Supplement to "Inflammation, oxidative stress and genotoxicity responses to biodiesel emissions in cultured mammalian cells and <u>animals</u>"

Supplementary table S1. Genotoxicity, oxidative stress and inflammation in cultures of mammalian cells

Diesel type and content of	Model (cell and	Genotoxicity ^a	Oxidative stress ^a	Inflammation ^a	Reference
PAHs and transition	exposure)				
metals					
RME100, HVO100 and petrodiesel with or without catalyst (DOC/POC). <u>PAHs:</u> Heavy PAHs (>228 g/mol) not detect in the samples. <u>Transition metals:</u> HVO100/D100 = 0.75 RME100/D100 = 1.37	Mouse macrophage RAW264.7 (24 h) DEP (15, 50, 150 and 300 μg/ml; only 50- 300 μg/ml for genotoxicity)	+SB (comet). Highest concentrations omitted in the review due to high level of cytotoxicity and apoptosis	+ROS (DCFH-DA). Biodiesel (RME100 and HVO100) without catalyst most potent. Addition of catalyst to petrodiesel increased the ROS production, but had little effect on biodiesel samples	+TNF (ELISA) +MIP-2 (ELISA) RME100 less potent than HVO100 and D100 (HVO100 and D100 have same potency)	(Jalava <i>et al.</i> 2010)
RME100/D100 = 1.37 RME30, RME100, HVO30, HVO100 or D100 with or without catalyst (DOC/POC). <u>PAH content:</u> HVO100/D100 = 0.99 HVO30/D100 = 0.75 RME100/D100 = 0.87 RME30/D100 = 0.60 <u>Transition metals:</u> HVO100/D100 = 1.13 HVO30/D100 = 0.65 RME100/D100 = 2.54 RME30/D100 = 0.58	RAW 264.7 (24 h) DEP (15, 50, 150 and 300 μg/ml)	+SB (comet, HVO100). Highest concentrations omitted in the review due to high level of cytotoxicity and apoptosis. No effect of RME30 and RME100 at 50 μg/ml	+ROS (DCFH-DA, at highest concentration) for D100, HVO30 and RME. Chemical catalyst decreased the ROS production	+TNF (ELISA), all samples have similar response +MIP-2 (ELISA), RME lower than D100 and HVO	(Jalava <i>et al.</i> 2012)
RME20, AFME20 and petrodiesel in Euro 2 or Euro 4 engines (SRM2975	A549 (3 h, comet assay and ROS production) and THP-1	+SB (comet) +Fpg (comet)	+ROS (DCFH-DA). Same ROS production for biodiesel and	-CCL2 (mRNA) -IL8 (mRNA)	(Hemmingsen et al. 2011)

as benchmark).	(cytokines).		petrodiesel	
Hydrodynamic particle size	DEP (0.25, 25 and 100			
(Nanosight Tracking	μg/ml)			
Analysis) for Euro 4 engine				
was 148 nm (D100), 149				
(AFME20) and 134 nm				
(RME20)				
PAH content:				
AFME20/D100 = 0.65				
(only reported for Euro 2				
engine as the combustion				
in the Euro 4 did not				
generate PAHs)				
Biodiesel (10% butanol	CHO-K1 (5, 10 or 20	+SB (comet)		(Yang et al.
and 20% or 40% waste-	µg/ml for 3 h, MN	+MN		2017)
cooking oil biodiesel) or	assay) or A549 cells	(40% biodiesel blend		
petrodiesel (containing 2%	(10 μg/ml for 24 h,	generated less DNA		
biodiesel)	comet assay)	damage than D100)		
<u>Organic carbon:</u>				
B20/D100 = 0.79				
B40/D100 = 0.59				
Commercial neat biodiesel	A549 exposed to EOM	+SB (comet, not		(Novotna <i>et</i>
(RME100) and D100 diesel	(DCM, corresponding	conclusive) ^b		al. 2019)
fuel from a local fuelling	to 0.001 m ³ per mL of	+Fpg/EndoIII (comet,		
station	undiluted exhaust gas)	not conclusive) ^b		
	for 4 or 24 h			
FAME7, FAME20 or	BEAS-2B and A549	+SB (comet, greatest		(Kowalska <i>et</i>
synthetic hydrocarbon	cells (24 or 48 h).	effect on SB formation		al. 2017)
biofuel (7% FAME + 13%	DEP (1, 10, 25 or 50	by FAME7 exposure)		
HVO)	μg/ml)	-Fpg (comet)		
		-γH2AX		
		+MN		
RME30, RME100 and	BEAS-2B (28 or 48 h)	+MN (highest effect at		(Cervena <i>et</i>
petrodiesel	exposed to EOM	lowest concentration		al. 2017)
<u>PAH content:</u>	(DCM: 1, 10 and 25	and 48 h)		

FAME30/D100 = 1.32 FAME100/D100 = 3.38 Methylated, oxygenated, nitrated and dinitrated PAHs have also been measured RME7, RME30 and petrodiesel ^c	µg/ml) A549 (3 h) in air-liquid interphase system (10% diluted)	+γH2AX (no difference between fuels)	-ROS production (ESR) -CAT and SOD (activity) -total GSH		(Barraud <i>et</i> <i>al.</i> 2017)
RME (7% or 30%) and petrodiesel	A549 or rat lung slices (3 or 24 h) to air flow, particles or EOM (DCM)	-PAH-DNA adducts (³² P-post-labelling)			(Andre <i>et al.</i> 2015)
Soy (20%) or petrodiesel <u>PAH content:</u> B20/D100 = 0.43	BEAS-2B and THP-1a (1, 2, or 24 h) DEP (10 or 20 μg/ml)		+ROS (DCFH-DA, THP- 1a, 1 and 2 h). Biodiesel lower effect than petrodiesel fuel -ROS (DCFH-DA, BEAS- 2B, results not shown)	 +IL8 (BEAS-2B, THP-1a) +G-CSF (THP-1a, null in BEAS-2B) +TNF (THP-1a) +MCP1 (BEAS-2B, null in THP-1a) -IL6 (BEAS-2B, THP-1a) -MIP1α (BEAS-2B) Cytokines/chemokines have been measured using a multiplex system 	(Fukagawa <i>et</i> <i>al.</i> 2013)
Biodiesel (20%, not specified) or petrodiesel. Samples collected from the inside of the cabin of a heavy duty front loader (particles extracted in water) <u>Transition metals:</u> B20/D100 = 0.49	BEAS-2B exposed to 15, 30 or 60 μg/ml. ROS production potential assessed after 24 h exposure		+ROS (60 μg/ml, DCFH- DA). Same response for biodiesel and petrodiesel		(Martin <i>et al.</i> 2019)
FAME7, FAME20 or	BEAS-2B (2 h (ROS) or		+ROS (DCFH-DA, post-	+IL8 (A549, mRNA; not	(Lankoff et al.

