = 4 max(M,
√
ρ) log n. Consider the following two cases:

Case 1: M >
√
ρ: We have t = 4M log n. Hence,

exp(−A) ≤ exp
(
− 16M2 log2 n

2ρ+ 8/3M2 log n

)
≤ exp

(
− 16M2 log2 n

2M2 + 8/3M2 log n

)
≤ 1
n3
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Case 2: M ≤ √ρ: We have t = 4√ρ log n. Hence,

exp(−A) ≤ exp
(
− 16ρ log2 n

2ρ+ 8/3M√ρ log n

)
≤ exp

(
− 16ρ log2 n

2ρ+ 8/3ρ log n

)
≤ 1
n3

Applying this to all K population eigenvectors we have:

P
(
∃k ∈ [K], |eTi (A−P)vk| ≥ 4 max(‖vk‖∞,

√
ρ) log n

)
≤ 2K

n3 (37)

Recall from Lemma 3.2 that, ∀k ∈ [K], ‖vk‖∞ ≤ maxi ‖eTi V‖ ≤
√

1
λK(ΘTΘ) . Then if

Assumption 3.1 is satisfied, we have, ‖vk‖∞ ≤
√
ρ, ∀k ∈ [K]. So from Eq. (37),

P
(
∃k ∈ [K], |eTi (A−P)vk| ≥ 4

√
ρ log2 n

)
≤ 2K

n3 .

Note that ∀k ∈ [K], ‖vk‖∞ ≥ 1/
√
n, then,

P
(
∃k ∈ [K], |eTi Hvk| ≥ 4 log n‖vk‖∞

)
≤ P

∃k ∈ [K], |eTi Hvk| ≥ 4
√

log2 n

n

 = O
(
K

n3

)
.

III.4 Proof of Lemma 5.4

Proof of Lemma 5.4. For t ≥ 2, we claim that this result follows via straightforward

modifications of the proof of Lemma 7.10 in [6], where the main two elements are:

1. E[|Hij|m] ≤ 1
n
for m ≥ 2. Note that for our setting, Assumption 3.1 implies that

nρ ≥ 1. Hence |Hij| ≤ 1, and hence

E[|Hij|m] ≤ E[|Hij|2] ≤ Pij

nρ
≤ 1
n

2. The authors use a higher order Markov inequality. This inequality upper bounds the

number of terms that are non-zero in the summand via a multigraph construction for

path counting. Then these non-zero elements are bounded by their absolute value

and hence, even though v does not equal e, just the fact that it is fixed and hence

independent of Hij, is enough to apply the proof directly to get the required result.
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Using an almost identical argument as [6], we have:

E[|eTi Htv|p] ≤ (tp)tp‖v‖p∞

Now a higher order Markov inequality, with p = (log n)ξ/2t gives:

P
(
|eTi Htv| ≥ (log n)tξ‖v‖∞

)
≤ (tp)tp‖v‖p∞

(log n)tpξ‖v‖p∞
= 1
√

2(logn)ξ

= exp(−(log n)ξ log
√

2) ≤ exp(−(log n)ξ/3)

IV Comparison with [7] on row-wise deviation of eigenspace

Here we give a row-wise error bound for eigenspace using Abbe et al. [7]’s result.

Lemma IV.1. For P = VEVT and A = V̂ÊV̂T as P and A’s top-K eigen-decomposition

respectively, we have

‖V̂sgn(V̂TV)−AVE−1‖2→∞ = OP

(
(κ(ΘTΘ))2K

√
n

√
ρ(λ∗(B))3(λK(ΘTΘ))1.5

)

‖V̂sgn(V̂TV)−V‖2→∞ = OP

max
 (κ(ΘTΘ))2K

√
n

√
ρ(λ∗(B))3(λK(ΘTΘ))1.5 ,

1√
λK(ΘTΘ)

 ,
where ‖U‖2→∞ = maxi ‖eTi U‖ denotes the maximum row norm of a matrix U, and

sgn(V̂TV) is the matrix sign function

sgn(V̂TV) = U1UT
2 , SVD of V̂TV is V̂TV = U1ΣUT

2 .

Proof. First from Assumption A3 of [7] we have c√ρn ≤ γ∆∗ for some constant c. ∆∗ is

the eigen-gap, which is λ∗(P) ≥ ρλ∗(B)λK(ΘTΘ) from Lemma II.4. This requires

γ ≥ c
√
n

√
ρλ∗(B)λK(ΘTΘ) . (38)
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Using Eqs (13) of Corollary 2.1 in [7], we have,

‖V̂sgn(V̂TV)−AVE−1‖2→∞ ≤ κ(κ+ ϕ(1))(γ + ϕ(γ))‖V‖2→∞

(Lemma 3.2) ≤ κ(κ+ ϕ(1))(γ + ϕ(γ)) 1√
λK(ΘTΘ)

.

κ is the condition number of P which is upper bounded by:

κ ≤ κ(ΘTΘ)κ(B) ≤ κ(ΘTΘ) ‖B‖
λ∗(B) ≤ κ(ΘTΘ)

√
K

λ∗(B) .

