Supplement for

Estimating Mixed Memberships with Sharp
Eigenvector Deviations

Abstract

In this document we present technical details and accompanying lemmas which
are necessary for the main results in the main manuscript. When we make references
to equations or theorems etc. in the main document, we follow the numbering scheme
of the main document, and the references do not have any alphabets in them.



I Identifiability

Our proof links the MMSB parameters ©® and B to the eigen-decomposition of the probability
matrix P, and then exploits its geometric structure. Specifically, we show that the eigenvector
row corresponding to any node lies inside a polytope whose vertices correspond to pure nodes.
When B is full rank, the polytope has K linearly independent vertices, and the community
memberships @; of each node ¢ are fixed by the position of its eigenvector row with respect
to these vertices. This proves part (a) of Theorem When B is rank-deficient, the points
corresponding to the pure nodes are linearly dependent. However, under the conditions of
part (b), the constraints on ® and B are shown to make the model identifiable. In other

cases, we construct a new @' that still yields the same probability matrix P. This proves

part (c).

Proof of Theorem [2.1 Without loss of generality, we absorb p in B, and reorder nodes so
that the first K nodes contain one pure node from each community. Thus, O(1 : K, :) = I.
Let P = VEVT be the eigen-decomposition of P, with V e R»*1kB) et Vp =
V(1:K,:). Lemma shows that V.= ©®Vp. Thus, for any node i, V(i,:) lies in the
convex hull of the K rows of Vp, that is, V(i,:) € Conv(Vp). We will slightly abuse the
classical notation to denote by Conv(M) the convex hull of the rows of matrix M.

Now, suppose P can be generated by another set of parameters (©’, B’), where @’
has a different set of pure nodes, with indices Z # 1 : K. By the previous argument,
we must have V(Z,:) C Conv (Vp). Since (0',B’) and (0, B) have the same probability
matrix P, they have the same eigen-decomposition up to a permutation of the communities.
Thus, swapping the roles of ® and ©’ and reapplying the above argument, we find that
Vp C Conv (V(Z,:)). Then Conv (Vp) C Conv (V(Z,:)) C Conv (Vp), so we must have
Conv (Vp) = Conv (V(Z,:)). This means the pure nodes in ® and @’ are aligned up to a

permutation, that is, V(Z,:) = MV p, where M € RE*X {5 a permutation matrix.



Now, V=0Vp =0'V(Z,:) = ©MVp, which implies
(©@-0'M)Vp =0 (26)

Since V = OVp and rank(®) = K, we have rank(Vp) = rank(V) = rank(B). Hence,
if rank(B) = K, Vp is full rank, so ® = @'M. Thus, ® and ©' are identical up to
a permutation. To have the same P, B and B’ must also be identical up to the same
permutation. Hence, the MMSB model is identifiable. This proves part (a).

Now, suppose rank(B) = K — ¢ < K. We first permute the columns of ®, and the rows

and columns of B, so that

C \ cW
WTC‘ wWICcw

B = , (27)

where C € RE-Ox(K=0 ig fy]] rank, and W € RE=0%¢ We see that
C [ Loo|W } _V(1: (K —1),)EVL,
w7C { T, \ W } — V(K -(+1):K,:)EVE,

The first equation shows that rank(V (1 : (K — ¢),:)) = rank(C) = K—{,soV (1: (K —{),:)

is full rank. Hence,

Iy

WT

V(K—-(+1):K:)=W'V(1:(K~-{),)=Vp= V(1:(K—10),:) (28)

Case 1: rank(B) = K — 1 (so W is a vector) and WX 1y _, # 1.

Now using Eqgs and , we have

Iy

(© — M)
WT

V(1:(K—-1¥),)=0=0=0"M. (29)

The above equation is derived using @1 = ©'1x = 1,,, and W 1,_, # 1.
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Clearly B’ = MBM' as well, so the MMSB model is identifiable. From Eq (27), we
have B((K —(+1): K,:) = WIB(1: (K —/(),:), s0 WT1g_, # 1 if and only if the last
row of B is not a affine combination of the remaining rows. It is easy to see that the same

holds for any row of B. This proves part (b).

Case 2: rank(B) = K — 1 and W'l _, =1, orrank(B) < K — 1.
We will construct a ®' # O that yields the same probability matrix P. Let the

completely mixed node be m, so 6,,; > 0 for all communities j. We use

I
%= 0, + A" [-WT |1] ifj=m,

where € is small enough that ¢;,; € (0,1) for all communities j, and 8 € R’ # 0 is such
that 37 [—WTIK,E + 14 = 0. Note that such a B always exists when ¢ > 1 and can be
arbitrary vector when W71, _, = 1,. Hence, each row of @ sums to 1, and ©’ is a valid
community-membership matrix. Additionally, @ Vp = @V p.

Finally, we will show that (©’,B) and (©,B) generate the same probability matrix.
Note that B = Py.i 1.0 = VPEVE. Hence,

OBO’ = OV,EVLOT = VEV! =P = @' V,EVL0T = @BO".
This proves part (c). O

Proof of Theorem[2.3. Consider an MMSB model parameterized by (@) BMW), with P =
e@HBWae@M” (we absorb p in B without loss of generality). We want to construct a
(@@ B®) that gives the same probability matrix P. The idea is to construct a matrix M
such that ©® = @M and B® = M 'B®(M”)~!. The difficulty is in ensuring that all
constraints are satisfied: @@ 15 =1, ©® >0, and 0 < Bl(-?) <1 for all 7, j.

Without loss of generality, suppose that the first community does not have any pure

nodes. In other words, for all nodes i € [n], 92(11) < 1—¢ for some § > 0. Consider the



following M:

14 (K 1) —eT

M =
0 1% (- (K - Dolx

where € is a small positive number (0 < € < §). It is easy to check that M is full rank (for
small enough €) and M - 1 = 1. Hence, 01, =00M1, =1,
For any node ¢ and for j > 1,
0 = 61 (14 (K — 1)) > 0,
K K
0 = 00+ 00 My > 01+ 326 > e6? > 0,
=2 (=2
where we used € < § and 91(1)11( = 1. Hence, 01 > .
Finally, we must show that B = M~'BM®)(M7)~! has all elements between 0 and 1.
Note that
(K —1)é ‘ —e21t

M — I =
0 ‘ 61[{;11%71 — (K — 1)€IK_1

0 [[M — Ig| > — 0 as e = 0. Since M~ is continuous in M, we have |[M~! — Ix| . — 0.
Thus,

R
< ot o 2 ] 5

—0ase—0.