synthetic hydrocarbon	6 h (gene expression).	exposure)	BEAS-2B)	2017)
biofuel (7% FAME + 13%	DEPs (25, 50 and 100	+HMOX1 (mRNA)	+CCL2 (A549 cells, mRNA;	
HVO)	µg/ml). A549 cells for		not BEAS-2B)	
	cytokine expression(6		Decrease IL1β (BEAS-2B)	
	h exposure)			
RME30, RME100 or	BEAS-2B (4 or 24 h).	-ROS (DCFH-DA, 4 h)		(Libalova <i>et</i>
petrodiesel.	EOM (50 μg	-GSH (4 h)		al. 2016)
Mean particle number	extract/ml, DCM)	+HMOX1 (mRNA, 4 or		
distribution similar		24 h)		
between D100 and RME30		+TXNRD1 (mRNA, 4 or		
(approximately 50 nm).		24 h)		
RME100 had a similar size				
distribution peak around				
50 nm and a smaller size				
distribution (less than 10				
nm).				
PAH content:				
RME30/D100 = 2.1				
RME100/D100 = 2.8				
FAME7, FAME100 or	BEAS-2B (4 or 20 h).	+HMOX1 (mRNA)	+IL6 (mRNA)	(Skuland et
synthetic hydrocarbon	DEP (10, 50 and 100		+IL8 at 20 h (mRNA;	al. 2017)
biofuel (7% FAME + 13%	μg/ml; 10 μg/ml		unaltered at 4 h)	
HVO)	corresponds to 1.5			
	μg/cm²)			
Biodiesel (source not	Human bronchial	+HMOX1 (mRNA). No		(Hawley et al.
specified) or petrodiesel.	epithelial cells (HNBE)	difference between		2014)
Count mean diameter in	exposed for 1 h air	fuels		
exhaust was 32 nm	exhaust with (≤4			
(biodiesel) and 64 nm	ng/cm ²) or without			
(D100)	filter (petrodiesel:			
<u>Organic carbon:</u>	230-340 ng/cm ² ,			
Biodiesel/D100 = 4.53	biodiesel: 45-50			
	ng/cm ²) in air-liquid			
	interphase system			
RME20, RME100 or	3D culture consisting	Increased GSH level ^d	+TNFα (modest effect on	(Steiner et al.

petrodiesel.	of epithelial cells	Increase	ed HMOX1	secretion level for B100)	2013)
Count mean diameter in	(16HBE14o-),	(mRNA)		-IL8 (gene expression and	,
exhaust showed similar	monocytes and		ice in oxidative	protein)	
distribution between	dendritic cells.	stress re	esponse	Results overall regarded as	
RME20 and D100	Exposed for 2 or 6 h to		n diesel and	equivocal	
(approximately 50 nm).	exhaust in air-liquid	biodiese	el is equivocal as	·	
RME had a bimodal	interphase system		consistent		
particle size distribution	(one exposure level)	across b	iomarkers (i.e.		
with peaks at			d HMOX1) and		
approximately 20 and 50		time po	int		
nm					
Biodiesel (type not	Mouse macrophages	Unalter	ed HMOX1		(Kooter <i>et al.</i>
specified) or petrodiesel	(RAW264.7). Exposure	(mRNA,	results not		2011)
(Euro 3 truck engine).	conditions not	shown)			·
Extracted to ethanol and	specified				
DCM (1:1 ratio)	•				
Total PAHs:					
B5/D100 = 1.15					
B10/D100 = 1.20					
B20/D100 = 1.20					
B100/D100 = 0.20					
Oxy-PAH and nitro-PAHs					
have similar distribution as					
total PAHs					
Biodiesel (20% 50% or	Primary human	-HMOX2	1 (equivocal	+IL8 (100% biodiesel, not	(Vaughan <i>et</i>
100%) from coconut oil or	bronchial epithelial	oxidativ	e stress	20% or 50%, or 100%	<i>al.</i> 2019b)
petrodiesel.	cells exposed for 30	respons	e) ^e	diesel)	
Particle size distribution	min via air-liquid			-IL6	
for B20 and B50 unimodal	interphase system and				
with a peak around 100	subsequent 5-hours				
nm, B100 and D100 were	exposure				
bimodal with peaks					
around 100 and 10 nm.					
Biodiesel (5% 15% or 20%)	Human bronchial	-HMOX2	1 (equivocal	+IL8 (effect depends on the	(Vaughan et
from coconut oil) or	epithelial cells	oxidativ	e stress	percentage of coconut oil:	<i>al.</i> 2019a)

petrodiesel	(16HBE) exposed for 30 min via air-liquid interphase system and subsequent 3-hours exposure	response) ^f	100% diesel and 20% biodiesel showed effect; no effect by 15% or 5% biodiesel) +IL6 (effect depends on the percentage of coconut oil: 100% diesel and 20% biodiesel show effect; no effect by 15% or 5% biodiesel)	
Soy methyl ester or soy ethyl ester (100%), petrodiesel or SRM1975 <u>PAH content</u> : Below detection limit	BEAS-2B (24 h) EOMs (10, 25, 40 μg PM eq/ml)		+IL6 (ELISA, greatest effect after biodiesel exposure) +IL8 (ELISA, greatest effect after biodiesel exposure)	(Swanson <i>et</i> <i>al.</i> 2009)
Waste cooking oil (B50 or B100) or D100 <u>Transition metals:</u> B100/D100 = 1.3 (metals only reported for B100)	A549 cells exposed for 48 h to filters with particles (effect attributed to soluble metals as filters were immersed in the cell culture medium)	+GSH/GSSG ratio (decreased). Strongest antioxidant depletion by B100 samples		(Betha <i>et al.</i> 2012)
Soybean (100%) or reference diesel (with 5% biodiesel). Extracted in hexane or acetone <u>PAH content:</u> B100/D100 = 3.3 <u>Transition metals:</u> B100/D100 = 3.24 (Fe was less than the detection limit, which is therefore set to the lowest detected iron level in the samples)	BEAS-2B cells exposed for 24 h to acetone or hexane extracted materials (75 μg/ml)		No effect on IL6 and IL8 secretion (protein). Positive control (LPS) showed increased expression of IL6 and IL8	(Gioda <i>et al.</i> 2016)

FAME20 or petrodiesel	A549 cells exposed for	Generally lower cytokine	(Malorni et
collected particulate	24 h to 1.2 or 4 ppm	production in exposed	al. 2017)
matter less than 10 nm by	material (article also	A549 cells. ^g	
bubbling the exhaust	contain parallel	Pro-inflammatory response	
through water (Euro 4	experiments in HaCaT	in HaCaT cells (e.g. IL6 and	
engine)	cells)	IL8, multiplex platform).	
		Petrodiesel seems to be	
		more potent than biodiesel	
FAME20 or FAME100,	NuLi and 10KT airway	+IL6 (protein)	(Mullins <i>et al.</i>
from canola, a variety of	epithelial cells in an	+IL8 (protein)	2016)
rapeseed) and petrodiesel.	exposure chamber	+RANTES	
No difference in geometric	(exposed for 1 h with	(Strongest effect at 24 h	
mean particle diameter	6, 12 or 24 h post-	post-exposure). Overall	
(bimodal distribution,	exposure). No	similar results between	
approximately 16 and 60	information about	petrodiesel, B20 and B100	
nm)	suspension (e.g.		
	hydrodynamic particle		
	size)		
RME50 and petrodiesel in	BEAS-2B (24 h, 6.25-	+IL6 (protein, mRNA)	(Gerlofs-
Euro4 engines operated	200 μg/ml, protein; 4	-IL8 (protein, mRNA)	Nijland <i>et al.</i>
under "rural" or "urban"	h, 5.25-50 μg/ml; 10	Biodiesel more potent than	2013)
running conditions	µg/ml corresponds to	petrodiesel. Rural	
	1.6 μg/cm ² is all	condition more potent	
	suspended particles	than urban running	
	were deposited)	condition	
Waste yellow grease (used	THP-1a or BEAS-2B	THP-1a:	(Traviss <i>et al.</i>
cooking oil) as 20% biofuel	cells (10 or 20 μg/ml)	+TNFα (biodiesel)	2014)
or petrodiesel combusted	for 24 h	+IL8 (both)	
in non-road heavy-duty		+MIP1α (all)	
engine.		-IL1β	
Particle size in tail pipe		BEAS-2B:	
exhaust was 11 nm for		+IL6 (all)	
both B20 and D100.		+IL8 (petrodiesel)	
Particle size by			
transmission electron			