Since ϕ(x) is typically bounded by a constant and ϕ(x)/x non-increasing, we have,

‖V̂sgn(V̂TV)−AVE−1‖2→∞ = OP

κ2γ
1√

λK(ΘTΘ)


= OP

(
(κ(P))2√n

√
ρλ∗(B)(λK(ΘTΘ))1.5

)

= OP

(
(κ(ΘTΘ))2K

(λ∗(B))2

√
n

√
ρλ∗(B)(λK(ΘTΘ))1.5

)

= OP

(
(κ(ΘTΘ))2K

√
n

√
ρ(λ∗(B))3(λK(ΘTΘ))1.5

)
. (39)

Furthermore, using Eqs (14) of Corollary 2.1 in [7], we have,

‖V̂sgn(V̂TV)−V‖2→∞ ≤ ‖V̂sgn(V̂TV)−AVE−1‖2→∞ + ϕ(1)‖V‖2→∞

= OP

max
 (κ(P))2√n
√
ρλ∗(B)(λK(ΘTΘ))1.5 ,

1√
λK(ΘTΘ)


= OP

max
 (κ(ΘTΘ))2K

√
n

√
ρ(λ∗(B))3(λK(ΘTΘ))1.5 ,

1√
λK(ΘTΘ)

 (40)

Remark IV.1. Our bound in Theorem 3.1 has better dependency on λ∗(B) comparing to

Eq (39) when λ∗(B) goes to 0 (κ(P) goes to infinity). If κ(P) = Θ(1) or λ∗(B) = Θ(1)

or K = Θ(1), the bound in Theorem 3.1 is comparable or better than that in Eq (39).
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However, in comparison to their eigenvector deviation bound from Eq (40), we have a

tighter bound by an order of 1/√nρ when K = Θ(1), λ∗(B) = Θ(1), κ(P) = Θ(1) and

λK(ΘTΘ) = Ω(n). As a matter of fact, when θi ∼ Dirichlet(α) and αmax ≤ Cαmin for some

constant C ≥ 1, we have ν = α0/αmin = Θ(K) and by Lemma 3.6, with high probability

λK(ΘTΘ) = Ω(n/ν) = Ω(n) when K = Θ(1).

V Comparison with [8] on row-wise deviation of eigenspace

Here we give a row-wise error bound for eigenspace applying Cape et al. [8]’s result.

Lemma V.1. For P = VEVT and A = V̂ÊV̂T as P and A’s top-K eigen-decomposition

respectively, if λ∗(P) ≥ ‖A−P‖∞, then there exists an orthognal matrix WV ∈ RK×K such

that

‖V̂−VWV‖2→∞ = OP

(
n

λ∗(B)(λK(ΘTΘ))1.5

)
. (41)

Proof. From Lemma 3.2, ‖V‖2→∞ ≤ 1√
λK(ΘTΘ)

. By applying Theorem 4.2 of [8], if

λ∗(P) ≥ ‖A−P‖∞,

‖V̂−VWV‖2→∞ ≤ 14
(
‖A−P‖∞
λ∗(P)

)
‖V‖2→∞,

where ‖A−P‖∞ = maxi
∑
j |Aij−Pij|. Note that as E[∑j |Aij−Pij|] = ∑

j E[|Aij−Pij|] =∑
j [Pij(1−Pij) + (1−Pij)Pij ] = O(ρn). By applying Chernoff bound, it can be shown that

for all i ∈ [n], ∑j |Aij − Pij| = OP (ρn). Then ‖A− P‖∞ = maxi
∑
j |Aij − Pij| = O(ρn)

with high probability. From Lemma II.4, we have λ∗(P) ≥ ρλ∗(B)λK(ΘTΘ). Then we

have,

‖V̂−VWV‖2→∞ = OP

(
n

λ∗(B)(λK(ΘTΘ))1.5

)
.

16



Remark V.1. Our bound in Theorem 3.1 is tighter by an order of 1/√nρ comparing to

Eq (41) when K = Θ(1).

Note that Lemma V.1 is a direct application of the perturbation bound in [8] to the

MMSB model. If we use the more careful analysis of the authors for the ρ-correlated SBM

graphs, together with our Lemma 5.3, we can get a better bound as in the following Lemma.

Lemma V.2. For P = VEVT and A = V̂ÊV̂T as P and A’s top-K eigen-decomposition

respectively, and WV = sgn(VT V̂) ∈ RK×K, we have

‖V̂−VWV‖2→∞ = OP

(
n

ρ(λ∗(B))2(λK(ΘTΘ))2

)
, (42)

when λK(ΘTΘ) = Ω(K) and ρ(λ∗(B))2 ≤ n
KλK(ΘTΘ)

Proof. Using Corallary 3.3 and Proposition 6.5 of [8], noting that (I −VVT )P = 0, we

have the following decomposition and bound:

‖V̂−VWV‖2→∞ ≤‖(I−VVT )(A−P)VWVÊ−1‖2→∞

+ ‖(I−VVT )(A−P)(V̂−VWV)Ê−1‖2→∞

+ ‖V(VT V̂−WV)‖2→∞

≤‖(A−P)V‖2→∞‖Ê−1‖+ ‖V‖2→∞‖VT‖‖(A−P)V‖‖Ê−1‖

+ ‖I−VVT‖2→∞‖A−P‖‖V̂−VWV‖‖Ê−1‖

+ ‖V‖2→∞‖VT V̂−WV‖.