Since BS-) € (0,1), we have Bg) € (0,1) for € small enough, completing the proof. O]

II Some Auxiliary Results, Proof of Lemmas [3.2

Definition II.1. (A construction of rotation matrix) Consider the discretization defined in

Definition . The Davis-Kahan Theorem states that there exists a rotation matrix O such



that ||\7 — VOH r is small. In this definition we will carefully construct this matrix. Consider
the intervals resulting from the discretization of population eigenvalues in Definition [5.1]
Now, from Theorem 2 of [I], 30y, such that

V8ni||A —P||

gk

IRkl 7 = [IVs, = Vs, Okllr < (30)

Typically the denominator is f; := min(As, — As, —1, min(Ae, — Ae, 1, Ae,, ). We now construct
our O by stacking the Oy, matrices on the diagonal of a K x K matrix. This is also a valid
rotation matrix. Now, let E; by the submatrix of E corresponding to eigenvalues in Sk.

Similarly define ;. Furthermore, let R := [Ry]...|Ry].

Lemma I1.1. If Assumption holds, then there exists an orthogonal matriz O € REXK

constructed using Definition that satisfies

VKA —P|
A (P)

E— (A)TE(A)HF =Op (sz/np) (32)

IR|r < (31)

with probability larger than 1 — n=3.

Proof. Consider the rotation matrix O, the residual matrix R constructed as in Defini-

tion[[L.1] This gives us the Frobenius norm of R as follows, since by construction gy > A*(P).

V8KI|A — P
Rl < RL|%Z <
IRlle < 57 IRl < =75

Finally note that, using Lemma [[II.1] since A;, < Zle n;gr < Kgp,

V8nk||A — P,
g

IRxOFExllr < |Rillrl|Exl < = Op(K\/ng+/np) (33)



Now we use these intervals as follows.

E— OTEOHF — HVEVT — VOTE()VTHF
= [Ax — (V+RODE(V+RODT|»
<||[Akx —P|lp +2|ROTEVT||; + |[ROTEORT ||

Py Py

:Op(\/Knp)—l—Pl—f-Pg

The last step is true because |Ax —P||r < VK| Ax—P|| < VK(]|A—Ak|+]||A-P]) <
2y/Knp with probability at least 1 —n~" using Weyl’s inequality and Theorem 5.2 of [2].
As for Py, note that: Py < [ROTE|p < /Sy [RkOTEL||% =: Op(K*2 /np).

As for P,, we have:

A K?np
P, <|ROTE||r|R|F =
s < IROTE R = Op (1 0¥

Thus the final bound is Op(K?,/np(max(1/K3/% 1/vVK, /up/\*(P))) = Op(K?,/np) using
Assumption 3.1} The failure probability comes from the failure of event || A =P|| = Op(\/np).
Taking r = 3 we get the required bound. O

Lemma I1.2. For ® € R™ X with 0], = 1 and 6;; > 0, Vi,j € [n], M (©TO) <

max; 170e; < n and \x(©7O) < min; 17 Oe;.

Proof. By Proposition 2.4 of [3], as ®T© is a nonnegative matrix, A\;(©70) is upper
bounded by its largest row sum and Ax(©T©) is lower bounded by its smallest row sum.

For the i-th row of ®7®, its row sum is:
el®'01x =071, =170¢; < n.
Thus the result follows. O

Lemma I1.3. Under Assumptz'on we have OTO = (VPV}T;.>_1, which implies \,(VpVE) =
1/Ak(070), \c(VpVE) = 1/A(O7O) and k(VpVE) = 1 (©70).
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Proof. From Lemma V =0Vp, so
I=VVv=vie'ev.

1
As Vp is full rank, we have @70 = (VPV}Q) , which gives

1
A (©70)

1

Ty _ S
Al(VPVP) - A (@T@)’

and Mg (VpVE) =

so k(VpVE) =k (@TG). O
Proof of Lemma[3.6. 1f 6; ~ Dirichlet(a), let us consider 6; as a random variable. Denote
M=0"6 = znjeief.

i=1
Note that M — E[M] = 3, X; where X; are independent mean zero symmetric K x K
random matrices. We have

diag(a) + aa®
ao(l + ao)

_ opdiag(a) — aa’

E[0,0] = Cov(8;) =

Furthermore, since [|6;]|; = 1, and oy = >, i, we have | X;|| < 670, + |E[0,0]]| <

amax+|‘a”2
L+ ao(1+ag)

|E[X?]|| < E[||X?]]] < E[||X;]]?] < 4. Using standard Matrix Bernstein type concentration

< 2. Finally, since the operator norm is convex, Jensen’s inequality gives:

results (Theorem 1.4 of [4]), for large n we get:

- - t2
P((|IM—-EM||| >t) < K —_— | =
(N~ BN > 0) < Ko (L) =50

Now Weyl’s inequality gives, with probability at least 1 — &,
M(M) = MEM)] <t Ae(M) = Ax(E[M])] < ¢

For the population quantities,

° Qmax + HCXH2 ¢ Gmin
MEM) < ———M— Mg (EIM]) > ———
() < et (B[] "

- Oé()(l + Oéo)



For A\, (M) we take ¢t = nomactlal? o [5575—, 5] and hence §;, < K exp (

2 ao(l+ao) 2v(14ap)”? 2
For A (M), we take ¢ = 2]. Hence §; < K exp(

n —
2v(14ap)? 2

——_n
36v2(1+ap)? ) °

Qmin c [

n _#>
2 ap(l+ap) 36v2(1+ap)?/°

Hence the condition number of M can also be bounded as:

namax+|la|l2
AM(OTO)  tmeia
07e) = < 00t =3
K( ) )\K(@TG) — Qmin

n .
2 Oto(Oéo-i-].) Q'min

Qmax + ||O¢||2

]

Lemma I1.4. Let \*(P) denote the K™ largest singular value of P. We have \*(P) >
pA*(B)Ag (©7O).