microscopy was 99 and				
109 nm for B20 and D100,				
respectively				
Organic carbon:				
B20/D100 = 1.63				
Soy-, animal-based or	Activated U937 cells		+IL8 (mRNA)	(Vogel <i>et al.</i>
"renewable hydrotreated)	(macrophage-like)		+COX2 (mRNA)	2019)
biodiesel (20%, 50% or	exposed for 24 h to		(soy-based diesel higher	
100%), petrodiesel or	PM (extracted with		than normal diesel)	
SRM1650	DCM and suspended			
	in DMSO),			
	corresponding to 5-50			
	μg/ml of the total			
	mass of particles			
B20 (source not reported)	Primary rat alveolar		+MIP2 (D100, mRNA)	(Bhavaraju <i>et</i>
and D100	macrophages exposed		+COX2 (B20, D100, mRNA)	al. 2014)
<u>Organic carbon:</u>	for 24 h (1, 10 and 100		PGE ₂ (B20, protein) not	
B20/D100 = 0.45	μg/ml)		conclusive	
Transition metals:				
B20/D100 = 45.2				

Abbreviations: AFME: animal fat methyl ester, CAT: catalase, COX2: cyclooxygenase 2 (also known as prostaglandin-endoperoxide synthase 2), DCFH-DA: 2',7'-dihydrofluorescin diacetate, DCM: dichloromethane, DEP: diesel exhaust particles, DMSO: dimethyl sulfoxide, DOC: diesel oxidation catalyst, EOM: extractable organic matter, EndoIII: endonuclease III, ESR: electron spin resonance, FAME: fatty acid methyl ester, G-CSF: granulocyte-colony stimulating factor, GSH: reduced glutathione, GSSG: oxidized glutathione, Fpg: formamidopyrimidine DNA glycosylase: HMOX1: heme oxygenase 1, HVO: hydrogenated vegetable oil, IL: interleukin, LPS: lipopolysaccharide, MCP1: monocyte attractant protein 1 (also known as CCL2), MIP1-alpha: macrophage inflammatory protein 1 (also known as chemokine (C-C motif) ligand 3 (CCL3)), MIP2: macrophage inflammatory protein 2 (also known as CXCL2), MN: micronuclei (or micronucleus assay), , PAH: polycyclic aromatic hydrocarbons, PM: particulate matter, PGE2: prostaglandin E2, POC: particle oxidation catalyst, RANTES: Regulated on Activation, Normal T Cell Expressed and Secreted (also known as chemokine (C-C motif) ligand 5 (CCR5)), RME: rapeseed methyl ester, ROS: reactive oxygen species, SB: strand breaks, SOD: superoxide dismutase, THP-1a cells: activated THP-1 cells (i.e. cells that have been treated with a phorbol ester to develop a macrophage-like phenotype), TNF: tumor necrosis factor, TXNRD1: thioredoxin reductase. ^aThe response is reported as positive (+) or null effect (-), based on the statistical analysis in the original publication. ^bThe article indicate that only one experiment was conducted (i.e. lack of independent replication) and therefore it is not conclusive evidence of genotoxicity. The measurement of oxidatively damaged DNA was assessed by incubation with Fpg and EndoIII. ^cThe study included measurements of 8-oxodG in cells and extracellular medium. These endpoints are not considered relevant as the antibody-based detection of 8-oxodG is considered to be unspecific and 8-oxodG in extracellular medium is not a DNA lesion. ^dThe increased level of GSH goes against the notion that oxidative stress is caused by depletion of antioxidants. Thus, we have considered the results as equivocal evidence of oxidative stress. ^eGene expression of HMOX1 (mRNA levels) measured as a marker of "antioxidant protection"; however it demonstrates both increases and decreases in a seemingly random way that is difficult to interpret. ^fGene expression of SOD1, SOD2 and HMOX1 (mRNA levels) measures as markers of "oxidative stress"; SOD1 and SOD2 have opposite results and HMOX1 was unaltered. Given the fact that the results seems derived from mRNA analyses and they are opposite in direction, the overall result is inconclusive with regard to oxidative stress. ^gThe study has not assessed the difference between biodiesel and petrodiesel (only multiple Student's t-tests).

Supplementary table S2. Genotoxicity, oxidative stress and inflammation in the lungs of animals (lung tissue unless specified otherwise)

Diesel type	Model (animal)	Genotoxicity ^a	Oxidative stress ^a	Inflammation ^a	Reference
RME20 in a Euro5	Adult (age not specified)	-SB (comet)	Minor effects (SOD,	+(modest effect on histology,	(Magnusson
engine (including	male F344 rats (2.0 mg/m ³)	-Fpg (comet,	GPX, THPO, HMOX1).	gene expression (<i>TNF</i> , <i>IL1</i> β , but	et al. 2017)
particle-filtered air	by whole-body inhalation	results not	We have regarded the	not IL6) and neutrophils in BALF	
as control)	exposure for 7 (6 h/day) or	shown, no assay	gene expression	(2.5% neutrophils at day 28)	
	28 days (6 h/day, 5	description)	results to show minor		
	days/week).		and inconsistent		
	<u><i>Dose</i></u> : 84 and 60 mg*h/m ³		effects		
	per week, respectively				
FAME7 or synthetic	Adult (age not specified)	-SB (comet)	Minor effects (gene	Minor effects (no influx of	(Magnusson
hydrocarbon	male F344 rats (2.0 mg/m ³ of	-Fpg (comet)	expression of Cat and	neutrophils or macrophages, no	<i>et al.</i> 2019)
biofuel (7% FAME	PM) by whole-body		HMOX1)	difference in BALF cytokines)	
and 13% HVO) in	inhalation exposure for 7 (6				
Euro5 engine	h/day) or 28 days (6 h/day, 5				
	days/week).				
	<u>Dose</u> : 84 and 60 mg*h/m ³				
	per week, respectively				
RME30 in Euro4	Male Wistar rats (age not	-γH2AX	-GSH/GSSG		(Douki <i>et al.</i>
engine (before or	reported) exposed to 24	-PAH-DNA	-ROS production		2018)
after particle filter)	mg/m ³ of PM by inhalation 3	adducts	-Catalase (activity)		
	h per day for 5 days/week	-8-oxodG ^c	-SOD (activity)		
	during 3 weeks ^b .	-Telomere length	-GPX (activity)		
	<u><i>Dose</i></u> : 360 mg*h/m ³ per	(qPCR; also	-Protein carbonyls		
	week	unaltered			
		telomerase			
		activity and gene			
		expression level)			
Soybean oil (100%)	Male and female rats, 5-7			+(presence of macrophages,	(Finch <i>et al.</i>
	weeks old, exposed by			assessed by histology)	2002)
	inhalation (6 h/day, 5				
	days/week) for 13 weeks by				
	inhalation (0.04, 0.2 or 0.5				
	mg/m ³).				