By Lemma 5.3, we have ‖(A−P)V‖2→∞ = OP (
√
Knρ)‖V‖2→∞, so

‖(A−P)V‖ ≤
√
K‖(A−P)V‖2→∞ = OP (K√nρ)‖V‖2→∞.

We also have ‖A−P‖ = OP (√nρ), ‖Ê−1‖ = OP

(
1

ρλ∗(B)λK(ΘTΘ)

)
from results in Sec II. By

Lemmas 6.7 and 6.8 of [8] and using λ∗(P) ≥ ρλ∗(B)λK(ΘTΘ) from Lemma II.4, we have

‖V̂−VWV‖ = OP

( √
n√

ρλ∗(B)λK(ΘTΘ)

)
and ‖VT V̂−WV‖ = OP

(
n

ρ(λ∗(B))2(λK(ΘTΘ))2

)
. From
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Lemma 3.2, ‖V‖2→∞ ≤ 1√
λK(ΘTΘ)

. It is also easy to get ‖I−VVT‖2→∞ ≤ 2. Putting these

bounds together, we have:

‖V̂−VWV‖2→∞ = OP

max

 n

ρ(λ∗(B))2(λK(ΘTΘ))2 ,

√
Kn

(
1 +

√
K/λK(ΘTΘ)

)
√
ρλ∗(B)(λK(ΘTΘ))1.5




= OP

(
n

ρ(λ∗(B))2(λK(ΘTΘ))2

)
,

when λK(ΘTΘ) = Ω(K) and ρ(λ∗(B))2 ≤ n
KλK(ΘTΘ) .

Remark V.2. Our bound in Theorem 3.1 has better dependency on λ∗(B) comparing to

Eq (42) when λ∗(B) goes to 0 (κ(P) goes to infinity). When λ∗(B) = Θ(1), κ(P) = Θ(1),

and λK(ΘTΘ) = Ω(n/K), our bound in Theorem 3.1 is tighter by a factor of √ρ comparing

to Eq (42). As discussed in Sec IV, when θi ∼ Dirichlet(α) and αmax ≤ Cαmin for some

constant C ≥ 1, with high probability λK(ΘTΘ) = Ω(n/K) � K, and ρ(λ∗(B))2 ≤
n

KλK(ΘTΘ) = Θ(1) is corresponding to the interesting regime when ρ or λ∗(B) is small.

VI Row-wise eigenspace concentration for general low

rank matrix

Note that although our focus of this paper is on MMSB, Theorem 3.1 can be easily extended

to handle any low rank matrix. The proof is almost identical to that of Theorem 3.1, just

instead of assuming Assumption 3.1 is satisfied, we have some general conditions. The new
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events should be:

E ′1 :=
{

max
i
‖vi‖∞ ≤

√
ρ
}

P(Ē ′1) ≤ δ1

E ′2 :=
{
λ∗(P) ≥ 4√nρ(log n)ξ

}
P(Ē ′2) ≤ δ2

E ′ := {‖A−P‖ ≤ C
√
nρ} P(Ē ′)≤n−3 (43)

E1 :=
{∣∣∣eTi Hvk

∣∣∣ ≤ 4 log n‖vk‖∞,∀k ∈ [K]
}

P(Ē1)≤O
(
K/n3

)
+ δ1

Et :=
{∣∣∣eTi Htvk

∣∣∣ ≤ (log n)tξ‖vk‖∞, ∀k ∈ [K]
}

P(Ēt)≤K exp(−(log n)ξ/3), 1 < t ≤ log n

If we use the new events in Eq (43) in the proof, we can get the following Theorem:

Theorem VI.1. Suppose P has rank K, maxi,j Pij ≤ ρ. Let Aij = Aji ∼ Ber(Pij), V and

V̂ are P and A’s K leading eigenvectors respectively. If P(maxi ‖vi‖∞ >
√
ρ) ≤ δ1, and

for some constant ξ > 1, ρn = Ω((log n)2ξ) and P(λ∗(P) < 4√nρ(log n)ξ) < δ2, then with

probability at least 1− δ1 − δ2 −O(Kn−2),

max
i∈[n]
‖eTi (V̂V̂T −VVT )‖ = O

(
ψ(P)

√
Knρ

λ∗(P)

)(
(1 + (log n)ξ) max

i
‖vi‖∞ + 2n−2ξ

)
.

Remark VI.1. For MMSB, it is easy to check that the condition λK(ΘTΘ) ≥ 1/ρ in

Assumption 3.1 is only used in the proof of Lemma 5.3 in Sec III.3 to show maxi ‖vi‖∞ ≤
√
ρ,

so conditioned on E ′1 and E ′2, the proof goes through. If we plug in the upper bound of

maxi ‖vi‖∞ from Lemma 3.2 and lower bound of λ∗(P) in Lemma II.4, we can get the

bound in Theorem 3.1 using Theorem VI.1.

VII Consistency of estimated quantities

Proof of Lemma 3.4. To see that the pruning algorithm returns identical nodes (up-to ties)

is straightforward. This is because the pruning algorithm proceeds by calculating Euclidean

distances between pairs of nodes for nearest neighbor computation. We have

‖V̂V̂T (ei − ej)‖2 = (ei − ej)T V̂V̂T (ei − ej) = ‖V̂T (ei − ej)‖2
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Thus the pairwise distances between columns of V̂V̂T are the same as that between columns

of V̂T . As for the SPA algorithm, we prove the claim by induction.