Proof. First note that, by Theorem 1.3.22 of [5], we have (BOT)® and ©(BOT) have the

same K largest eigenvalues in magnitude, then
M (P) = X (pO@BO”) = \*(pBOTO) > p)\*(B) Ak (©70). (34)

The inequality holds because for all full rank positive definite matrix M;, My € REXK,
(M M) 7Y < IM7Y|IM5 Y], and as ox(M;) = 1/[|[M7!|| (same for M; and M;Ms),

where o (.) denotes the K" largest singular value of a matrix. Then we have:
O'K<M1M2> Z OK (Ml) OK (Mg) .

]

-1
Proof of Lemma[3.3. Note that @70 = (VPVE) by Lemma [[I.3] thus for pure nodes,

T 2 T T, T Tx = L _¥
el Vp| = maxe; VpVpe; < max x- VpVpx =4 (VrVE) = A\ (O7O)

As for other nodes, their rows are convex combinations of the rows of pure nodes and would

max
(2

be smaller than or equal to the norm of the pure nodes. Thus the result follows.

Note that by Lemma [2.3, e/ V = 67V p, then

2 or 0;
min eiTVH =min 8] VpVEO! = min||6;||> ——-VpVEL_—"- > min 0| min x'VpVix
é i i 161 161 — =1

. . 2 T\ _
_mi1n||07;|| K (VPVP) M (O7O) T K\ (07O)



where for the last inequality we use for any i € [n], ||0:]| > ||6:||:/vVK = 1/V/K. Thus the

result follows. O

ITI Proofs for Section 5

III.1 Proofs of Lemma [5.1]

Lemma III.1. Consider the intervals defined in Definition [5.1. We have for positive

eigenvalues: Ay, < K nigy.

Proof. We prove this by induction. First, note that the smallest positive eigenvalue is larger
than \*(P) by definition. For k = 1, A\;;, — Ae; < (n1 — 1), and hence Ay, < njde, = n19;.
Now assume that A, < Zle n;gx. Hence,

k k+1

/\5k+1 S (nk-‘rl - 1)gk+1 + (Aek+1 - )‘sk) + )‘sk = Nk4+19k+1 + angk S Z NiGk+1-
i=1 =1

The last step holds since g < ggi1- O]

Proofs of Lemma [5.1 First consider positive eigenvalues. By Lemma Asp < Gk Yk on; <
g > n; < grK and by definition A, /gr < k(P), so s, /g < min{K,x(P)}. From
construction of the eigenvalue intervals, we have: A;, — A;,_, < nggr. Also note that
o (e = M) Joe = S5 (Aey = Aaly ) /N (P) = Ao /X (P) < 01 (P)/N(P)
k(P), where o1 (P) is the largest singular value of P, we have -1, (()\Sk — >‘Sk_1) /gk)

IN

min{K,x(P)}. A similar argument can be made for negative eigenvalues. So ¥(P) <
2min{ K, k(P)}%

If eigenvalues of P can be divided by a constant number of bins where in each bin the
eigenvalues are of the same order, for each bin, there will be at most a constant of intervals
defined in Definition or the eigenvalues can not be of the same order. In that case, A
A

Sk

and g, are of the same order and I + I~ is a constant, so ¥(P) = O(1). O

€k

10



II1.2 Proof of Lemma

Proof. Since Ga(z) — Gp(z) = Gp(2)(P — A)Ga(2),

Ga(2) — Gp(z) = (M _ I) (P — A)(Ga(2) — Gp(2)) + Gp(2)(P — A)Gp(z)

z

Bringing 2=F(G4(z) — Gp(z)) to the LHS, and using the definition of the resolvent of
A — P we get:

Ga(z) — Gp(z) = 2Ga-p(2) (Mz(A — P)(Ga(z) — Gp(2)) + Gp(2)(A — P)GP(Z))
Ro R
(35)
As it turns out, each of the rows of zR either have small Frobenius norm or they
disappear when combined with 2Ga_p(2) post integration. We will show this step by step.
Note that, using Eq (@, R in the above equation can be decomposed as:

A-P A-P
Gp(2)(A —P)Gp(z) = —t M.(A - P)Gp(z) — M.,
JZ% Re ZR

Next, we show that 2Ga_p(2)R; disappears upon integration. Since by construction
Vz € Cy, VEk, |z| > ar > ||A — P||, none of the contours contain zero, Eq immediately
gives:

1 1 /A —P\!
Ga_p(2)Ridz — — 74( )dzo 36
e Ckz a-p(2)Ridz ; e > z (36)

Thus Eqs (12)), and give us,

el (V,VE -V, V) = e!'Ga_p(2)2(Ro + Ry — Rs)dz

1
_27r\/—1 Cr
A, A, b - az + 2
1T (ViVE =V, V)| < 22T ax |7 Ga_p(2)2(Ro + Ra — Rs))|

k

e zeC,
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Now we bound each part individually.
le; Ga-p(2)2(Ro + Re)|| = lle; Ga-p(2)2M.(A — P)Ga(2)]|
< lle; Ga-p(2)2M: | p[|A — P||Ga(2)]]

()
< [lIGa) A = PlE.[le; Ga-p(2) V] =: Pi(2)
Step (i) uses Eq (). Finally we also have:
lex 2Ga-p(2)Rs|| < [le; Ga-p(2)(A — P)VI[||E.|| =: Px(2)

Thus, the statement of the lemma follows. O

I11.3 Proof of Lemma [5.3

Proof. For ease of notation we will first prove this for one population eigenvector v. Recall
that H:= (A — P)//np. Let X; = (A;; — P;;)v;, where v; is the j component of v. We
have |X;| < ||v]« =: M. Since © is assumed to be fixed for this lemma, P is fixed and X

are mean zero independent random variables. Also note that, since ||v|| =1 and P;; < p,
> var(X;) =) E {(Aij - Pij)%ﬂ =Y Py(1-Py)i<p
J J J

An application of Bernstein’s inequality gives us:

P (’ZJ:XH > t) < 2exp <_2(Zjvar()§j) —i—tM/B)) =: 2exp(—A)