	<u>Dose</u> = 1.2, 6 and 15 mg*h/m ³ per week, respectively. NO _x was 5, 25 and 50 ppm, respectively			
Soy biodiesel (100%) or petrodiesel. Mass median aerodynamic diameter of biodiesel and D100 were 113 and 168 nm, respectively. <u>PAH content:</u> B100/D100 = 0.38	Female Balb/cJ mice (10-12 weeks old) exposed to 50, 150 or 500 µg/m ³ (4 h/day, 5 days/week) for 4 weeks. <u>Dose:</u> 1, 3 and 10 mg*h/m ³	+lipid peroxidation (4- HNE) +protein carbonyls +GSH depletion Strongest response for biodiesel	+IL6, MCP1, TNF α, INFγ, IL12p70 and MPO activity Strongest response for biodiesel	(Shvedova <i>et al.</i> 2013)
Soy biodiesel (20% or 100%) or D100 <u>Organic carbon:</u> B20/D100 = 1.44 B100/D100 = 2.44 The content of organic compounds, including in PAHs in EOM was assessed by Mutlu <i>et al.</i> 2015a	Female Balb/cJ mice (6-8 weeks old) exposed to 50, 150 or 500 µg/m ³ (4 h/day, 5 days exposure, or 4 weeks exposure (5 days/week). <u>Dose:</u> 1, 3 and 10 mg*h/m ³		+Neutrophils (BALF, 500 μ g/m ³) and MIP2 (protein, 150 and 500 μ g/m ³) at 2 h after a single 4- hour exposure to biodiesel. No effect 24 h after a single exposure, 2 or 24 h after a 5- day exposure or 4 weeks exposure. No effect on IL6 and TNF α levels. Biodiesel generated less pulmonary inflammation than D100	(Gavett <i>et</i> <i>al.</i> 2015)
Soy (20% or 100%) or D100. <u>Organic carbon:</u> B20/D100 = 1.44 B100/D100 = 2.44 The content of organic compounds,	Male Wistar-Kyoto or spontaneous hypertensive rats (6-8 weeks old) exposed to 50, 150 or 500 μg/m ³ for 2 days (4 h/day) or 4 weeks (4 h/day and 5 days/week). <u>Dose</u> : 0.4, 1.2 and 4.0 mg*h/m ³ per week (short-		Slightly increased influx of neutrophils in D100 (1-day, less than 2-fold increase). Unaltered number of macrophages in BALF and toxicity (protein, albumin, LDH)	(Bass <i>et al.</i> 2015)

including in PAHs	term exposure) and 1, 3, and		
in EOM was	10 mg*h/m ³ per week (long-		
assessed by Mutlu	term exposure)		
, et al. 2015a			
Soy (20% or 100%)	Male spontaneous	Unaltered influx of cells in BALF	(Farraj <i>et al.</i>
or D100.	hypertensive rats (12 weeks	(results are not reported in the	2015)
Organic carbon:	old) exposed to 50, 150 or	article)	
B20/D100 = 1.44	500 μ g/m ³ for 2 days (4		
B100/D100 = 2.44	h/day).		
The content of	<u>Dose</u> : 0.4, 1.2 and 4.0		
organic	mg*h/m ³ per week		
compounds,	0 / 1		
including in PAHs			
in EOM was			
assessed by Mutlu			
et al. 2015a			
Soybean (50% or	Male Balb/c mice (6-8 weeks	Modest increase (reported as a	(Brito <i>et al.</i>
100%) or D100.	old) exposed for 1 h to 550	modest increase of neutrophils	2010)
PAH content:	μ g/m ³ and sacrificed 24 h	in BALF after exposure to B50,	,
B50/D100 = 0.08	post-exposure.	but the corresponding figure in	
B100/D100 = 0.01	<u>Dose</u> : 0.55 mg*h/m ³ per	the articles does not indicate an	
Based on median	week	effect on neutrophils). Likewise,	
between minimum		there are not statistically	
and maximum		significant effects on	
values.		neutrophils in lung parenchyma.	
Transition metals:		There appears to be modest	
B50/D100 = 1.06		evidence of increased number	
B100/D100 = 1.17		of total cells, which is mainly	
Volatile		driven by macrophages.	
compounds:		Inflammation reported to be	
less aromatics,		higher in biodiesel exposed	
alkanes, alkenes		mice as compared to D100	
and alkadiesel in			
biodiesel than			
D100			

Sewage methyl	Male Balb/c mice (6-8 weeks		+influx of neutrophils and	(de Brito <i>et</i>
esters or D100	old) exposed to 600 or 1200		macrophages (BALF, histology).	<i>al.</i> 2018)
	μ g/m ³ by inhalation for 1 h		Same response in biodiesel and	
	and sacrificed at 24 h post-		petrodiesel	
	exposure.			
	<u>Dose</u> : 0.6 and 1.2 mg*h/m ³			
	per week			
Soy (20%) or D100.	C57BL/6 mice (age not	+Protein carbonyls	+influx in BALF (macrophages,	(Fukagawa
Mean particle	reported) exposed to 84 µg	+GCLC	lymphocytes, neutrophils)	et al. 2013)
number diameter	by oropharyngeal aspiration		+G-CSF, IP-10, IL6 in BALF and	
in aerosol of	once a day for 3 days.		lung tissue (higher response	
biodiesel (32 nm)	<u>Dose</u> : 1.3 mg/g _{lung} tissue		with biodiesel as compared to	
and D100 (51 nm)			D100)	
<u>PAH content:</u>				
B20/D100 = 0.43				
Soybean (100%,	Female Balb/CJ mice (12-14		-(number of neutrophils in	(Tzamkiozis
Euro2 engine) and	weeks old) exposed for 24 h		BALF). Increased BALF protein	et al. 2010)
petrodiesel (Euro1	after an i.t instillation of 50		at highest concentration (direct	
or Euro4 engine).	or 100 µl extracted particles		comparison between diesel	
<u>PAH content:</u>	(reported to contain 0.2		types not possible because of	
B100/D100 = 2.53	μg/μl, corresponding to		the use of different engines)	
(D100/Euro 4)	instilled doses of 10 and 20			
B100/D100 = 1.08	μg).			
(D100/Euro 2).	<u>Dose</u> : 0.05 or 0.1 mg/g _{lung}			
Transition metal:				
B100/D100 = 0.88				
(D100/Euro 4)				
B100/D100 = 1.64				
(D100/Euro 2)				
Neat corn-based	C57BL/6 female mice (8-10	+Protein carbonyls	+BALF cells	(Yanamala
FAME100 or D100.	weeks old) exposed to 9 or	+4-HNE	+MPO	et al. 2013)
Hydrodynamic	18 μg of total carbon by	(biodiesel≥D100)	+cytokines (BALF)	
diameter by	pharyngeal aspiration and		Generally greater response in	
dynamic light	sacrifice at 24 h, 7 days or 28		mice after exposure to biodiesel	
scattering was 216	days.		than D100	

