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A Proof of Theorem 1

We consider four scenarios.
Scenario M1: 0 < pg ≤ pr

Since Firm 1 charges a lower price for the green variant, all consumers choose to buy either a green variant or nothing.
The aggregate market demand is as follows: Qr = 0, Qg = (1− pg)θ1 + (1− pg

a
)(1− θ1). Thus, Firm 1 faces the following

profit-maximization problem:

max
pr,pg

π1 = (pg − c
′
1)Qg = (pg − c

′
1)[(1− pg)θ1 + (1− pg

a
)(1− θ1)].

The optimal price and optimal profit are as follows:

p∗r ≥ p∗g =
a+ (a− 1)θ1c

′
1 + c

′
1

2[(a− 1)θ1 + 1]
, πM1

1 =
[a− (a− 1)θ1c

′
1 − c

′
1]

2

4a[(a− 1)θ1 + 1]
.

Scenario M2: pr ≤ pg ≤ apr
Under this scenario, regular consumers purchase either the regular variant or nothing. Meanwhile, flexible and

dedicated green consumers purchase either the green variant or nothing. The aggregate market demand is as follows:
Qr = (1− pr)θ1, Qg = (1− pg

a
)(1− θ1). Thus, Firm 1 faces the following profit-maximization problem.

max
pr,pg

π1 = (pr − c
′
1)Qr + (pg − c

′
1)Qg

= (pr − c
′
1)(1− pr)θ1 + (pg − c

′
1)(1−

pg
a
)(1− θ1).

The optimal solution is p∗r =
1+c

′
1

2
, p∗g =

a+c
′
1

2
. Since a ≥ 1, we have p∗r ≤ p∗g ≤ ap∗r . Thus, Firm 1’s maximum profit

under Scenario M2 is

πM2
1 =

θ1(1− c
′
1)

2

4
+

(1− θ1)(a− c
′
1)

2

4a
.

We compare the profits under scenarios M1 and M2.

πM2
1 − πM1

1 =
θ1(1− c

′
1)

2

4
+

(1− θ1)(a− c
′
1)

2

4a
− [a− (a− 1)θ1c

′
1 − c

′
1]

2

4a[(a− 1)θ1 + 1]
=

θ1(1− θ1)(a− 1)2

4[(a− 1)θ1 + 1]
≥ 0.

Scenario M3: (a− 1) + pr ≤ pg ≤ a
Under this scenario, regular and flexible green consumers purchase either the regular variant or nothing. Dedicated

green consumers purchase either the green variant or nothing. The aggregate market demand is as follows: Qr = (1 −
pr)(θ1 + θ2), Qg = (1− pg

a
)θ3. Thus, Firm 1 faces the following profit-maximization problem:

max
pr,pg

π1 = (pr − c
′
1)Qr + (pg − c

′
1)Qg = (pr − c

′
1)(1− pr)(θ1 + θ2) + (pg − c

′
1)(1−

pg
a
)θ3

s.t. (a− 1) + pr ≤ pg ≤ a.

We first solve the unconstrained problem; the corresponding optimal solution is as follows:

p∗r =
1 + c

′
1

2
, p∗g =

a+ c
′
1

2
, π∗

1,r =
(θ1 + θ2)(1− c

′
1)

2

4
, π∗

1,g =
θ3(a− c

′
1)

2

4a
.

Clearly, Firm 1’s maximum profit is bounded from above by that of the unconstrained problem. Thus, πM3
1 ≤

(θ1+θ2)(1−c
′
1)

2

4
+

θ3(a−c
′
1)

2

4a
. We can then compare the profits under Scenarios M2 and M3.

πM2
1 − πM3

1 ≥ θ1(1− c
′
1)

2

4
+

(1− θ1)(a− c
′
1)

2

4a
− (θ1 + θ2)(1− c

′
1)

2

4
− θ3(a− c

′
1)

2

4a

= θ2[
(a− c

′
1)

2

4a
− (1− c

′
1)

2

4
] =

θ2(a− 1)[a2 − (c
′
1)

2]

4a
≥ 0.

Scenario M4: apr ≤ pg ≤ (a− 1) + pr
Under this scenario, regular consumers purchase the regular variant or nothing and dedicated green consumers purchase

the green variant or nothing. Among flexible green consumers, some buy the regular variant, some others buy the green
variant, and the remaining buy nothing. The aggregate market demand is as follows: Qr = (1 − pr)θ1 +

pg−apr
a−1

θ2, Qg =

(1− pg
a
)θ3 + (1− pg−pr

a−1
)θ2.

1



The firm’s total profit can be written as follows:

max
pr,pg

π1 = Qrpr +Qgpg − c
′
1(Qr +Qg)

= −(θ1 +
aθ2
a− 1

)p2r +
2θ2
a− 1

pgpr + [θ1 + c
′
1(θ1 + θ2)]pr − (

θ3
a

+
θ2

a− 1
)p2g + [(θ2 + θ3) + c

′
1
θ3
a
]pg − c

′
1

s.t. pg − apr ≥ 0,

(a− 1) + pr − pg ≥ 0.