First note that the RHS of the above equation is a decreasing function of t. We set

t = 4max(M, /p)logn. Consider the following two cases:

Case 1: M > ,/p: We have t = 4M logn. Hence,

16M?1og*n 16M?1og® n
< exp

1
2p+8/3M2logn "~ 2M? +8/3M2logn n3

n3

IA

exp(—A) < exp (
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Case 2: M < ,/p: We have t = 4,/plogn. Hence,

16 log? 16plog? 1
exp(—A) <exp | — Oplog” n <exp|— bplog < —
2p +8/3M/plogn 2p+8/3plogn n3

Applying this to all K population eigenvectors we have:

2K
P (3k € [K], [e] (A — P)vi| > 4max(||vi||o, /p) logn) < 5 (37)

3

Recall from Lemma that, Vk € [K],||[Vi|loo < max;|lel V| < ,/m. Then if
Assumption [.1]is satisfied, we have, ||vi||s < \/p, Vk € [K]. So from Eq. (37),

2K
P (Elk € [K], le] (A — P)vy| > 44/plog? n) < —.

n3

Note that Vk € [K], ||[Vi|leo > 1/+/n, then,

1 K
P (3k € [K],|e] Hvi| > 4lognl|vi||oc) < P (Hk € [K],|eTHv,| > 4 Oi ”) =0 () .

I11.4 Proof of Lemma [5.4]

Proof of Lemma (5.4, For t > 2, we claim that this result follows via straightforward

modifications of the proof of Lemma 7.10 in [6], where the main two elements are:

1. E[[H;;|™] < % for m > 2. Note that for our setting, Assumption implies that
np > 1. Hence |H;;| <1, and hence

E[[H,["| < E[|H,,|?] <
[IH;|™] < E]] JH_np

SEES

2. The authors use a higher order Markov inequality. This inequality upper bounds the
number of terms that are non-zero in the summand via a multigraph construction for
path counting. Then these non-zero elements are bounded by their absolute value
and hence, even though v does not equal e, just the fact that it is fixed and hence

independent of H,;, is enough to apply the proof directly to get the required result.
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Using an almost identical argument as [6], we have:
Ellef H'v[”] < (tp)"||v]lA,
Now a higher order Markov inequality, with p = (logn)¢/2t gives:
tp)||v]|2 1
P (1eTHV| > (logn)|vil) < PV L
(logn)™[lvise  glos™
= exp(—(logn)* log v'2) < exp(—(logn)*/3)

IV Comparison with [7] on row-wise deviation of eigenspace

Here we give a row-wise error bound for eigenspace using Abbe et al. [7]’s result.

Lemma IV.1. For P = VEV? and A = VEVT as P and A’s top-K eigen-decomposition

respectively, we have

(H(©7©))2K Vi )
VPO (B)P Ak (OTO))13
(k(©7©))2 K \/n 1
VAN B (O7e)5 [y Jere)) )

|Vsgn(VIV) — AVE™ o0 = Op (

[Vsgn(VIV) = V]aeo = Op (max (

where ||[U||s00 = max; |l€l Ul|| denotes the mazimum row norm of a matriz U, and

sgn(VTV) is the matriz sign function

sgn(VIV) = U, UY,  SVD of VIV is VIV = U; ZUT.
Proof. First from Assumption A3 of [7] we have ¢ /pn < yA* for some constant c. A* is
the eigen-gap, which is A*(P) > pA*(B) A\ (©T©) from Lemma This requires

cVn
72 /AN (B)Ax(©7©) (38)

14



Using Eqs (13) of Corollary 2.1 in [7], we have,

IVsgn(VIV) = AVE™ 3500 < sk + (1)) (7 + (1)) [V]|200

1
(Lemma < k(K +e(1)(y + @(’Y))AK(@T@)-

k is the condition number of P which is upper bounded by:

K
A(B)

k< Kk(OTO)K(B) < K(OTO) H(]!) x(©TO)

Since p(z) is typically bounded by a constant and ¢(x)/x non-increasing, we have,

IV sgn(VTV) — AVE~" [ = Op (“Q'VAK;@T@J
o (0
Vi (B) ( (076))1
o, ({eTeK )
(A(B))?  /pA(B)(Ak(©7O))15
op( TR Y
VP (B))} (A (©7©))"2

Furthermore, using Eqs (14) of Corollary 2.1 in [7], we have,

§'v

(39)

IVsgn(VIV) = Vs < [Vsgn(VIV) = AVE™ 500 + 9(1) | V]2sec

:Op max (H(P)>2\/ﬁ 1
VPN (B) Ak (©7O))107 [\ (87O)

o [ [ (B(O7©)E !
_OP( (ﬁ(A*(B))3(AK<@T@>)1'5’ AK<9T6>)) o

O

Remark IV.1. Our bound in Theorem has better dependency on \*(B) comparing to
Eq when \*(B) goes to 0 (k(P) goes to infinity). If k(P) = O(1) or \*(B) = ©(1)
or K = O(1), the bound in Theorem is comparable or better than that in Eq (39).

15



Howewver, in comparison to their eigenvector deviation bound from FEq , we have a
tighter bound by an order of 1/\/np when K = O(1), \*(B) = (1), x(P) = O(1) and
Mg (©TO) = Q(n). As a matter of fact, when 0; ~ Dirichlet(a) and aupax < Cami, for some
constant C' > 1, we have v = ag/amin = O(K) and by Lemma with high probability
M (©TO) = Q(n/v) = Q(n) when K = O(1).

V  Comparison with [8] on row-wise deviation of eigenspace

Here we give a row-wise error bound for eigenspace applying Cape et al. [§]’s result.

Lemma V.1. For P = VEVT and A = VEVT as P and A’s top-K eigen-decomposition

respectively, if \*(P) > ||A — P||s, then there exists an orthognal matriz Wy € REXE such
that
IV = VWymee = O o (41)
Vi T X (B)(Ak(07))1 )

Proof. From Lemma , IV]2se < W. By applying Theorem 4.2 of [§], if
A(P) > [[A = P,

V= VWl < 10 (B2 v
where [|A =Pl = max; >"; |A;; —Pjj|. Note that as E[}; [A;; —Py;|] = X, E[|Ay; —Py|] =
>;[Pij(1=Py;) + (1 = Py;)Py;] = O(pn). By applying Chernoff bound, it can be shown that
for all i € [n], 3; |Aiyj — Pij| = Op(pn). Then [|A — Pl = max; 3, |Ay; — Py;| = O(pn)
with high probability. From Lemma [[1.4, we have \*(P) > pA*(B)A\x(©7®). Then we

have,

IV = VWy|250 = Op <)\*(B)(AK(@T@)>1'5> '

16



Remark V.1. Our bound in Theorem is tighter by an order of 1/\/np comparing to
Eq when K = O(1).