(FAME) and 312	Dose: 0.05 and 0.09 mg/glung			
nm (D100).	(assuming that total carbon			
<u>Organic carbon:</u>	represents 80% of the PM as			
B100/D100 = 1.88	reported in the article and a			
	weight of 20 g per mouse)			
PM from the	Female C57BL/6 mice (8-10	+ROS (cells in BALF)	+Macrophages in lung	(Cattani-
exhaust pipe of a	weeks old) exposed by intra-	+CAT, SOD, GPX, GCLC	parenchyma	Cavalieri <i>et</i>
public bus running	nasal instillation to 250 or	and GCLM (decreased	+TNFα (BALF)	al. 2019)
on diesel fuel with	1000 μg/day over 5	in lung tissue)		
7% biodiesel.	consecutive days ^d	measured by immune		
Hydrodynamic		blot		
particle size				
(dynamic light				
scattering) was 390				
nm				

Abbreviations : BALF: bronchoalveolar lavage fluid, CAT: catalase, D100: petrodiesel, FAME: fatty acid methyl ester, GCLC: Glutamate-cysteine ligase catalytic subunit, GCLM: Glutamate-cysteine ligase regulatory subunit, GPX: glutathione peroxidase, G-CSF: granulocyte-colony stimulating factor, GSH: reduced glutathione, GSSG: oxidized glutathione, Fpg: formamidopyrimidine DNA glycosylase: HMOX1: heme oxygenase 1, HVO: hydrogenated vegetable oil, IL: interleukin, INFγ: interferon gamma, IP-10: interferon gamma induced protein 10 (also known as chemokine C-X-C motif 10 (CXCL10)), LDH: lactate dehydrogenase, MCP1: monocyte attractant protein 1 (also known as CCL2), MIP2: macrophage inflammatory protein 2 (also known as chemokine C-X-C motif ligand 2 (CXCL2), MPO: myeloperoxidase, PAH: polycyclic aromatic hydrocarbons, PM: particulate matter, RME: rapeseed methyl ester, SB: strand breaks, SOD: superoxide dismutase, THPO: Thrombopoietin, TNF: tumor necrosis factor, 4-HNE: 4-Hydroxynonenal, 8-oxodG: 8-oxo-7,8-dihydroguanosine-2'-deoxyguanosine.

^aThe response is reported as positive (+) or null effect (-), based on the statistical analysis in the original publication. The age of the animals is reported as stated in the publications, which is typically the age at arrival. ^bThe exposure concentration is excessively high and it does not appear to be in line with the author's statement that it is 75% of the concentration inside a vehicle in urban traffic. The levels of NOx (83 ppm) and NO (34 ppm) suggest relatively low level of diesel exhaust. ^cNull effect finding on 8-oxodG should be viewed in the light that the baseline level of DNA damage (\approx 33 to 44 lesions per 10⁶ dG) was much higher than the commonly accepted level of less than 5 lesions/10⁶ dG. ^dThe deposited dose in the peripheral lung would be relatively high (6.3 and 25 mg per gram lung tissue) assuming 100% transport of particulate matter into the lung, which is uncertain.

Common abbreviation	Common name	Official abbreviation	Official abbreviation
MIP1α (or MIP-1)	Microphage inflammatory protein 1	CCL3	C-C motif chemokine ligand 3
MIP2α (or MIP-2)	Microphage inflammatory protein 2	CXCL2	C-X-C motif chemokine ligand 2
MCP1	Macrophage chemoattractant protein 1	CCL2	C-C motif chemokine ligand 2
IL1β	Interleukin 1β	IL1B	Interleukin 1 beta
IL8	Interleukin 8	CXCL8	C-X-C motif chemokine ligand 8
IL6	Interleukin 6	IL6	Interleukin 6
IL12p70	Interleukin 12 (active heterodimer of IL12A	IL12A and II12B	Interleukin 12A and Interleukin 12B
	and IL12B)		
INF gamma	Interferon gamma	IFNG	Interferon gamma
IP-10	Interferon gamma induced protein 10	IP-10	C-X-C motif chemokine ligand 10
RANTES	Regulated on activation normal T	CCR5	C-C motif chemokine receptor 5
	expressed and secreted protein		(gene/pseudogene)
TNF	Tumor necrosis factor	TNF	Tumor necrosis factor
G-CSF	Granulocyte-colony stimulating factor	CSF3	Colony stimulating factor 3

Supplementary table S3. Common and official names and abbreviations of pro-inflammatory mediators

Supplementary table S4. Particle size of biodiesel and petrodiesel in studies included in the present review

Particle size of biodiesel	Particle size of petrodiesel	Matrix or vehicle	Method	Reference
(nm)	(nm)			
90 nm (RME20, Euro 4)	139 nm (D100, Euro 2)	Water	NanoSight Tracking Analysis	(Hemmingsen <i>et al.</i> 2011)
130 nm (AFME20, Euro 2)	129 nm (D100, Euro 4)			
95 nm (AFME20, Euro 4)	132 nm (SRM2975)			
134 nm (RME20, Euro 4)	189 nm (D100, Euro 2)	Cell culture medium (with	NanoSight Tracking Analysis	(Hemmingsen <i>et al.</i> 2011)
158 nm (AFME20, Euro 2)	148 nm (D100, Euro 4)	serum)		
149 nm (AFME20, Euro 4)	154 nm (SRM2975)			
32 nm	51 nm	Aerosol	Scanning mobility particle sizer	(Fukagawa <i>et al.</i> 2013)
113 nm (mass median	168 nm (mass median	Aerosol	Scanning mobility particle	(Shvedova <i>et al.</i> 2013)
aerodynamic diameter)	aerodynamic diameter)		sizer	
50 nm (B20)	50 nm	Aerosol	TSI scanning mobility	(Steiner <i>et al.</i> 2013)
15 nm and 50 nm (B100)			particle sizer	
216 nm	312 nm	Suspension	Dynamic light scattering	(Yanamala <i>et al.</i> 2013)
32 nm (count median	64 nm (count median of	Aerosol	Not described	(Hawley <i>et al.</i> 2014)
diameter of exhaust)	exhaust)			
16 and ≈60 nm (FAME20 and FAME100)	16 and ≈60 nm	Aerosol	TSI scanning mobility particle sizer	(Mullins <i>et al.</i> 2016)
11 nm (B20, primary size)	11 nm (primary size)	Dry condition	Transmission electron	(Traviss et al. 2014)
99 nm (B20, agglomerate)	109 nm (agglomerate)		microscopy	
≈50 nm (B30)	≈50 nm	Aerosol	TSI fast mobility particle	(Libalova <i>et al.</i> 2016)
≈10 nm and ≈50 nm (B100)			sizer	
≈100 nm (B20)	Bimodal (≈20 nm and ≈100	Aerosol	DMS500	(Vaughan et al. 2019b)
≈12 nm and ≈100 nm (B50)	nm)			
≈80 nm (B100)				