The Lagrangean and the Karush-Kuhn-Tucker optimality conditions are:

L(pr, pg) = π1 + λ1(pg − apr) + λ2[(a− 1) + pr − pg]

∂L

∂pr
= −2(θ1 +

aθ2
a− 1

)pr +
2θ2
a− 1

pg + [θ1 + c
′
1(θ1 + θ2)]− aλ1 + λ2 = 0

∂L

∂pg
= −2(

θ3
a

+
θ2

a− 1
)pg +

2θ2
a− 1

pr + [(θ2 + θ3) + c
′
1
θ3
a
] + λ1 − λ2 = 0

λ1(pg − apr) = 0,

λ2[(a− 1) + pr − pg] = 0.

• Scenario M4.1: λ1 = 0 and λ2 = 0

Solving the above system, we have p∗g =
a+c

′
1

2
, p∗r =

1+c
′
1

2
. However, since p∗g−ap∗r =

(1−a)c
′
1

2
< 0, the solution is invalid.

• Scenario M4.2: pg = apr
We can rewrite the demand functions as follows: Qr = (1− pr)θ1, Qg = (1− pg

a
)(1− θ1). Thus, the objective function

has the same form as in Scenario M2. However, the optimization problem here has an additional constraint pg = apr.
Thus, the optimal value obtained in Scenario M2 is at least as good as that under Scenario M4.2.
• Scenario M4.3: pg = (a− 1) + pr

We can rewrite the demand functions as follows: Qr = (1− pr)(θ1 + θ2), Qg = (1− pg
a
)θ3. Thus, the objective function

has the same form as in Scenario M3. However, the optimization problem here has an additional constraint pg = (a−1)+pr.
Thus, the optimal value obtained in Scenario M3 is at least as good as that under Scenario M4.3.

Combining the analysis above, we can conclude that the decisions obtained under Scenario M2 are optimal. This
completes the proof.

B Proof of Theorem 2

In equilibrium, Firm 1 provides both regular and green variants. Firm 2 only provides the regular variant. Recall that
among the multiple price settings described in Section 3.2, only pr < pg ≤ apr and apr ≤ pg < (a− 1) + pr guarantee the
existence of both regular and green variants in equilibrium. Thus, following our assumptions in Section 4.2, we consider
only these two price settings in our analysis.

1. If c
′
1 < θ1

2(1+θ1)
and c

′
1 < c2 < 1

2
[1 +

c
′
1

a(1−θ1)+θ1
]

We first consider the values of the lower and upper bounds of c2. Since a > 1, a(1−θ1)+ θ1 decreases with an increase

in θ1. Thus, for 0 ≤ θ1 ≤ 1, we have 1 ≤ a(1 − θ1) + θ1 ≤ a. Therefore, we have 1
2
+

c
′
1

2a
≤ 1

2
[1 +

c
′
1

a(1−θ1)+θ1
] ≤ 1

2
+

c
′
1
2
.

Thus, c2 < 1
2
[1 +

c
′
1

a(1−θ1)+θ1
] ≤ ( 1

2
+

c
′
1
2
).

Since a > 1, 0 ≤ θ1 ≤ 1, and c
′
1 < θ1

2(1+θ1)
, we have

(
1

2
+

c
′
1

2a
)− [

1

2
− (1− 3

2a
)c

′
1] = (1− 1

a
)c

′
1 > 0,

[
1

2
− (1− 3

2a
)c

′
1]− (

1

2
− 1

θ1
c
′
1) = (

3

2a
+

1− θ1
θ1

)c
′
1 > 0,

(
1

2
− 1

θ1
c
′
1)− c

′
1 =

1

2
− (1 +

1

θ1
)c

′
1 >

1

2
− (1 +

1

θ1
)

θ1
2(1 + θ1)

= 0.

Thus, c
′
1 < ( 1

2
− 1

θ1
c
′
1) < [ 1

2
− (1− 3

2a
)c

′
1] < ( 1

2
+

c
′
1

2a
) ≤ 1

2
[1 +

c
′
1

a(1−θ1)+θ1
]. Therefore, all the three regions, which represent

the corresponding three types of equilibria, have positive lengths.
We now consider three scenarios:

Scenario D1: pr < pg < apr

Under this scenario, regular consumers only purchase regular products and flexible green consumers only purchase
green products. The aggregate market demand is as follows: Qr = (1− pr)θ1, Qg = (1− pg

a
)(1− θ1). Thus, we have

pr = 1− q1,r+q2,r
θ1

. Firm 1’s total profit can be written as follows:

max
q1,r,pg

π1 = q1,r(pr − c
′
1) +Qg(pg − c

′
1) = q1,r(1−

q1,r + q2,r
θ1

− c
′
1) + (1− pg

a
)(1− θ1)(pg − c

′
1).