Note that Lemma is a direct application of the perturbation bound in [§] to the
MMSB model. If we use the more careful analysis of the authors for the p-correlated SBM

graphs, together with our Lemma [5.3] we can get a better bound as in the following Lemma.

Lemma V.2. For P = VEV? and A = VEVT as P and A’s top-K eigen-decomposition
respectively, and Wy = sgn(VTV) € RE*E we have

IV = VWrlle-oe = Or (pw(B))?(AK(@T@))?) | v

when A\ (©TO) = Q(K) and p(A*(B))? < e (676)

Proof. Using Corallary 3.3 and Proposition 6.5 of [§], noting that (I — VVT)P = 0, we

have the following decomposition and bound:

IV = VWy 2o <[T = VVT)(A = P)VWyE 5o
+ @~ VVI)(A = P)(V ~ VWy)E |20
+[VVIV = Wy)l200
<A = P) Voo [ETH] + [V |25 VTl (A = P)V] BT
T = VVT o |A =PIV = VW |[E7|
+ [ Vl2sa VIV = W

By Lemma , we have [[(A —P)V]las00 = Op(vVEnp)||V]|2-00, SO
[(A = P)V] < VEI(A =PIV = Op(K /TR V]2

We also have [|A — P[| = Op(yp). [ = Op (smore; ) from results in Sec I By
Lemmas 6.7 and 6.8 of [§] and using \*(P) > pA*(B)Ax(©7O) from Lemma we have

A . \/ﬁ A . n
IV =VWy| = 0r (r@haere) and VIV = Wyl = Or (mmdaerey:)- From
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Lemma IVl2soo < %@. It is also easy to get ||[I—VVT]||y_ o < 2. Putting these

VAr(©TO)

bounds together, we have:

n VEn (14 /K/ c(070)) ))

IV =VWrllosoe = O (max (ﬁ(A*(B))Z(AK(eTG))Q’ VN (B)(Ak (7)1

=Or <p<x<B>>2<ZK<®T@>>2> |

when A\x(©70) = Q(K) and p(\"(B))* < i5—(orey- -

Remark V.2. Our bound in Theorem has better dependency on \*(B) comparing to
Eq when X\ (B) goes to 0 (k(P) goes to infinity). When A\*(B) = O(1), x(P) = 6(1),
and A\x(©TO) = Q(n/K), our bound in Theorem|3.1| is tighter by a factor of \/p comparing
to Eq . As discussed in Sec when @; ~ Dirichlet(a) and amax < Cami, for some
constant C' > 1, with high probability \g(©TO®) = Q(n/K) > K, and p(\*(B))? <

TAn(67T6) = O(1) is corresponding to the interesting regime when p or \*(B) is small.

VI Row-wise eigenspace concentration for general low

rank matrix

Note that although our focus of this paper is on MMSB, Theorem can be easily extended
to handle any low rank matrix. The proof is almost identical to that of Theorem [3.1] just

instead of assuming Assumption is satisfied, we have some general conditions. The new
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events should be:

& = {max|lvill« < V7| P(En) <5
& = {\(P) > 4/np(logn)*} P(E3) < 6
& ={|A-P| < Cynp} P(&)<n™ (43)
& = {|elHvy| < 4logn|[villeo, ¥k € [K]}  P(£))<O (K/n*) + 6,
(&)

&= {’e?Htvk‘ < (logn)®||vi||oo, Yk € [K]} P(&
If we use the new events in Eq in the proof, we can get the following Theorem:

Theorem VI.1. Suppose P has rank K, max; ; P;; < p. Let A;; = Aj; ~ Ber(P;;), V and
V are P and A’s K leading eigenvectors respectively. If P(max; ||vills > VP) <01, and
for some constant & > 1, pn = Q((logn)*) and P(A\*(P) < 4,/np(logn)*) < 5, then with
probability at least 1 — §; — 0o — O(Kn=?),

e (97 = V)] = 0 (PR (14 o m ol + 207%).
€n 7

Remark VI.1. For MMSB, it is easy to check that the condition \x(®T®) > 1/p in

Assumptz'on is only used in the proof of Lemma in Sec to show max; || Vil < /P,
so conditioned on &£ and &, the proof goes through. If we plug in the upper bound of

max; ||Vil|e from Lemma and lower bound of \*(P) in Lemma we can get the
bound in Theorem [3.1) using Theorem [VI.1]

VII Consistency of estimated quantities

Proof of Lemma[3.. To see that the pruning algorithm returns identical nodes (up-to ties)
is straightforward. This is because the pruning algorithm proceeds by calculating Euclidean

distances between pairs of nodes for nearest neighbor computation. We have

V97 (e — €))7 = (e — €) " VV (e, — &) = [ V7 (e, — ;)]
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Thus the pairwise distances between columns of VVT are the same as that between columns
of VT. As for the SPA algorithm, we prove the claim by induction.

Base case: For step k=1, as
”va91'||2 - ez‘TvavaGi = eiTvaez‘ = ||VTei||27

picking max norm will give the same index, denoted as k.

Now for V7, the vector whose projection is removed is VTekl, and the normalized vector
is u=VTe, /| VTey, ||, then for VVT, the vector whose projection is removed is VV7ey,
and its normalized vector is u; = VVTe,, /|[VVTe, || = VV e, /||VTes || = Vu.

Now

|I(I — ululT)\A/'\A/'TeiH2 = [|[(I— \A/'uuTVT)\A/'\A/'TeZ’H2
= [[VI—uu") Ve |* = (I - uu”) Ve,

then for step k& = 2, picking max norm will also give the same index.