Supplementary Table S5. Segregation of studies on toxicity relative to the content of organic carbon or PAHs. The "outcome" refers to genotoxicity, oxidative stress or inflammation, which is segregated into higher (i.e. D100 > Biodiesel), the same (i.e. D100 = Biodiesel), or lower (i.e. D100 < Biodiesel) toxicity than biodiesel exhaust. The content of organic carbon or PAH level has been categorized as highest content in petrodiesel exhaust (i.e. Ratio < 1), same content in biodiesel and petrodiesel exhausts (i.e. Ratio = 1), or highest content in biodiesel exhaust (i.e. Ratio > 1). The content of organic carbon (or PAHs) has been regarded as the same in biodiesel and petrodiesel exhausts if the difference was less than 10%. Supplementary tables S1 and S2 show the ratio between organic carbon (or PAH) content in biodiesel versus petrodiesel exhausts.

Organic carbon or PAH level	Outcome (D100 > Biodiesel)	Outcome (D100 = Biodiesel)	Outcome (D100 < Biodiesel)
(biodiesel/petrodiesel ratio)			
Ratio < 1 (highest content in D100)	Genotoxicity	Genotoxicity	Genotoxicity
	HVO30 (Jalava <i>et al.</i> 2012)	RME20 (Hemmingsen et al. 2011)	No studies
	RME100 (Jalava <i>et al.</i> 2012)	AFME20 (Hemmingsen et al. 2011)	
	RME30 (Jalava <i>et al.</i> 2012)		Oxidative stress
			No studies
	Oxidative stress	Oxidative stress	
	S20 (Fukagawa <i>et al.</i> 2013)	RME20 (Hemmingsen et al. 2011)	Inflammation
		AFME20 (Hemmingsen et al. 2011)	S20 (Fukagawa <i>et al.</i> 2013)
	Inflammation	HVO30 (Jalava <i>et al.</i> 2012)	S50 (Brito <i>et al.</i> 2010)
	No studies	RME100 (Jalava <i>et al.</i> 2012)	S100 (Brito <i>et al.</i> 2010)
		RME30 (Jalava <i>et al.</i> 2012)	B100 (Shvedova <i>et al.</i> 2013)
		Inflammation	
		RME20 (Hemmingsen <i>et al.</i> 2011)	
		AFME20 (Hemmingsen et al. 2011)	
		B20 (Bavaruju <i>et al.</i> 2014)	
		HVO30 (Jalava <i>et al.</i> 2012)	
		RME100 (Jalava <i>et al.</i> 2012)	
		RME30 (Jalava <i>et al</i> . 2012)	
Ratio = 1 (same content)	Genotoxicity	Genotoxicity	Genotoxicity
	No studies	RME100 (Jalava <i>et al.</i> 2010)	No studies
		HVO100 (Jalava <i>et al.</i> 2010)	
	Oxidative stress	HVO100 (Jalava <i>et al.</i> 2012)	Oxidative stress
	HVO100 (Jalava <i>et al.</i> 2012)		No studies
		Oxidative stress	

	Inflammation	RME100 (Jalava <i>et al.</i> 2010)	Inflammation
	RME100 (Jalava <i>et al.</i> 2010)	HVO100 (Jalava <i>et al.</i> 2010)	S100 (Swanson et al. 2009)
		Inflammation	
		HVO100 (Jalava <i>et al.</i> 2010)	
		HVO100 (Jalava <i>et al.</i> 2012)	
Ratio > 1 (highest content in	Genotoxicity	Genotoxicity	Genotoxicity
biodiesel)	No studies	B30 (Cervina <i>et al.</i> 2017)	No studies
		B100 (Cervina <i>et al.</i> 2017)	
	Oxidative stress		Oxidative stress
	No studies	Oxidative stress	No studies
		RME30 (Libalova <i>et al.</i> 2016)	
	Inflammation	RME100 (Libalova <i>et al.</i> 2016)	Inflammation
	S20 (Gavett <i>et al.</i> 2015)		B100 (Yanamala <i>et al.</i> 2013)
	S100 (Gavett <i>et al.</i> 2015)	Inflammation	
	S20 (Bass et al. 2015)	BD (Hawley <i>et al.</i> 2014)	
	S100 (Bass et al. 2015)	B20 (Traviss <i>et al.</i> 2014)	
		B100 (Gioda <i>et al.</i> 2016)	
		BD/Euro 4 (Tzamkiozis et al. 2010)	
		BD/Euro 1 (Tzamkiozis et al. 2010)	
		S20 (Farraj <i>et al.</i> 2015)	
		S100 (Farraj <i>et al.</i> 2015)	

Abbreviations: BD = biodiesel (typically unspecified), S = soy.

Supplementary S6. Segregation of studies on toxicity relative to the content of transition metals. The "outcome" refers to genotoxicity, oxidative stress or inflammation, which is segregated into higher (i.e. D100 > Biodiesel), the same (i.e. D100 = Biodiesel), or lower (i.e. D100 < Biodiesel) toxicity than biodiesel exhaust. The content of transition metals has been categorized as highest content in petrodiesel exhaust (i.e. Ratio < 1), same content in biodiesel and petrodiesel exhausts (i.e. Ratio = 1), or highest content in biodiesel exhaust (i.e. Ratio > 1). The content of transition metals has been regarded as the same in biodiesel and petrodiesel exhausts if the difference was less than 10%. Supplementary tables S1 and S2 show the ratio between organic carbon (or PAH) content in biodiesel versus petrodiesel exhausts. For the calculation of transition metals we have used geometric mean of vanadium, chromium, manganese, iron, cobalt, nickel and copper.