2



The first-order conditions are

∂π1

∂q1,r
= 1− q1,r + q2,r

θ1
− c

′
1 −

q1,r
θ1

= 0, (1)

∂π1

∂pg
= (1− pg

a
)(1− θ1)−

(1− θ1)(pg − c
′
1)

a
= 0. (2)

Next we find the Hessian for π1(q1,r, pg)

H(q1,r, pg) =

[
− 2

θ1
0

0 − 2(1−θ1)
a

]

Since H1(q1,r, pg) = − 2
θ1

< 0, H2(q1,r, pg) = (− 2
θ1
)(− 2(1−θ1)

a
) > 0, the first-order conditions are both necessary

and sufficient.

Firm 2’s profit is maxq2,r π2 = (pr − c2)q2,r = (1− q1,r+q2,r
θ1

− c2)q2,r. The first-order condition is

∂π2

∂q2,r
= 1− q1,r + q2,r

θ1
− c2 −

q2,r
θ1

= 0 (3)

Solving (1), (2), and (3), we obtain the following solution:

Regular Market Green Market

q∗1
θ1(1−2c

′
1+c2)

3

(1−θ1)(a−c
′
1)

2a

q∗2
θ1(1+c

′
1−2c2)

3
-

p∗
1+c

′
1+c2
3

a+c
′
1

2

Verifying Validity: We now verify that the quantities derived above are all positive. Since c
′
1 < c2 <

1+c
′
1

2
, we

have 1 − 2c
′
1 + c2 = (1 − c

′
1) + (c2 − c

′
1) > 0, and 1 + c

′
1 − 2c2 > 0. Thus, q∗1,r > 0 and q∗2,r > 0. Also, since

c
′
1 <

1+c
′
1

2
, we have c

′
1 < 1 < a. Thus, q∗1,g > 0. We also need to verify that the optimal prices satisfy the constraint

pr < pg < apr. We have pg − pr =
(3a−2)+c

′
1−2c2

6
≥ 1+c

′
1−2c2
6

> 0. We also have apr − pg =
−a+(2a−3)c

′
1+2ac2

6
.

Therefore, if c2 > 1
2
− (1− 3

2a
)c

′
1, then we have ap∗r > p∗g. Thus, the above solution is valid.

Scenario D2: pg = apr

The aggregate market demand is the same as that in scenario D1. We have pr = 1− q1,r+q2,r
θ1

and pg = apr. Firm 1’s
total profit can be written as follows:

max
q1,r

π1 = q1,r(pr − c
′
1) +Qg(apg − c

′
1) = q1,r(pr − c

′
1) + (1− pr)(1− θ1)(apr − c

′
1)

= q1,r(1−
q1,r + q2,r

θ1
− c

′
1) +

(q1,r + q2,r)

θ1
(1− θ1)[a(1−

q1,r + q2,r
θ1

)− c
′
1].

The first-order condition is

∂π1

∂q1,r
= 1− q1,r + q2,r

θ1
− c

′
1 −

q1,r
θ1

+
(1− θ1)

θ1
[a(1− q1,r + q2,r

θ1
)− c

′
1]−

a(q1,r + q2,r)

θ21
(1− θ1) = 0. (4)

Firm 2’s profit is maxq2,r π2 = (pr − c2)q2,r = (1− q1,r+q2,r
θ1

− c2)q2,r. The first-order condition is

∂π2

∂q2,r
= 1− q1,r + q2,r

θ1
− c2 −

q2,r
θ1

= 0 (5)

Solving (4) and (5), we obtain the following solution:

Regular Market Green Market

q∗1
θ1[θ1−2c

′
1+c2(2a−2aθ1+θ1)]

2a(1−θ1)+3θ1

(1−θ1)[(a−aθ1+2θ1)−c
′
1−c2θ1]

2a(1−θ1)+3θ1

q∗2
θ1[(a−aθ1+θ1)+c

′
1−2c2(a−aθ1+θ1)]

2a(1−θ1)+3θ1
-

p∗
(a+θ1−aθ1)+c

′
1+c2θ1

2a(1−θ1)+3θ1

a[(a+θ1−aθ1)+c
′
1+c2θ1]

2a(1−θ1)+3θ1

Verifying Validity: We now verify that the quantities derived above are all positive. Since c
′
1 < c2, we have

θ1 − 2c
′
1 + c2(2a − 2aθ1 + θ1) = θ1(1 − c

′
1) + (2 − θ1)(c2 − c

′
1) + 2(a − 1)(1 − θ1)c2 > 0. Thus, q∗1,r > 0. Since

c2 < 1
2
[1 +

c
′
1

a(1−θ1)+θ1
], we have (a− aθ1 + θ1) + c

′
1 − 2c2(a− aθ1 + θ1) > 0. Thus, q∗2,r > 0. Also, since c

′
1 < 1 and

c2 < 1, we have (a− aθ1 + 2θ1)− c
′
1 − c2θ1 > (a− aθ1 + 2θ1)− 1− θ1 = (a− 1)(1− θ1) ≥ 0. Thus, q∗1,g > 0.