Induction: Suppose for first £k — 1 € [K — 1] steps SPA on VT and on VVT will
give the same indices as S,_1, then for the k-th step, we are removing the projections of
the £ — 1 columns in Sj;_; selected before, now denote the singular value decomposition
(Vs,_ )T = USHT, then the projection matrix on columns of (V)7 is UU”. Also note
that V(Vg, )T = (VU)SHT, it is casy to check that this is singular value decomposition of
V(Vs, )T, and the projection matrix on columns of V(Vg, )T is VU(VU)T = VUUTVT,

Now the norm we need to pick from for SPA on VV7 is
|1 VUUTVHVVT e || = | V(I - UUT) Ve = ||(I-UUT) Ve,

so the norms to pick for SPA on V7 and on VV7 will still be same and picking max norm

will also give the same index. O]

Lemma VIL.1. (Theorem 3 of Gillis et al. [9]). Let M' = M + N = WH + N € R™*",
where M = WH = WIL|H'], W € R™" H € Ry and X, H},; <1, Vj and r > 2.

20



Let K(W) = max; [|[W (:,9) ||2, and ||N (:,1) || < € for all i with

¢ < 0,(W)min (2\/:T1 i) (1 " SOfQ(YW); )

and J be the index set of cardinality r extracted by SPA, where o,.(W) is the r-th singular

value of W. Then there exists a permutation P of {1,2,--- ,r} such that

max M, 7(j) = W (- P(j)) || < €= ¢ (1 ; 80{,{2((WW)) ) |

T

Theorem VIL.2. Let S, be the indices set returned by SPA in Algorithm |1, V, = V(S,,:).
If Assumptions and are satisfied, then there exists a permutation matriz IT € RE*K
such that

max HeJT (Vp - HTVP(VTV)> H =0 (/{(@T@)e)

1<j<K

with probability larger than 1 — O(Kn=?), where e = O (ﬁA*(§§(P:\);<(@®))1-5) is the row-wise

error from Theorem [3.1, and the rows of Vp € REXK correspond to pure nodes.

Proof of Theorem[VII.Z Note that from Lemma , V=0Vp Let M = VVT, W =
VVL H =0T, r = K, then for M’ = WH + N, we have ||N (i) ||o < € uniformly with
probability larger than 1 — O(Kn~2) by Theorem . W.L.O.G., let the first K rows of
® be K different pure nodes. Now use Lemma there exists a permutation 7 of
{1,2,---, K} such that

o, IM,0) = Wi )l = e (14 505805 = 0 (ste7)e),

1<j<K

since K (W) = max; [|[W (:,4) [l < 01(W) and 243 = 5(W) < 5(Vp) = O (1/s(©70))
by Lemma .3

So 3 a permutation matrix IT € RE*X such that

max || (\A/\Afg - WH) ejl| =0 (H(@T@)E) ,

1<j<K
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taking transpose, it gives

max_|le] (V,V" = TI"VpVT) || = O (s(©7©)e),

1<j<K

and

max Hejr (Vp — HTVP(VT\A/))H = max H (V v — TVPVT) VH

1<j<K 1<<K

< max o] (Vo V7 —mV VT [[9] = 0 (s(@7O)e)

T 1<i<K
with probability larger than 1 — O(Kn~2). The inequality follows from Proposition 5.6 of
[8]. O

Lemma VIL.3. Let S, be the set of of pure nodes extracted using SPACL. Let Vp denote the
rows of V indexed by Sy, and Vp denote the pure nodes of V. Then, if Assumptz’ons
and 3.9 are satisfied,

IV(VIV) (V,! = (@Va(VI¥) )| = 0 (,/Al 070K (@T@)e>

Y(P)VEn
VPN (B) (A (©T@))15

error from Theorem and rows of Vp € REXE qre corresponding to pure nodes.

1€[n]

with probability larger than 1 — O(Kn™?), where € = O ( ) is the row-wise

Proof of Lemma [VIL.3. Define by F := VTV, and Vp := II"V,F, then,

el V(VIV) (V! = (@"V,(VIV) )|
=|lef VE(V, ! = VY| =

el VEV! (Vp = V,) V|

p

< |erVERVTL (Ve - V) |3 —1‘ = |efert (v —v,)[ |V,
< s [lef (V, - VRV [V = 0 (x(87@)c) [V, (44)

where the first inequality is true because rows of OII are still nonnegative and have unit ¢,
norm, and the last step follows from Theorem [VIL.2l Now we will prove a bound on ||V; .

Let 6; be the i singular value of Vp, then,

. 1
VIl = 45
IV =5 (45)
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From Lemma 1.3} o (Vp) =1/1/M(OTO) and o, (Vp) =1/,/ A (OTO).

Now for using the orthogonal matrix O € RE*K constructed using Definition m,

(V,V' ='Vpvh) V = (V, -TI'"V,0) + TV, (OVT = V)V,
then by Lemma [[I.3] Theorem [VII.2] and Lemma [[T.4] we have,

IV, =TTVEO| r < [V,VT = TEVRVT |- [V + [ Ve | - [OVT = VT2 |[V]]
1

< VK max Heép (Vp — HTVP(VTVDH + ———[OV" = V7|
1<G<K A (©TO)

. 1 VEn
<0 (k(©"®)VKe) + /\K(GT@)O (ﬁA*(B)AK(@T@))
— T \/K_n
=0 (n(@ @)\/fe) +0 (\/ﬁ)\*(B)O\K(@T@))Ls)
=0 (/{(@T@)\/Ee) with probability larger than 1 — O(Kn™?).

(46)

Now, Weyl’s inequality for singular values gives us:
61— 0:(Vp)| < |V, = TI"VO| < [V, = TI"V,0l|r = O (+(©7 )V Ke)

>t (1 —0 </<¢(®T®)\/KA1(®T®)€)> (47)

N (O7O)
oy < AK;@T@) (1 10 (/{(@TG)\/K)\K(@T@)6>> .