Base case: For step k = 1, as

‖V̂V̂Tei‖2 = eTi V̂V̂T V̂V̂Tei = eTi V̂V̂Tei = ‖V̂Tei‖2,

picking max norm will give the same index, denoted as k1.

Now for V̂T , the vector whose projection is removed is V̂Tek1 , and the normalized vector

is u = V̂Tek1/‖V̂Tek1‖, then for V̂V̂T , the vector whose projection is removed is V̂V̂Tek1

and its normalized vector is u1 = V̂V̂Tek1/‖V̂V̂Tek1‖ = V̂V̂Tek1/‖V̂Tek1‖ = V̂u.

Now

‖(I− u1uT1 )V̂V̂Tei‖2 = ‖(I− V̂uuTVT )V̂V̂Tei‖2

= ‖V̂(I− uuT )V̂Tei‖2 = ‖(I− uuT )V̂Tei‖2,

then for step k = 2, picking max norm will also give the same index.

Induction: Suppose for first k − 1 ∈ [K − 1] steps SPA on V̂T and on V̂V̂T will

give the same indices as Sk−1, then for the k-th step, we are removing the projections of

the k − 1 columns in Sk−1 selected before, now denote the singular value decomposition

(V̂Sk−1)T = USHT , then the projection matrix on columns of (V̂Sk−1)T is UUT . Also note

that V̂(V̂Sk−1)T = (V̂U)SHT , it is easy to check that this is singular value decomposition of

V̂(V̂Sk−1)T , and the projection matrix on columns of V̂(V̂Sk−1)T is V̂U(V̂U)T = V̂UUT V̂T .

Now the norm we need to pick from for SPA on V̂V̂T is

‖(I− V̂UUT V̂T )V̂V̂Tei‖ = ‖V̂(I−UUT )V̂Tei‖ = ‖(I−UUT )V̂Tei‖,

so the norms to pick for SPA on V̂T and on V̂V̂T will still be same and picking max norm

will also give the same index.

Lemma VII.1. (Theorem 3 of Gillis et al. [9]). Let M′ = M + N = WH + N ∈ Rm×n,

where M = WH = W[Ir|H′], W ∈ Rm×r, H ∈ Rr×n
+ and ∑r

k=1 H′kj ≤ 1, ∀j and r ≥ 2.
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Let K(W) = maxi ‖W (:, i) ‖2, and ‖N (:, i) ‖2 ≤ ε for all i with

ε < σr(W) min
(

1
2
√
r − 1

,
1
4

)(
1 + 80K(W)2

σ2
r(W)

)−1

and J be the index set of cardinality r extracted by SPA, where σr(W) is the r-th singular

value of W. Then there exists a permutation P of {1, 2, · · · , r} such that

max
1≤j≤r

‖M′ (:, J(j))−W (:, P (j)) ‖ ≤ ε̄ = ε

(
1 + 80K(W)2

σ2
r(W)

)
.

Theorem VII.2. Let Sp be the indices set returned by SPA in Algorithm 1, V̂p = V̂(Sp, :).

If Assumptions 2.1 and 3.1 are satisfied, then there exists a permutation matrix Π ∈ RK×K

such that

max
1≤j≤K

∥∥∥eTj (V̂p −ΠTVP (VT V̂)
)∥∥∥ = O

(
κ(ΘTΘ)ε

)

with probability larger than 1−O(Kn−2), where ε = Õ
(

ψ(P)
√
Kn√

ρλ∗(B)(λK(ΘTΘ))1.5

)
is the row-wise

error from Theorem 3.1, and the rows of VP ∈ RK×K correspond to pure nodes.

Proof of Theorem VII.2. Note that from Lemma 2.3, V = ΘVP . Let M′ = V̂V̂T , W =

VVT
P , H = ΘT , r = K, then for M′ = WH + N, we have ‖N (:, i) ‖2 ≤ ε uniformly with

probability larger than 1− O(Kn−2) by Theorem 3.1. W.L.O.G., let the first K rows of

Θ be K different pure nodes. Now use Lemma VII.1, there exists a permutation π of

{1, 2, · · · , K} such that

max
1≤j≤K

‖M′(:,Sp(j))−W(, : π(j))‖ = ε

(
1 + 80K(W)2

σ2
K(W)

)
= O

(
κ(ΘTΘ)ε

)
,

since K(W) = maxi ‖W (:, i) ‖2 ≤ σ1(W) and σ1(W)
σK(W) = κ(W) ≤ κ(VP ) = O

(√
κ(ΘTΘ)

)
by Lemma II.3.

So ∃ a permutation matrix Π ∈ RK×K such that

max
1≤j≤K

‖
(
V̂V̂T

p −WΠ
)

ej‖ = O
(
κ(ΘTΘ)ε

)
,
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taking transpose, it gives

max
1≤j≤K

‖eTj
(
V̂pV̂T −ΠTVPVT

)
‖ = O

(
κ(ΘTΘ)ε

)
,

and

max
1≤j≤K

∥∥∥eTj (V̂p −ΠTVP (VT V̂)
)∥∥∥ = max

1≤j≤K

∥∥∥eTj (V̂pV̂T −ΠTVPVT
)

V̂
∥∥∥

≤ max
1≤j≤K

∥∥∥eTj (V̂pV̂T −ΠTVPVT
)∥∥∥ ∥∥∥V̂∥∥∥ = O

(
κ(ΘTΘ)ε

)
with probability larger than 1−O(Kn−2). The inequality follows from Proposition 5.6 of

[8].