3



Scenario D3: apr < pg < (a− 1) + pr

Under this scenario, regular consumers purchase the regular variant or nothing. Among flexible green consumers,
some buy the regular variant, some others buy the green variant, and the remaining buy nothing. The aggregate
market demand is as follows: Qr = (1− pr)θ1 +

pg−apr
a−1

(1− θ1), Qg = (1− pg−pr
a−1

)(1− θ1).

Recall our assumption (from Section 4.2) that the market price of the regular variant is determined by the Cournot

inverse demand function of the regular consumers. Thus, we have pr = 1 − q1,r+q2,r
θ1

. Firm 1’s total profit can be
written as follows:

max
q1,r,pg

π1 = [q1,r +
pg − apr
a− 1

(1− θ1)](pr − c
′
1) + (1− pg − pr

a− 1
)(1− θ1)(pg − c

′
1)

= [q1,r +
pg − a(1− q1,r+q2,r

θ1
)

a− 1
(1− θ1)](1−

q1,r + q2,r
θ1

− c
′
1) + (1−

pg − (1− q1,r+q2,r
θ1

)

a− 1
)(1− θ1)(pg − c

′
1).

The first-order conditions are

∂π1

∂q1,r
= [1 +

a(1− θ1)

(a− 1)θ1
](1− q1,r + q2,r

θ1
− c

′
1)−

1

θ1
[q1,r +

pg − a(1− q1,r+q2,r
θ1

)

a− 1
(1− θ1)]−

(1− θ1)(pg − c
′
1)

θ1(a− 1)
= 0,

(6)

∂π1

∂pg
=

1− θ1
a− 1

(1− q1,r + q2,r
θ1

− c
′
1) + (1−

pg − (1− q1,r+q2,r
θ1

)

a− 1
)(1− θ1)−

1− θ1
a− 1

(pg − c
′
1) = 0. (7)

Next, we consider the Hessian for π1(q1,r, pg)

H(q1,r, pg) =

[
− 2(a−θ1)

θ21(a−1)
− 2(1−θ1)

θ1(a−1)

− 2(1−θ1)
θ1(a−1)

− 2(1−θ1)
a−1

]

Since H1(q1,r, pg) = − 2(a−θ1)

θ21(a−1)
< 0, H2(q1,r, pg) = 4(1−θ1)

θ21(a−1)
> 0, the first-order conditions are both necessary and

sufficient.

Firm 2’s profit is maxq2,r π2 = (pr − c2)q2,r = (1− q1,r+q2,r
θ1

− c2)q2,r.

The first-order condition is

∂π2

∂q2,r
= 1− q1,r + q2,r

θ1
− c2 −

q2,r
θ1

= 0 (8)

Solving (6), (7), (8), we obtain the following solution:

Regular Market Green Market

q∗1
θ1[θ1−2c

′
1+c2(2−θ1)]

2+θ1

(1−θ1)
2

q∗2
θ1(1+c

′
1−2c2)

2+θ1
-

p∗
1+c

′
1+c2θ1
2+θ1

(2a+aθ1−θ1)+2c
′
1+2c2θ1

2(2+θ1)

Verifying Validity: Since c
′
1 < c2 and c

′
1 < 1, we have θ1 − 2c

′
1 + c2(2 − θ1) = θ1(1 − c

′
1) + (2 − θ1)(c2 − c

′
1) > 0.

Thus, q∗1,r > 0. Since c2 < ( 1
2
+

c
′
1
2
), we have q∗2,r > 0. Also, q∗1,g > 0.

We also need to verify that the optimal prices satisfy the constraint pg ≥ apr. We have pg−apr =
(a−1)(θ1−2c

′
1−2θ1c2)

2(2+θ1)
.

Thus, if c2 < ( 1
2
− 1

θ1
c
′
1), then we have pg − apr > 0.

We consider the two interior solutions in scenario D1 and scenario D3 (given that each satisfies the corresponding
constraint) and one boundary solution in scenario D2. The equilibrium prices in these three scenarios are categorized and
validated as follows:

- Type I: If pr < pg < apr, we have p∗r =
1+c

′
1+c2
3

, p∗g =
a+c

′
1

2
. Under the imposed condition, [ 1

2
− (1− 3

2a
c
′
1)] < c2 <

1
2
[1 +

c
′
1

a(1−θ1)+θ1
], we indeed have have p∗r < p∗g < ap∗r .

- Type II: If apr = pg, we have p∗r =
(a+θ1−aθ1)+c

′
1+θ1c2

2a(1−θ1)+3θ1
, p∗g =

a(a+θ1−aθ1)+ac
′
1+aθ1c2

2a(1−θ1)+3θ1
.

- Type III: If apr < pg < (a − 1) + pr, we have p∗r =
1+c

′
1+θ1c2
2+θ1

, p∗g =
(2a+aθ1−θ1)+2c

′
1+2θ1c2

2(2+θ1)
. Under the imposed

condition, c
′
1 < c2 < ( 1

2
− 1

θ1
c
′
1), we have ap∗r < p∗g < (a− 1) + p∗r .