Plugging this into Eq we get:
IV, = Jn(e7e) (1 +0 <H<@T@) K)\l(@T@)e» ~0 ( Al(@T@)) |

The last step is true since Assumption implies x(©70),/K),(©7O)ec = O(1). Note

that we also have

1

Vil =
Vel o (Vi

=0 ( M@T@)) .
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Finally putting everything together with Eq we get, with probability larger than
1—0O(Kn™?),

e/ V(VIV) (V! = ('V(VIV) )| = O (s(@"O)e) [V,

1€[n]

~0 < Al(@)T@)/ﬁ(@T@)e) .
The failure probability comes from the event that Theorem fails, giving O(Kn=2). O

Proof of Theorem 3.5, We break this up into proofs of Eqs and . Recall that € =

O ( NS (]73”)((1?\%@))1,5) is the row-wise error from Theorem

Proof of Eq (3). Recall that O = VV; 1. We have uniformly Vi € [n],
el (@ — @H)‘ =

(1)
<

el (VV,1 - VV;1H> |

el (V= V(VIV)V, | + el VIVIV) (V! = (T V(VIV)) ) |

e (V-vvTo))| HV;H +0 ( Al(@T@)K(@T@)Q

e o Al(@)T@))Jro( Al(G)TG))/ﬁ(G)T@)e)

_0 ( A1(®T®)/{(®T®)e>

$(P)VEn )

=0 ( Al(@T@)H(@T@)) O <\/ﬁ>\*(B)(>\K(@T®))1’5

(wP)(n(@T@))m Kn)
VoV (B)Ax (67 6)

with probability larger than 1 — O(Kn~2). Here (i) and (ii) follow from Lemma [VII.3|and
its proof, and the failure probability comes from the event that Theorem does not hold.

I
@Y

Proof of Eq ({4]). Note /B = \?pﬁ:\?g and pB = VpEVZL. Note that [|E|| < max; ||el P, =
O(pn), and |E| < ||[E|| + |A — P|| = O(pn) using Weyl’s inequality and Theorem 5.2 of
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[2]. Then we have the following decomposition

H /B — pHTBHHF — HVPE\?}I - HTVPEV,TDHHF

= (V, -1"V,0) EV] + IV, (OE - EO) V] + " V,EO (V] — OV |
<|v,-1"v,0 v, v,

- Bl

| +1IVp |0k -EO|
) 1 . 1
pn) -

VAk(O70)  \/A(07O)

B k(OTO)VK pne 1
- ( A (O7O) ) o (AK(®T®)>

[+ IVRIlIE[ || V) — 0"V
1

F Ak (07O)

OE - EO

<20 (k(©@"@)VKe) - O

OE - EO

using Eqs and and Lemma [[L.3]
Now by Lemma [[T.1]

e T k(OTO)VEKne 1 o )
o - <0 (“REE ) 0 (5 ey o8 -0,

_ [R(OTO)WER) W(P)VEn Nt
_O( AK<@T@>) O(ﬁA*(B)(AK@T@)w)* O<pAK<@T@>> O (K*ynp)
[ W(P)k(BT@)Kn'

-9 (ﬁA*(B)(AK<®T®>>2)

with probability larger than 1 — O(Kn~2). The failure probability comes from the event
that Theorem [3.1] does not hold.

Proof Corollary[3.7. Define the event
Q:=1{0 : A\g(OT®) > 1/p, \*(P) > 4\/np(logn)* for some constant & > 1}.

If 8; ~ Dirichlet(a) and Assumption is satisfied, we have P(@ € Q) > 1 — Kn™3. If

Assumption holds, and A\*(B) = Q(%W), for ® € Q, by Theorem and
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Lemma (3.6

I (€ (O(P)R(OTONVERY - [(P) (cmtelt) ! Ry
Izré?i}( €, (6 — @H)H O( \/ﬁ)\*(B))\K(@T@) ) =0 ( \/_)\ ( )m
_ ~ (min{K, x(B)}*K"?

Since max, o, < C'min, o, for some constant C' > 1, and oy = O(1), the last step uses that

Qax T+ HaH2 < Omax T Omax _ (1 + ao)amax _ 0(1)

Q'min Q'min Omin

and by the worst case bound from Lemma [5.1 we have, ¥(P) < min{K, x(P)}*> <
min{ K, k(©@70)x(B)}? = O(min{ K, k(B)}?).
Now we are ready to obtain the failure probability of Eq (48). Consider the event A
that © does not satisfy Eq (48)). Then, by Theorem ,
P(A) = / P (A|©)P(©)dO + / P(©)dO
0cn
2

—0( >+1—P(®eQ):O<K>. (49)

Similarly, by Theorem [3.1] and Lemma [3.6]

1 . - [ (P)k(OTO)Knl - [ w(P) (emextlell) gyt
8 pm, =0 UPHETONTT ) (1lP) (52 o
p \/ﬁ)\ (B)<)\K<® 6)) \/_A*( )<21/ 1+oco))
~ in{ K, k(B)}?K?
5 <mm{ ~(B)} ) | (50)
VpnA*(B)
By an argument analogous to that in Eq , we can show that the failure probability of
Eq is O(Kn™?). O

VIII Comparison with [10]

We first translate some key assumptions in [10] (Egs (2.14) and (2.15)) with our notation.
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Assumption VIII.1. Assume for some constants C' > 0 and ¢; > 0,

n Cn
— < T < T < —
oS A(OT0) <\ (0°0) < 7
can., ., T T n *
—_— < < < —
7 A(B) < A (BOO)| < |X(BO'O)| < clK)\ (B)

A(BOTO)| < (1 — )M\ (BOTO)
Lemma VIIIL.1. If Assumption|VIII. 1| is satisfied, for © estimated by SPACL, we have,

é{@—@ﬂ”:é(ﬁﬁi>.

Z N (B)

Proof. By Theorem 1.3.22 of [5], pBOT® and P = p@B®O” have the same K largest
eigenvalues in magnitude. So Assumption implies that:

cnp |, ne .
& N (B) < Ak(P)] < a(P)] < X (B)

[A2(P)] < (1 = )M (P).