Lemma VII.3. Let Sp be the set of of pure nodes extracted using SPACL. Let V̂p denote the

rows of V̂ indexed by Sp, and VP denote the pure nodes of V. Then, if Assumptions 2.1, 3.1,

and 3.2 are satisfied,

max
i∈[n]

∥∥∥eTi V(VT V̂)
(
V̂−1
p − (ΠTVP (VT V̂))−1

)∥∥∥ = O
(√

λ1(ΘTΘ)κ(ΘTΘ)ε
)

with probability larger than 1−O(Kn−2), where ε = Õ
(

ψ(P)
√
Kn√

ρλ∗(B)(λK(ΘTΘ))1.5

)
is the row-wise

error from Theorem 3.1, and rows of VP ∈ RK×K are corresponding to pure nodes.

Proof of Lemma VII.3. Define by F := VT V̂, and ṼP := ΠTVPF, then,∥∥∥eTi V(VT V̂)
(
V̂−1
p − (ΠTVP (VT V̂))−1

)∥∥∥
=
∥∥∥eTi VF(V̂−1

p − Ṽ−1
P )

∥∥∥ =
∥∥∥eTi VFṼ−1

P

(
ṼP − V̂p

)
V̂−1
p

∥∥∥
≤
∥∥∥eTi VFF−1V−1

P Π
(
ṼP − V̂p

)∥∥∥ ∥∥∥V̂−1
p

∥∥∥ =
∥∥∥eTi ΘΠ

(
ṼP − V̂p

)∥∥∥ ∥∥∥V̂−1
p

∥∥∥
≤ max

1≤i≤K

∥∥∥eTi (V̂p −ΠTVPVT V̂
)∥∥∥ ∥∥∥V̂−1

p

∥∥∥ = O
(
κ(ΘTΘ)ε

) ∥∥∥V̂−1
p

∥∥∥ (44)

where the first inequality is true because rows of ΘΠ are still nonnegative and have unit `1

norm, and the last step follows from Theorem VII.2. Now we will prove a bound on ‖V̂−1
p ‖.

Let σ̂i be the ith singular value of V̂p, then,

‖V̂−1
p ‖ = 1

σ̂K
. (45)
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From Lemma II.3, σK (VP ) = 1/
√
λ1(ΘTΘ) and σ1 (VP ) = 1/

√
λK(ΘTΘ).

Now for using the orthogonal matrix Ô ∈ RK×K constructed using Definition II.1,
(
V̂pV̂T −ΠTVPVT

)
V̂ =

(
V̂p −ΠTVP Ô

)
+ ΠTVP

(
ÔV̂T −VT

)
V̂,

then by Lemma II.3, Theorem VII.2 and Lemma II.4, we have,

‖V̂p −ΠTVP Ô‖F ≤ ‖V̂pV̂T −ΠTVPVT‖F · ‖V̂‖+ ‖VP‖ · ‖ÔV̂T −VT‖F · ‖V̂‖

≤
√
K max

1≤j≤K

∥∥∥eTj (V̂p −ΠTVP (VT V̂)
)∥∥∥+ 1√

λK(ΘTΘ)
‖ÔV̂T −VT‖F

≤ O
(
κ(ΘTΘ)

√
Kε
)

+ 1√
λK(ΘTΘ)

O

( √
Kn

√
ρλ∗(B)λK(ΘTΘ)

)

= O
(
κ(ΘTΘ)

√
Kε
)

+O

( √
Kn

√
ρλ∗(B)(λK(ΘTΘ))1.5

)

= O
(
κ(ΘTΘ)

√
Kε
)

with probability larger than 1−O(Kn−2).

(46)

Now, Weyl’s inequality for singular values gives us:

|σ̂i − σi(VP )| ≤ ‖V̂p −ΠTVP Ô‖ ≤ ‖V̂p −ΠTVP Ô‖F = O
(
κ(ΘTΘ)

√
Kε
)

σ̂K ≥
1√

λ1(ΘTΘ)

(
1−O

(
κ(ΘTΘ)

√
Kλ1(ΘTΘ)ε

))
(47)

σ̂1 ≤
1√

λK(ΘTΘ)

(
1 +O

(
κ(ΘTΘ)

√
KλK(ΘTΘ)ε

))
.

Plugging this into Eq (45) we get:

‖V̂−1
p ‖ =

√
λ1(ΘTΘ)

(
1 +O

(
κ(ΘTΘ)

√
Kλ1(ΘTΘ)ε

))
= O

(√
λ1(ΘTΘ)

)
.

The last step is true since Assumption 3.2 implies κ(ΘTΘ)
√
Kλ1(ΘTΘ)ε = O(1). Note

that we also have

‖V−1
P ‖ = 1

σK (VP ) = O
(√

λ1(ΘTΘ)
)
.
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Finally putting everything together with Eq (44) we get, with probability larger than

1−O(Kn−2),

max
i∈[n]

∥∥∥eTi V(VT V̂)
(
V̂−1
p − (ΠTVP (VT V̂))−1

)∥∥∥ = O
(
κ(ΘTΘ)ε

) ∥∥∥V̂−1
p

∥∥∥
= O

(√
λ1(ΘTΘ)κ(ΘTΘ)ε

)
.