Since [ 1
2
− (1 − 3

2a
c
′
1)] > [ 1

2
− 1

θ1
c
′
1], Type I and Type III solutions cannot both be valid. When either of these two

solutions is valid, it is straightforward to show that the valid solution is also better than the Type II solution. When
neither is valid, the Type II solution is optimal.
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2. If θ1
2(1+θ1)

≤ c
′
1 < a

4a−3
and c

′
1 < c2 < 1

2
[1 +

c
′
1

a(1−θ1)+θ1
]

We have ( 1
2
− 1

θ1
c
′
1) ≤ c

′
1 < [ 1

2
− (1− 3

2a
c
′
1)] < ( 1

2
+

c
′
1

2a
). Therefore, only the two regions corresponding to Types I and

II equilibria have positive lengths.

3. If a
4a−3

≤ c
′
1 < 1

2− 1
a(1−θ1)+θ1

and c
′
1 < c2 < 1

2
[1 +

c
′
1

a(1−θ1)+θ1
]

We have [ 1
2
− (1− 3

2a
)c

′
1] ≤ c

′
1 < ( 1

2
+

c
′
1

2a
). Only the region corresponding to the Type I equilibrium exists.

This completes the proof.

C Proof of Theorem 3

Proof: Since each firm has two strategies, there are four possible combinations. We derive the payoffs of both firms under
each combination in the following analysis.

1. Combination (g, g): If both firms only provide the green variant

All consumers choose to buy either a green variant or nothing. The aggregate market demand is as follows:

q1,g + q2,g = Qg = (1− pg)θ1 + (1− pg
a
)(1− θ1).

Thus, pg =
1−q1,g−q2,g

θ1+
1−θ1

a

. The two firms face the following profit-maximization problems:

max
q1,g

π1 = (pg − c
′
1)q1,g,

max
q2,g

π2 = (pg − c2)q2,g.

By using the method similar to that used in the proof of Proposition 3, we obtain the equilibrium results as follows:

p∗g =
1

3
[c

′
1 + c2 +

a

1 + (a− 1)θ1
],

q∗1,g =
a− 2c

′
1 + c2 − (a− 1)(2c

′
1 − c2)θ1

3a
, q∗2,g =

a+ c
′
1 − 2c2 + (a− 1)(c

′
1 − 2c2)θ1

3a
,

π∗
1 =

[a− 2c
′
1 + c2 − (a− 1)(2c

′
1 − c2)θ1]

2

9a[1 + (a− 1)θ1]
, π∗

2 =
[a+ c

′
1 − 2c2 + (a− 1)(c

′
1 − 2c2)θ1]

2

9a[1 + (a− 1)θ1]
.

We check whether the production quantities derived are positive.

- If (2c
′
1 − c2) ≥ 0, then [a − 2c

′
1 + c2 − (a − 1)(2c

′
1 − c2)θ1] reaches its minimum when θ1 reaches its upper

bound 1. Thus, a− 2c
′
1 + c2 − (a− 1)(2c

′
1 − c2)θ1 ≥ a− 2c

′
1 + c2 − (a− 1)(2c

′
1 − c2) = a(1− 2c

′
1 + c2). Since

c2 > 2c
′
1 − 1, we have a(1− 2c

′
1 + c2) > 0. Thus, q∗1,g > 0.

- If (2c
′
1− c2) < 0, then [a−2c

′
1+ c2− (a−1)(2c

′
1− c2)θ1] reaches its minimum when θ1 reaches its lower bound

0. Thus, a− 2c
′
1 + c2 − (a− 1)(2c

′
1 − c2)θ1 ≥ a− 2c

′
1 + c2 ≥ (1− 2c

′
1 + c2) > 0. Thus, q∗1,g > 0.

Similarly, we can show q∗2,g > 0. Thus, the solution above is valid. These two firms’ profits are as follows.

πg,g
1 =

[a− 2c
′
1 + c2 − (a− 1)(2c

′
1 − c2)θ1]

2

9a[1 + (a− 1)θ1]
, πg,g

2 =
[a+ c

′
1 − 2c2 + (a− 1)(c

′
1 − 2c2)θ1]

2

9a[1 + (a− 1)θ1]
.

2. Combination (rg, rg): If both firms provide both regular and green variants

Under this scenario, both firms compete in both the regular and the green markets. We obtain the equilibrium
results as follows:

p∗r =
1 + c

′
1 + c2
3

, p∗g =
a+ c

′
1 + c2
3

, q∗1,r =
θ1(1− 2c

′
1 + c2)

3
,

q∗2,r =
θ1(1 + c

′
1 − 2c2)

3
, q∗1,g =

(1− θ1)(a− 2c
′
1 + c2)

3a
, q∗2,g =

(1− θ1)(a+ c
′
1 − 2c2)

3a
.

We have p∗g − p∗r = (a−1)
3

> 0. We can show all four production quantities are positive. These two firms’ profits are
as follows.