Then the eigenvalues of P can be divided into at most 2 groups where eigenvalues in each
group are of the same order, by Lemma [5.1] we have (P) = O(1).
On the other hand, if Assumption [VIIL1|is satisfied, we have x(©@7@) = O(1), and by

Theorem 3.5

¢ (6-om)| ~o (OO o) <o)

]

Remark VIIL.1. Since [10] shows ¢, norm error bound, our result in Lemma |VIII.1

matches theirs with an extra v K factor up-to logarithm factor, if we convert the bound in

Lemma |VIIL 1 to ¢, norm by multiplying VK .
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IX Comparison with [11]

Lemma IX.1. Let 6; ~ Dirichlet(«). If Assumptions and hold, and X\*(B) =

A/ min{ K, @0)k(B)amax /Cmin }2 K2
G3( Aol (B}

bility at least 1 — O(K/n?), Vi € [n],

1.5 i 2 2.5
H@ @HH _5 (amax> Qmm{fﬂ(l + ap)£(B)max/Omin KV (1 + o) |
Omin P /\*(B)

), there exists a permutation matriz II such that with proba-

where [|[M||1 = X, ; |My;| is the £y norm for a matriz M.

Proof. First note from the proof of Corollary 3.7, we have (tmax + [le||?)/cmin < (1 +
Q) Umax / Qmin, and by Lemma , we have, with high probability ¢(P) < min{ K, x(P)}? <
min{ K, (@70)x(B)}? = O(min{K, (1 + ay)#(B)max/min }*). Now by Theorem [3.5] if

we sum up the squared error bound for each row, we can get a Frobenius bound:

1 H@ B @H 5 <amax>1~5 min{ K, (1 + ag)x(B) tmax/min 2K (1 + ag)*®
\/ﬁ F B Gmin \/p_n)‘* (B)
and so

_5 ((ZZ)IS &Zmin{f(, (1+ ao)/@(B)/(\y*n(laBX ;amm}z Ko (14 ) )

Remark IX.1. By Theorem 9 of [11], we have:

Qo  Oax \ 02 VRE VY5 (1 + a)'” y/max;( e/Ba)
6], =0 (2=) W*ﬂ B

max max n Kyt 1
_3 (a a \/7 v —l— I > (51)
Oémln

When max, o, < C'min, o, for some constant C' > 1, ag = O(l) and k(B) = (1), we have
v=0(K), max/0 = O(1/K), amax/min = O(1) and min{ K, (1+ ag)x(B)max/0min }* =
O(min{K, k(B)}?) = O(1), so our bound in Lemma is worse by VK than Eq. (51).

Ctmln
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For worst case analysis, (tmax /g = O(1), Gmax /o = O(v), and min{ K, (1+aq)5(B)max/Qmin }* =
K?, so our bound in Lemma is worse by K*\/v(1+ ag) than Eq. (51).
Note that the proposed algorithm in [I1)] requires prior knowledge on oy while our

algorithm does not need oy as input.

X  Why Pruning Works

Proving the pruning algorithm requires strong distributional conditions on the residuals
of the rows of eigenvectors. Here we present a heuristic argument of why pruning works.
Note that in the pruning algorithm, essentially we are estimating the density of points in
an e-ball around every point ¢ which has sufficiently large norm. This should work only
if the points outside the population simplex have lower density in their e-balls than the
corners of the simplex. Otherwise, the pruning will remove the corners of the population

simplex, diminishing the quality of the pure nodes. We consider K € {2,...,10} and

Fraction of high norm nodes
006,

0.05 |
004 |
003 ]

0.02
6000~
2000
200079 8 6 4 2
Fraction of high norm nodes pruned

1

Figure I: Top panel: fraction of nodes with high norm. Bottom panel: fraction of
nodes with high norm pruned. We vary K € {2,...,10} on the X axis and vary n €
{2000, 3000, ...,6000} on the Y axis.
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n € {2000, 3000, ...,6000}, a = 1 /K, B;; = 1,B;; = 0.001 and p = logn/n. For each
combination we use € as the median of the row-wise difference of the empirical eigenvectors
from their suitably rotated population counterpart. Let y = max; ||V;|| denote the largest
row-wise norm of the population eigenvectors; recall that this occurs at one of the corners of
the simplex. Let Sy denote the set of nodes with high empirical eigenvector row-norms (the
“high-norm” nodes), defined as Sy := {i : || V|| > y+¢}. SPA will choose at least one of these
nodes (and possibly several of them) as its estimated corners. Let B(z,¢€) denote the £5 ball
of size € centered at point x. For each of the K corners ¢; of the population simplex (¢; equals
some row of Vp), we compute the number of neighborhood points z; := [{j|V; € B(c;, €)}|;
let 0 := min; x; be the minimum neighborhood size among these corners. Similarly, for
cach i € Sy, we compute z = |{j|V; € B(Vi,€)}|. Now we count the fraction of nodes in

S that could be pruned without pruning the corners ¢; of the population simplex. This

Zieso 1{z <3}

fraction is m =
ISol

. Fig |l shows that for almost all combinations of K and n, we
have m = 1, i.e., all the nodes in Sy do get pruned, except for K = 10,n = 2000. This is
expected, since for large K and small n the pure node density around the corners of the
population simplex will be small. Fig|I| shows the fraction |Sy|/n of high-norm nodes. For

all (K, n) combinations pruning removes about a 2% to 6% of the nodes.

XI Extra simulation results

Changing B: In Fig|ll| (i), we plot the relative error in estimating @ against increasing
off diagonal noise € of B. We take K =3, p=0.15, ¢; =3/K =1, B;; =1, i € [K]. We
see that SPACL outperforms SAAC, SVI, and OCCAM over the entire parameter range.
For large ¢, it is also better than GeoNMF and BSNMF.

We also include simulation results with K = 7. We take p = 0.15, o; = 3/K = 3/7,
B, =1, i € [K]. We see in Fig |l (ii) that SAAC performs poorly, and OCCAM performs

similarly with SPACL, which can also be implied from the simulation results on changing
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“[-spacL ;L | [~=SPACL BN
s |-2 GEO y s -A-GEO = g
OCCAM = l g OCCAM
B Svi ) / o oaf] svi ’,,,(///, 74?”
~ BSNMF |~ 2 || BSNMF 7
5 4%7 o p 7
k| ,
m 0.
@ o

©® Relative Error

(i) (ii)

Figure II: Error against e: we use B;; =1, B;; =efori¢ # j. (i) K =3. (ii) K =7.

K. SPACL is more stable and outperforms GeoNMF and BSNMF.
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