The failure probability comes from the event that Theorem 3.1 fails, giving O(Kn−2).

Proof of Theorem 3.5. We break this up into proofs of Eqs (3) and (4). Recall that ε =

Õ
(

ψ(P)
√
Kn√

ρλ∗(B)(λK(ΘTΘ))1.5

)
is the row-wise error from Theorem 3.1.

Proof of Eq (3). Recall that Θ̂ = V̂V̂−1
p . We have uniformly ∀i ∈ [n],

∥∥∥eTi (Θ̂−ΘΠ
)∥∥∥ =

∥∥∥eTi (V̂V̂−1
p −VV−1

P Π
)∥∥∥

≤
∥∥∥eTi (V̂−V(VT V̂))V̂−1

p

∥∥∥+
∥∥∥eTi V(VT V̂)

(
V̂−1
p − (ΠTVP (VT V̂))−1

)∥∥∥
(i)
≤
∥∥∥eTi (V̂−V(VT V̂)

)∥∥∥ ∥∥∥V̂−1
p

∥∥∥+O
(√

λ1(ΘTΘ)κ(ΘTΘ)ε
)

(ii)
≤ ε ·O(

√
λ1(ΘTΘ)) +O

(√
λ1(ΘTΘ)κ(ΘTΘ)ε

)
= O

(√
λ1(ΘTΘ)κ(ΘTΘ)ε

)

= O
(√

λ1(ΘTΘ)κ(ΘTΘ)
)
Õ

(
ψ(P)

√
Kn

√
ρλ∗(B)(λK(ΘTΘ))1.5

)

= Õ

(
ψ(P)(κ(ΘTΘ))1.5

√
Kn

√
ρλ∗(B)λK(ΘTΘ)

)

with probability larger than 1−O(Kn−2). Here (i) and (ii) follow from Lemma VII.3 and

its proof, and the failure probability comes from the event that Theorem 3.1 does not hold.

Proof of Eq (4). Note ρ̂B̂ = V̂pÊV̂T
p and ρB = VPEVT

P . Note that ‖E‖ ≤ maxi ‖eTi P‖1 =

O(ρn), and ‖Ê‖ ≤ ‖E‖+ ‖A−P‖ = O(ρn) using Weyl’s inequality and Theorem 5.2 of

24



[2]. Then we have the following decomposition

∥∥∥ρ̂B̂− ρΠTBΠ
∥∥∥
F

=
∥∥∥V̂pÊV̂T

p −ΠTVPEVT
PΠ

∥∥∥
F

=
∥∥∥(V̂p −ΠTVP Ô

)
ÊV̂T

p + ΠTVP

(
ÔÊ− EÔ

)
V̂T
p + ΠTVPEÔ

(
V̂T
p − ÔTVT

PΠ
)∥∥∥

F

≤
∥∥∥V̂p −ΠTVP Ô

∥∥∥
F

∥∥∥Ê∥∥∥ ∥∥∥V̂p

∥∥∥+ ‖VP‖
∥∥∥ÔÊ− EÔ

∥∥∥
F

∥∥∥V̂p

∥∥∥+ ‖VP‖ ‖E‖
∥∥∥V̂T

p − ÔTVT
PΠ

∥∥∥
F

≤2 ·O
(
κ(ΘTΘ)

√
Kε
)
·O(ρn) · 1√

λK(ΘTΘ)
+ 1√

λK(ΘTΘ)

∥∥∥ÔÊ− EÔ
∥∥∥
F

1√
λK(ΘTΘ)

=O
κ(ΘTΘ)

√
Kρnε√

λK(ΘTΘ)

+O

(
1

λK(ΘTΘ)

)∥∥∥ÔÊ− EÔ
∥∥∥
F

using Eqs (46) and (47) and Lemma II.3.

Now by Lemma II.1,

1
ρ
‖ρ̂B̂− ρΠTBΠ‖F ≤ O

κ(ΘTΘ)
√
Knε√

λK(ΘTΘ)

+O

(
1

ρλK(ΘTΘ)

)∥∥∥ÔÊ− EÔ
∥∥∥
F

= O

κ(ΘTΘ)
√
Kn√

λK(ΘTΘ)

 · Õ( ψ(P)
√
Kn

√
ρλ∗(B)(λK(ΘTΘ))1.5

)
+O

(
1

ρλK(ΘTΘ)

)
·O

(
K2√nρ

)

= Õ

(
ψ(P)κ(ΘTΘ)Kn1.5
√
ρλ∗(B)(λK(ΘTΘ))2

)

with probability larger than 1− O(Kn−2). The failure probability comes from the event

that Theorem 3.1 does not hold.

Proof Corollary 3.7. Define the event

Ω := {Θ : λK(ΘTΘ) ≥ 1/ρ, λ∗(P) ≥ 4√nρ(log n)ξ for some constant ξ > 1}.