Transition metal level	Outcome (D100 > Biodiesel)	Outcome (D100 = Biodiesel)	Outcome (D100 < Biodiesel)
(biodiesel/petrodiesel ratio)			
Ratio < 1 (highest content in D100)	Genotoxicity	Genotoxicity	Genotoxicity
	HVO100 (Jalava <i>et al.</i> 2012)	HVO100 (Jalava <i>et al.</i> 2010)	No studies
	RME30 (Jalava <i>et al.</i> 2012)		
	B20 (Yang <i>et al.</i> 2017)	Oxidative stress	Oxidative stress
	B40 (Yang <i>et al.</i> 2017)	HVO100 (Jalava <i>et al.</i> 2010)	No studies
		RME100 (Jalava <i>et al.</i> 2012)	
	Oxidative stress	BD (Martin <i>et al.</i> 2019)	Inflammation
	HVO100 (Jalava <i>et al.</i> 2012)	B100 (Kooter <i>et al.</i> 2011)	No studies
	Inflammation	Inflammation	
	No studies	HVO100 (Jalava <i>et al.</i> 2010)	
		HVO100 (Jalava <i>et al.</i> 2012)	
		RME100 (Jalava <i>et al.</i> 2012)	
		BD/Euro 4 (Tzamkiozis et al. 2010)	
Ratio = 1 (same content)	Genotoxicity	Genotoxicity	Genotoxicity
	No studies	No studies	No studies
	Oxidative stress	Oxidative stress	Oxidative stress
	No studies	No studies	No studies
	Inflammation	Inflammation	Inflammation
	No studies	No studies	S50 (Brito <i>et al.</i> 2010)
Ratio > 1 (highest content in	Genotoxicity	Genotoxicity	Genotoxicity
biodiesel)	HVO30 (Jalava <i>et al.</i> 2012)	RME100 (Jalava <i>et al.</i> 2010)	No studies

RM	IE100 (Jalava <i>et al.</i> 2012)		
		Oxidative stress	Oxidative stress
Oxi	idative stress	RME100 (Jalava <i>et al.</i> 2010)	B50 (Betha <i>et al.</i> 2012)
No	studies	HVO30 (Jalava <i>et al.</i> 2012)	B100 (Betha <i>et al.</i> 2012)
		RME30 (Jalava <i>et al.</i> 2012)	
Infl	lammation	B5 (Kooter <i>et al.</i> 2011)	Inflammation
RM	IE100 (Jalava <i>et al.</i> 2010)	B10 (Kooter <i>et al.</i> 2011)	S100 (Brito <i>et al.</i> 2010)
		B20 (Kooter <i>et al.</i> 2011)	
		Inflammation	
		HVO30 (Jalava <i>et al.</i> 2012)	
		RME30 (Jalava <i>et al.</i> 2012)	
		B20 (Bhavaruju <i>et al.</i> 2014)	
		B100 (Gioda <i>et al.</i> 2016)	
		BD/Euro 1 (Tzamkiozis et al. 2010)	

Abbreviations: BD = biodiesel (typically unspecified), S = soy.

Blend (%) American studies **European studies Studies from other countries** 100 Sov (Finch *et al.* 2002) RME (Jalava et al. 2010, 2012) Australia Soy (Vogel *et al.* 2019) RME (Cervena et al. 2017; Libalova et al. 2016; Novotna et Coconut (Vaughan *et al.* 2019b) Sov (Swanson et al. 2009) FAME (Mullins et al. 2014) al. 2019) RME (Steiner et al. 2013) Soy (Shvedova et al. 2013) Brazil Animal (Vogel et al. 2019) HVO (Jalava et al. 2010, 2012) Soy (Brito et al. 2010) Hydro-treated (Vogel et al. 2019) Soy (Gioda et al. 2016) NR (Kooter *et al.* 2011) FAME (Yanamala et al. 2013) Sewage waste (de Brito et al. 2018) Singapore Cooking oil (Betha *et al.* 2012) 50 Soy (Vogel *et al.* 2019) RME (Gerlofs-Niiland et al. 2013) Australia Animal (Vogel et al. 2019) Coconut (Vaughan *et al.* 2019b) Hydro-treated (Vogel *et al.* 2019) Brazil Soy (Brito et al. 2010) Singapore Cooking oil (Betha *et al.* 2012) Taiwan Cooking oil/butanol (Yang et al. 2017) 30 RME (Jalava et al. 2010, 2012) Taiwan Cooking oil/butanol (Yang et al. RME (Cervena et al. 2017) RME (Andre et al. 2015; Barraud et al. 2017) 2017) RME (Douki et al. 2018) HVO (Jalava et al. 2010, 2012) Soy (Fukagawa *et al.* 2013) RME (Hemmingsen *et al.* 2011) 20 Australia Soy (Vogel *et al.* 2019) RME (Steiner et al. 2013) Coconut (Vaughan et al. 2019a; Soy (Bass et al. 2015; Farraj et al. Vaughan et al. 2019b) AFME (Hemmingsen et al. 2011) 2015; Gavett et al. 2015) FAME (Kowalska et al. 2017; Lankoff et al. 2017; FAME (Mullins et al. 2014) Animal (Vogel et al. 2019) Magnusson *et al.* 2017, 2019; Skuland *et al.* 2017) Hydro-treated (Vogel et al. 2019) FAME (Malorni et al. 2017) NR (Bhavaraju et al. 2014) FAME/HVO (Kowalska et al. 2017; ; Lankoff et al. 2017; Cooking oil (Traviss et al. 2014) Magnusson et al. 2017, 2019; Skuland et al. 2017) NR (Martin *et al.* 2019)

Supplementary S7. Segregation of studies into the percentage of biodiesel in the fuel and country where the study has been conducted

15			<u>Australia</u>
			Coconut (Vaughan et al. 2019a)
7		RME (Andre et al. 2015; Barraud et al. 2017)	Brazil
		FAME (Kowalska et al. 2017; ; Lankoff et al. 2017;	NR (Cattani-Caveieri et al. 2019)
		Magnusson et al. 2017, 2019; Skuland et al. 2017)	
5			<u>Australia</u>
			Coconut (Vaughan et al. 2019a)
Not	NR (Hawley <i>et al.</i> 2014)		
reported			

NR: Not reported. Tzamkiozis et al. (2010) has not been included in the table as it used soybean (i.e. putative "American" type of fuel biodiesel) and Euro 1-4 type of engines (i.e. European regulation of exhaust emissions).