πrg,rg
1 =

θ1(1− 2c
′
1 + c2)

2

9
+

(1− θ1)(a− 2c
′
1 + c2)

2

9a
, πrg,rg

2 =
θ1(1 + c

′
1 − 2c2)

2

9
+

(1− θ1)(a+ c
′
1 − 2c2)

2

9a
.

If we compare the profits under this setting with those under (g, g), we have

πrg,rg
1 − πg,g

1 =
θ1(1− θ1)(a− 1)2

9[1 + (a− 1)θ1]
≥ 0, πrg,rg

2 − πg,g
2 =

θ1(1− θ1)(a− 1)2

9[1 + (a− 1)θ1]
≥ 0.
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3. Combination (g, rg): If Firm 1 only provides the green variant, Firm 2 provides both regular and green variants

We now compare these two firms’ profits under this setting and those under the setting (rg, rg). First, both firms
obtain the same amount of profits from the green market under both settings. Second, Firm 1 produces the regular
variant under the setting (rg, rg) but not under the setting (g, rg). Thus, in the regular market, Firm 1 obtains
positive profit under the setting (rg, rg) but 0 under the setting (g, rg). Third, in the regular market, Firm 2
competes with Firm 1 under the setting (rg, rg) but is the exclusive supplier under the setting (g, rg). Thus, Firm 2
obtains more profit in the regular market under the setting (rg, rg) than under the setting (g, rg). Therefore, we
have the following results:

πrg,rg
1 > πg,rg

1 , πg,rg
2 > πrg,rg

2 .

4. Combination (rg, g): If Firm 1 provides both regular and green variants, Firm 2 only provides the green variant

This scenario is similar to Combination (g, rg). If we compare these two firms’ profits under this setting and under
the setting (rg, rg), we have the following results:

πrg,g
1 > πrg,rg

1 , πrg,rg
2 > πrg,g

2 .

Now we derive the Nash equilibrium. Since we have πrg,g
1 > πrg,rg

1 > πg,g
1 and πrg,rg

1 > πg,rg
1 , Firm 1’s dominating

strategy is rg no matter which strategy Firm 2 chooses. Similarly, we have πrg,rg
2 > πrg,g

2 and πg,rg
2 > πrg,rg

2 > πg,g
2 . Thus,

Firm 2’s dominating strategy is rg as well. Therefore, (rg, rg) is the only Nash equilibrium. Both Firms provide both the
regular and the green variants. This completes the proof.

D Proof of Theorem 4

Since c
′
1,p = c1,p and c

′
1,s = c1,s, then we have

∆M −∆CR = [
(1− c1,p)

2

4
− (1− 2c1,p + c2,p)

2

9
](θ1 − 1) + [

(1− c1,s)
2

4
− (1− 2c1,s + c2,s)

2

9
](θ1 − 1)

Since
(1−c1,p)

2
− (1−2c1,p+c2,p)

3
=

(1+c1,p−2c2,p)

6
> 0, we have

(1−c1,p)
2

4
− (1−2c1,p+c2,p)

2

9
> 0. Similarly, we have

(1−c1,s)
2

4
−

(1−2c1,s+c2,s)
2

9
> 0. Since θ1 ≤ 1, we have ∆M ≤ ∆CR.

E Proof of Theorem 5

If c
′
1,p = c1,p and c

′
1,s = c1,s, then

∆CG −∆M

=
(1− θ1)(ap − 2c1,p + c2,p)

2

9ap
+

(1− θ1)(1− c1,p)
2

4
− (1− θ1)(ap − c1,p)

2

4ap

+
(1− θ1)(as − 2c1,s + c2,s)

2

9as
+

(1− θ1)(1− c1,s)
2

4
− (1− θ1)(as − c1,s)

2

4as

(a) If ap = 1 and as = 1, then

∆CG −∆M =
(1− θ1)(1− 2c1,p + c2,p)

2

9
+

(1− θ1)(1− 2c1,s + c2,s)
2

9
≥ 0.

(b) If c2,p ≤ c1,p and c2,s ≤ c1,s, then

∆CG −∆M ≤ (1− θ1)(ap − c1,p)
2

9ap
+

(1− θ1)(1− c1,p)
2

4
− (1− θ1)(ap − c1,p)

2

4ap

+
(1− θ1)(as − c1,s)

2

9as
+

(1− θ1)(1− c1,s)
2

4
− (1− θ1)(as − c1,s)

2

4as

=
(1− θ1)

36ap
[(−5a2

p + 9ap)− 8apc1,p + (9ap − 5)c21,p] +
(1− θ1)

36as
[(−5a2

s + 9as)− 8asc1,s + (9as − 5)c21,s]

If ap ≥ 9
5
, then (−5a2

p + 9ap) ≤ 0. Since 1 > c1,p, we have

(1− θ1)

36ap
[(−5a2

p + 9ap)− 8apc1,p + (9ap − 5)c21,p]

≤ (1− θ1)

36ap
[(−5a2

p + 9ap)c
2
1,p − 8apc

2
1,p + (9ap − 5)c21,p] =

−5(1− θ1)(ap − 1)2c21,p
36ap

≤ 0.