If θi ∼ Dirichlet(α) and Assumption 3.3 is satisfied, we have P(Θ ∈ Ω) ≥ 1 −Kn−3. If

Assumption 2.1 holds, and λ∗(B) = Ω̃(min{K,κ(B)}2K2
√
nρ

), for Θ ∈ Ω, by Theorem 3.1 and
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Lemma 3.6,

max
i∈[n]

∥∥∥eTi (Θ̂−ΘΠ
)∥∥∥ = Õ

(
ψ(P)(κ(ΘTΘ))1.5

√
Kn

√
ρλ∗(B)λK(ΘTΘ)

)
= Õ

ψ(P)
(
αmax+‖α‖2

αmin

)1.5√
Kn

√
ρλ∗(B) n

2ν(1+α0)


= Õ

(
min{K,κ(B)}2K1.5
√
ρnλ∗(B)

)
. (48)

Since maxa αa ≤ C mina αa for some constant C ≥ 1, and α0 = O(1), the last step uses that

αmax + ‖α‖2

αmin
≤ αmax + αmax

αmin
= (1 + α0)αmax

αmin
= O(1),

and by the worst case bound from Lemma 5.1, we have, ψ(P) ≤ min{K,κ(P)}2 ≤

min{K,κ(ΘTΘ)κ(B)}2 = O(min{K,κ(B)}2).

Now we are ready to obtain the failure probability of Eq (48). Consider the event A

that Θ̂ does not satisfy Eq (48). Then, by Theorem 3.1,

P(A) =
∫
Θ∈Ω

P (A|Θ) P(Θ)dΘ +
∫
Θ 6∈Ω

P (A|Θ) P(Θ)dΘ

= O
(
K

n2

)
+ 1− P(Θ ∈ Ω) = O

(
K

n2

)
. (49)

Similarly, by Theorem 3.1 and Lemma 3.6,

1
ρ
‖ρ̂B̂− ρΠTBΠ‖F = Õ

(
ψ(P)κ(ΘTΘ)Kn1.5
√
ρλ∗(B)(λK(ΘTΘ))2

)
= Õ

ψ(P)
(
αmax+‖α‖2

αmin

)
Kn1.5

√
ρλ∗(B)

(
n

2ν(1+α0)

)2


= Õ

(
min{K,κ(B)}2K3
√
ρnλ∗(B)

)
. (50)

By an argument analogous to that in Eq (49), we can show that the failure probability of

Eq (50) is O(Kn−2).

VIII Comparison with [10]

We first translate some key assumptions in [10] (Eqs (2.14) and (2.15)) with our notation.
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Assumption VIII.1. Assume for some constants C > 0 and c1 > 0,

n

CK
≤ λK(ΘTΘ) ≤ λ1(ΘTΘ) ≤ Cn

K
c1n

K
λ∗(B) ≤ |λK(BΘTΘ)| ≤ |λ2(BΘTΘ)| ≤ n

c1K
λ∗(B)

|λ2(BΘTΘ)| ≤ (1− c1)λ1(BΘTΘ)

Lemma VIII.1. If Assumption VIII.1 is satisfied, for Θ̂ estimated by SPACL, we have,

∥∥∥eTi (Θ̂−ΘΠ
)∥∥∥ = Õ

(
K1.5

√
nρλ∗(B)

)
.

Proof. By Theorem 1.3.22 of [5], ρBΘTΘ and P = ρΘBΘT have the same K largest

eigenvalues in magnitude. So Assumption VIII.1 implies that:

c1nρ

K
λ∗(B) ≤ |λK(P)| ≤ |λ2(P)| ≤ nρ

c1K
λ∗(B)

|λ2(P)| ≤ (1− c1)λ1(P).

Then the eigenvalues of P can be divided into at most 2 groups where eigenvalues in each

group are of the same order, by Lemma 5.1, we have ψ(P) = O(1).

On the other hand, if Assumption VIII.1 is satisfied, we have κ(ΘTΘ) = O(1), and by

Theorem 3.5,

∥∥∥eTi (Θ̂−ΘΠ
)∥∥∥ = Õ

(
(κ(ΘTΘ))1.5

√
Kn

√
ρλ∗(B)λK(ΘTΘ)

)
= Õ

( √
Kn

√
ρλ∗(B)n/K

)
= Õ

(
K1.5

√
nρλ∗(B)

)

Remark VIII.1. Since [10] shows `1 norm error bound, our result in Lemma VIII.1

matches theirs with an extra
√
K factor up-to logarithm factor, if we convert the bound in

Lemma VIII.1 to `1 norm by multiplying
√
K.
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IX Comparison with [11]

Lemma IX.1. Let θi ∼ Dirichlet(α). If Assumptions 2.1 and 3.3 hold, and λ∗(B) =

Ω̃(min{K,(1+α0)κ(B)αmax/αmin}2K2
√
nρ

), there exists a permutation matrix Π such that with proba-

bility at least 1−O(K/n2), ∀i ∈ [n],
∥∥∥Θ̂−ΘΠ

∥∥∥
1

= Õ

((
αmax

αmin

)1.5√n
ρ

min{K, (1 + α0)κ(B)αmax/αmin}2Kν (1 + α0)2.5

λ∗(B)

)
,

where ‖M‖1 = ∑
i,j |Mij| is the `1 norm for a matrix M.

Proof. First note from the proof of Corollary 3.7, we have (αmax + ‖α‖2)/αmin ≤ (1 +

α0)αmax/αmin, and by Lemma 3.6, we have, with high probability ψ(P) ≤ min{K,κ(P)}2 ≤

min{K,κ(ΘTΘ)κ(B)}2 = O(min{K, (1 + α0)κ(B)αmax/αmin}2). Now by Theorem 3.5, if

we sum up the squared error bound for each row, we can get a Frobenius bound:

1√
n

∥∥∥Θ̂−Θ
∥∥∥
F

=Õ
((

αmax

αmin

)1.5 min{K, (1 + α0)κ(B)αmax/αmin}2K0.5ν (1 + α0)2.5

√
ρnλ∗(B)

)

and so∥∥∥Θ̂−Θ
∥∥∥

1
≤
√
Kn

∥∥∥Θ̂−Θ
∥∥∥
F

= Õ

((
αmax

αmin

)1.5√n
ρ

min{K, (1 + α0)κ(B)αmax/αmin}2Kν (1 + α0)2.5

λ∗(B)

)

Remark IX.1. By Theorem 9 of [11], we have:

∥∥∥Θ̂−Θ
∥∥∥

1
= Õ

αmax

α0

(
αmax

αmin

)0.5
√
nKν1.5 (1 + α0)1.5

√
maxi(ρeTi Bα)

ρ
√
α0λ∗ (B)


= Õ

(
αmax

α0

(
αmax

αmin

)0.5√n
ρ

Kν1.5 (1 + α0)1.5

λ∗(B)

)
(51)

When maxa αa ≤ C mina αa for some constant C ≥ 1, α0 = O(1) and κ(B) = Θ(1), we have

ν = O(K), αmax/α0 = O(1/K), αmax/αmin = O(1) and min{K, (1 +α0)κ(B)αmax/αmin}2 =

O(min{K,κ(B)}2) = O(1), so our bound in Lemma IX.1 is worse by
√
K than Eq. (51).
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For worst case analysis, αmax/α0 = O(1), αmax/α0 = O(ν), and min{K, (1+α0)κ(B)αmax/αmin}2 =

K2, so our bound in Lemma IX.1 is worse by K2√ν(1 + α0) than Eq. (51).

Note that the proposed algorithm in [11] requires prior knowledge on α0 while our

algorithm does not need α0 as input.

X Why Pruning Works

Proving the pruning algorithm requires strong distributional conditions on the residuals

of the rows of eigenvectors. Here we present a heuristic argument of why pruning works.

Note that in the pruning algorithm, essentially we are estimating the density of points in

an ε-ball around every point i which has sufficiently large norm. This should work only

if the points outside the population simplex have lower density in their ε-balls than the

corners of the simplex. Otherwise, the pruning will remove the corners of the population

simplex, diminishing the quality of the pure nodes. We consider K ∈ {2, . . . , 10} and

Figure I: Top panel: fraction of nodes with high norm. Bottom panel: fraction of

nodes with high norm pruned. We vary K ∈ {2, . . . , 10} on the X axis and vary n ∈

{2000, 3000, . . . , 6000} on the Y axis.
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n ∈ {2000, 3000, . . . , 6000}, α = 1K/K, Bii = 1,Bij = 0.001 and ρ = log n/n. For each

combination we use ε as the median of the row-wise difference of the empirical eigenvectors

from their suitably rotated population counterpart. Let y = maxi ‖Vi‖ denote the largest

row-wise norm of the population eigenvectors; recall that this occurs at one of the corners of

the simplex. Let S0 denote the set of nodes with high empirical eigenvector row-norms (the

“high-norm” nodes), defined as S0 := {i : ‖V̂i‖ ≥ y+ε}. SPA will choose at least one of these

nodes (and possibly several of them) as its estimated corners. Let B(x, ε) denote the `2 ball

of size ε centered at point x. For each of the K corners ci of the population simplex (ci equals

some row of VP ), we compute the number of neighborhood points xi := |{j|V̂j ∈ B(ci, ε)}|;

let δ := mini xi be the minimum neighborhood size among these corners. Similarly, for

each i ∈ S0, we compute zi = |{j|V̂j ∈ B(V̂i, ε)}|. Now we count the fraction of nodes in

S0 that could be pruned without pruning the corners ci of the population simplex. This

fraction is m =
∑

i∈S0
1{zi<δ}
|S0| . Fig I shows that for almost all combinations of K and n, we

have m = 1, i.e., all the nodes in S0 do get pruned, except for K = 10, n = 2000. This is

expected, since for large K and small n the pure node density around the corners of the

population simplex will be small. Fig I shows the fraction |S0|/n of high-norm nodes. For

all (K,n) combinations pruning removes about a 2% to 6% of the nodes.

XI Extra simulation results

Changing B: In Fig II (i), we plot the relative error in estimating Θ against increasing

off diagonal noise ε of B. We take K = 3, ρ = 0.15, αi = 3/K = 1, Bii = 1, i ∈ [K]. We

see that SPACL outperforms SAAC, SVI, and OCCAM over the entire parameter range.

For large ε, it is also better than GeoNMF and BSNMF.

We also include simulation results with K = 7. We take ρ = 0.15, αi = 3/K = 3/7,

Bii = 1, i ∈ [K]. We see in Fig II (ii) that SAAC performs poorly, and OCCAM performs

similarly with SPACL, which can also be implied from the simulation results on changing
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(i) (ii)

Figure II: Error against ε: we use Bii = 1, Bij = ε for i 6= j. (i) K = 3. (ii) K = 7.

K. SPACL is more stable and outperforms GeoNMF and BSNMF.
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