Similarly, we have (1−θ1)
36as

[(−5a2
s + 9as)− 8asc1,s + (9as − 5)c21,s] ≤ 0. Therefore, we have ∆CG ≤ ∆M .
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F Proof of Theorem 6

If c
′
1,p = c1,p, and c

′
1,s = c1,s, then we have

∆CG −∆CR

= (1− θ1)[
(ap − 2c1,p + c2,p)

2

9ap
− (ap − c1,p)

2

4ap
+

(1− 2c1,p + c2,p)
2

9
]

+(1− θ1)[
(as − 2c1,s + c2,s)

2

9as
− (as − c1,s)

2

4as
+

(1− 2c1,s + c2,s)
2

9
]

Since
∂

(ap−2c1,p+c2,p)2

9ap

∂ap
=

(ap−2c1,p+c2,p)(ap+2c1,p−c2,p)

9a2
p

> 0, then
(ap−2c1,p+c2,p)

2

9ap
increases with an increase in ap. Thus,

for ap ≥ 1, we have
(ap − 2c1,p + c2,p)

2

9ap
≥ (1− 2c1,p + c2,p)

2

9
.

Therefore,

(ap − 2c1,p + c2,p)
2

9ap
− (ap − c1,p)

2

4ap
+

(1− 2c1,p + c2,p)
2

9
≤ 2(ap − 2c1,p + c2,p)

2

9ap
− (ap − c1,p)

2

4ap
.

Since c2,p ≤ c1,p, we have

2(ap − 2c1,p + c2,p)
2

9ap
− (ap − c1,p)

2

4ap
≤ 2(ap − c1,p)

2

9ap
− (ap − c1,p)

2

4ap
=

−(ap − c1,p)
2

36ap
< 0.

Similarly, we can show
(as−2c1,s+c2,s)

2

9as
− (as−c1,s)

2

4as
+

(1−2c1,s+c2,s)
2

9
< 0. Thus, we have ∆CG < ∆CR.

G Proof of Theorem 7

Since
∂

(1−θ1)(ap−c
′
1,p)2

8ap

∂ap
=

(1−θ1)(ap−c
′
1,p)(ap+c

′
1,p)

8a2
p

> 0, we have
(1−θ1)(ap−c

′
1,p)

2

8ap
increases with an increase in ap. Thus, for

ap ≥ 2, we have
(1−θ1)(ap−c

′
1,p)

2

8ap
≥ (1−θ1)(2−c

′
1,p)

2

16
>

(1−θ1)(2−c
′
1,p−c2,p)

2

18
. Therefore,

θ1(2−c
′
1,p−c2,p)

2

18
+

(1−θ1)(ap−c
′
1,p)

2

8ap
>

θ1(2−c
′
1,p−c2,p)

2

18
+

(1−θ1)(2−c
′
1,p−c2,p)

2

18
=

(2−c
′
1,p−c2,p)

2

18
.

Since c
′
1,p ≤ c1,p, we have

(2−c1,p−2c2,p)
2

18
≤ (2−c

′
1,p−2c2,p)

2

18
. Thus, we have

θ1(2−c
′
1,p−c2,p)

2

18
+

(1−θ1)(ap−c
′
1,p)

2

8ap
>

(2−c1,p−c2,p)
2

18
. Similarly, we have

θ1(2−c
′
1,s−c2,s)

2

18
+

(1−θ1)(as−c
′
1,s)

2

8as
>

(2−c1,s−c2,s)
2

18
. Thus, W a

CR−W b
CR =

θ1(2−c
′
1,p−c2,p)

2

18
+

(1−θ1)(ap−c
′
1,p)

2

8ap
+

θ1(2−c
′
1,s−c2,s)

2

18
+

(1−θ1)(as−c
′
1,s)

2

8as
− (2−c1,p−c2,p)

2

18
− (2−c1,s−c2,s)

2

18
> 0. This completes the proof.

H Proof of Theorem 8

• Since ap = 2, as = 2, c
′
1,p = c1,p, and c

′
1,s = c1,s, we have W a

CR > W b
CR from Theorem 7.

• If ap = 2, c
′
1,p = c1,p, we have

θ1(1− 2c
′
1,p + c2,p)

2

9
+

(1− θ1)(ap − c
′
1,p)

2

4ap
− (1− 2c1,p + c2,p)

2

9

=
θ1(1− 2c1,p + c2,p)

2

9
+

(1− θ1)(2− c1,p)
2

8
− (1− 2c1,p + c2,p)

2

9

=
(1− θ1)(2− c1,p)

2

8
− (1− θ1)(1− 2c1,p + c2,p)

2

9
≥ (1− θ1)(2− c1,p)

2

8
− (1− θ1)(1− 2c1,p + c2,p)

2

8

=
(1− θ1)

8
[(2− c1,p)

2 − (1− 2c1,p + c2,p)
2] =

(1− θ1)

8
[(1 + c1,p − c2,p)(3− 3c1,p + c2,p)] > 0.

Similarly, we have
θ1(1−2c

′
1,s+c2,s)

2

9
+

(1−θ1)(as−c
′
1,s)

2

4as
− (1−2c1,s+c2,s)

2

9
≥ (1−θ1)

8
[(2− c1,s)

2 − (1− 2c1,s + c2,s)
2].

Since K = (1−θ1)
8

[(2− c1,p)
2 − (1− 2c1,p + c2,p)

2] + (1−θ1)
8

[(2− c1,s)
2 − (1− 2c1,s + c2,s)

2], we have ∆CR ≥ 0.

• Since ap = 2, as = 2, c
′
1,p = c1,p, c

′
1,s = c1,s, we have

∆M =
θ1(1− c

′
1,p)

2

4
+

(1− θ1)(ap − c
′
1,p)

2

4ap
− (1− c1,p)

2

4
+

θ1(1− c
′
1,s)

2

4
+

(1− θ1)(as − c
′
1,s)

2

4as
− (1− c1,s)

2

4
−K

=
θ1(1− c1,p)

2

4
+

(1− θ1)(2− c1,p)
2

8
− (1− c1,p)

2

4
+

θ1(1− c1,s)
2

4
+

(1− θ1)(2− c1,s)
2

8
− (1− c1,s)

2

4
−K

=
(1− θ1)

8
[(2− c1,p)

2 − 2(1− c1,p)
2] +

(1− θ1)

8
[(2− c1,s)

2 − 2(1− 2c1,s)
2]−K.
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Since K = (1−θ1)
8

[(2− c1,p)
2 − (1− 2c1,p + c2,p)

2] + (1−θ1)
8

[(2− c1,s)
2 − (1− 2c1,s + c2,s)

2], we have

∆M = (1−θ1)
8

[(1− 2c1,p + c2,p)
2 − 2(1− c1,p)

2] + (1−θ1)
8

[(1− 2c1,s + c2,s)
2 − 2(1− 2c1,s)

2]. Since c2,p ≤ c1,p, c2,s ≤ c1,s,
we have

∆M =
(1− θ1)

8
[(1− 2c1,p + c2,p)

2 − 2(1− c1,p)
2] +

(1− θ1)

8
[(1− 2c1,s + c2,s)

2 − 2(1− 2c1,s)
2]

<
(1− θ1)

8
[(1− 2c1,p + c2,p)

2 − (1− c1,p)
2] +

(1− θ1)

8
[(1− 2c1,s + c2,s)

2 − (1− 2c1,s)
2]

=
(1− θ1)(c2,p − c1,p)

8
[(1− 2c1,p + c2,p) + (1− c1,p)] +

(1− θ1)(c2,s − c1,s)

8
[(1− 2c1,s + c2,s) + (1− 2c1,s)] ≤ 0.

The result follows.

I Proof of Theorem 9

We first compare the prices of the regular variants of Product P before and after the implementation.

pbr,p − par,p =
1 + c1,p + c2,p

3
−

1 + c
′
1,p + c2,p

3
=

c1,p − c
′
1,p

3
.

Since c
′
1,p ≤ c1,p, we have pbr,p − par,p ≥ 0. Next, we compare the prices of the green variants of Product P before and after

the implementation.

pbg,p − pag,p =
ap + c2,p

2
−

ap + c
′
1,p + c2,p

3
=

ap − 2c
′
1,p + c2,p

6
≥ 0.

Similarly, for Product S, we have pbr,s ≥ par,s and pbg,s ≥ pag,s. Since pbr,p ≥ par,p, p
b
g,p ≥ pag,p, p

b
r,s ≥ par,s, and pbg,s ≥ pag,s,

then we have W a
CG > W b

CG.

J Proof of Theorem 10

• Since c
′
1,p = c1,p, c

′
1,s = c1,s, then from Theorem 9, we have W a

CG ≥ W b
CG.

• If ap = 1, as = 1, c
′
1,p = c1,p, c

′
1,s = c1,s, we have

∆M =
θ1(1− c1,p)

2

4
+

(1− θ1)(1− c1,p)
2

4
− (1− c1,p)

2

4
+

θ1(1− c1,s)
2

4
+

(1− θ1)(1− c1,s)
2

4
− (1− c1,s)

2

4
−K = −K < 0.

• We also have

∆CG =
θ1(1− 2c

′
1,p + c2,p)

2

9
+

(1− θ1)(ap − 2c
′
1,p + c2,p)

2

9ap
− θ1(1− 2c1,p + c2,p)

2

9

+
θ1(1− 2c

′
1,s + c2,s)

2

9
+

(1− θ1)(as − 2c
′
1,s + c2,s)

2

9as
− θ1(1− 2c1,s + c2,s)

2

9
−K

=
(1− θ1)(1− 2c1,p + c2,p)

2

9
+

(1− θ1)(1− 2c1,s + c2,s)
2

9
−K.

Since K ≤ (1−θ1)(1−2c1,p+c2,p)
2

9
+

(1−θ1)(1−2c1,s+c2,s)
2

9
, we have ∆CG ≥ 0.

This completes the proof.
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