References

- Andre, V., Barraud, C., Capron, D., Preterre, D., Keravec, V., Vendeville, C., Cazier, F., Pottier, D., Morin, J. P., and Sichel, F. (2015). Comparative mutagenicity and genotoxicity of particles and aerosols emitted by the combustion of standard vs. rapeseed methyl ester supplemented biodiesel fuels: impact of after treatment devices: oxidation catalyst and particulate filter. *Mutat. Res Genet. Toxicol Environ Mutagen.* **777**, 33-42.
- Barraud, C., Corbiere, C., Pottier, I., Estace, E., Blanchard, K., Logie, C., Lagadu, S., Keravec, V., Pottier, D., Dionnet, F., Morin, J. P., Preterre, D., Andre, V., Monteil, C., and Sichel, F. (2017). Impact of after-treatment devices and biofuels on diesel exhausts genotoxicity in A549 cells exposed at airliquid interface. *Toxicol In Vitro* 45, 426-433.
- Bass, V. L., Schladweiler, M. C., Nyska, A., Thomas, R. F., Miller, D. B., Krantz, T., King, C., Ian, G. M., Ledbetter, A. D., Richards, J. E., and Kodavanti, U. P. (2015). Comparative cardiopulmonary toxicity of exhausts from soy-based biofuels and diesel in healthy and hypertensive rats. *Inhal Toxicol* 27, 545-556.
- Betha, R., Pavagadhi, S., Sethu, S., Hande, M. P., and Balasubramanian, R. (2012). Comparative in vitro cytotoxicity assessment of airborne particulate matter emitted from stationary engine fuelled with diesel or waste cooking oil-derived biodiesel. *Atmos. Environ.* **61**, 23-29.
- Bhavaraju, L., Shannahan, J., William, A., McCormick, R., McGee, J., Kodavanti, U., and Madden, M. (2014). Diesel and biodiesel exhaust particle effects on rat alveolar macrophages with in vitro exposure. *Chemosphere* **104**, 126-133.
- Brito, J. M., Belotti, L., Toledo, A. C., Antonangelo, L., Silva, F. S., Alvim, D. S., Andre, P. A., Saldiva, P. H., and Rivero, D. H. (2010). Acute cardiovascular and inflammatory toxicity induced by inhalation of diesel and biodiesel exhaust particles. *Toxicol Sci* **116**, 67-78.
- Cattani-Cavalieri, I., Valenca, S. S., Lanzetti, M., Carvalho, G. M. C., Zin, W. A., Monte-Alto-Costa, A., Porto, L. C., and Romana-Souza, B. (2019). Acute exposure to diesel-biodiesel particulate matter promotes murine lung oxidative stress by Nrf2/HO-1 and inflammation through the NF-kB/TNFalpha pathways. *Inflammation* **42**, 526-537.
- Cervena, T., Rossnerova, A., Sikorova, J., Beranek, V., Vojtisek-Lom, M., Ciganek, M., Topinka, J., and Rossner, P., Jr. (2017). DNA damage potential of engine emissions measured in vitro by micronucleus test in human bronchial epithelial cells. *Basic Clin. Pharmacol Toxicol* **121 Suppl 3**, 102-108.
- de Brito, J. M., Mauad, T., Cavalheiro, G. F., Yoshizaki, K., de Andre, P. A., Lichtenfels, A. J. F. C., Guimaraes, E. T., Rivero, D. H. R. F., Antonangelo, L., Oliveira, L. B., Pedroso, L. R. M., Macchione, M., and Saldiva, P. H. N. (2018). Acute exposure to diesel and sewage biodiesel exhaust causes pulmonary and systemic inflammation in mice. *Sci Total Environ* **628-629**, 1223-1233.

- Douki, T., Corbiere, C., Preterre, D., Martin, P. J., Lecureur, V., Andre, V., Landkocz, Y., Pottier, I., Keravec, V., Fardel, O., Moreira-Rebelo, S., Pottier, D., Vendeville, C., Dionnet, F., Gosset, P., Billet, S., Monteil, C., and Sichel, F. (2018). Comparative study of diesel and biodiesel exhausts on lung oxidative stress and genotoxicity in rats. *Environ Pollut.* 235, 514-524.
- Farraj A. K., Haykal-Coates, N., Winsett, D. W., Gilmour, M. I., King, C., Krantz, Q. T., Richards, J., Hazari, M. S. (2015). Comparative electrocardiographic, autonomic and systemic inflammatory responses to soy biodiesel and petroleum diesel emissions in rats. *Inhal Toxicol* **27**, 564-75.
- Finch, G. L., Hobbs, C. H., Blair, L. F., Barr, E. B., Hahn, F. F., Jaramillo, R. J., Kubatko, J. E., March, T. H., White, R. K., Krone, J. R., Menache, M. G., Nikula, K. J., Mauderly, J. L., Van, G. J., Merceica, M. D., Zielinska, B., Stankowski, L., Burling, K., and Howell, S. (2002). Effects of subchronic inhalation exposure of rats to emissions from a diesel engine burning soybean oil-derived biodiesel fuel. *Inhal Toxicol* 14, 1017-1048.
- Fukagawa, N. K., Li, M., Poynter, M. E., Palmer, B. C., Parker, E., Kasumba, J., and Holmen, B. A. (2013). Soy biodiesel and petrodiesel emissions differ in size, chemical composition and stimulation of inflammatory responses in cells and animals. *Environ Sci Technol* **47**, 12496-12504.
- Gavett, S. H., Wood, C. E., Williams, M. A., Cyphert, J. M., Boykin, E. H., Daniels, M. J., Copeland, L. B., King, C., Krantz, T. Q., Richards, J. H., Andrews, D. L., Jaskot, R. H., and Gilmour, M. I. (2015). Soy biodiesel emissions have reduced inflammatory effects compared to diesel emissions in healthy and allergic mice. *Inhal Toxicol* 27, 533-544.
- Gerlofs-Nijland, M. E., Totlandsdal, A. I., Tzamkiozis, T., Leseman, D. L., Samaras, Z., Lag, M., Schwarze, P., Ntziachristos, L., and Cassee, F. R. (2013). Cell toxicity and oxidative potential of engine exhaust particles: impact of using particulate filter or biodiesel fuel blend. *Environ Sci Technol* **47**, 5931-5938.
- Gioda, A., Rodriguez-Cotto, R. I., Amaral, B. S., Encarnacion-Medina, J., Ortiz-Martinez, M. G., and Jimenez-Velez, B. D. (2016). Biodiesel from soybean promotes cell proliferation in vitro. *Toxicol In Vitro* **34**, 283-288.
- Hawley, B., L'Orange, C., Olsen, D. B., Marchese, A. J., and Volckens, J. (2014). Oxidative stress and aromatic hydrocarbon response of human bronchial epithelial cells exposed to petro- or biodiesel exhaust treated with a diesel particulate filter. *Toxicol Sci* **141**, 505-514.
- Hemmingsen, J. G., Møller, P., Nojgaard, J. K., Roursgaard, M., and Loft, S. (2011). Oxidative stress, genotoxicity, and vascular cell adhesion molecule expression in cells exposed to particulate matter from combustion of conventional diesel and methyl ester biodiesel blends. *Environ. Sci. Technol.* **45**, 8545-8551.
- Jalava, P. I., Aakko-Saksa, P., Murtonen, T., Happo, M. S., Markkanen, A., Yli-Pirila, P., Hakulinen, P., Hillamo, R., Maki-Paakkanen, J., Salonen, R. O., Jokiniemi, J., and Hirvonen, M. R. (2012). Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas. *Part Fibre Toxicol* **9**, 37.

- Jalava, P. I., Tapanainen, M., Kuuspalo, K., Markkanen, A., Hakulinen, P., Happo, M. S., Pennanen, A. S., Ihalainen, M., Yli-Pirila, P., Makkonen, U., Teinila, K., Maki-Paakkanen, J., Salonen, R. O., Jokiniemi, J., and Hirvonen, M. R. (2010). Toxicological effects of emission particles from fossiland biodiesel-fueled diesel engine with and without DOC/POC catalytic converter. *Inhal Toxicol* 22 Suppl 2, 48-58.
- Kooter, I. M., van Vugt, M. A. T. M., Jedynska, A. D., Tromp, P. C., Houtzager, M. M. G., Verbeek, R. P., Kadijk, G., Mulderij, M., and Krul, C. A. M. (2011). Toxicological characterization of diesel engine emissions using biodiesel and a closed soot filter. *Atmos. Environ.* **45**, 1574-1580.
- Kowalska, M., Wegierek-Ciuk, A., Brzoska, K., Wojewodzka, M., Meczynska-Wielgosz, S., Gromadzka-Ostrowska, J., Mruk, R., Ovrevik, J., Kruszewski, M., and Lankoff, A. (2017). Genotoxic potential of diesel exhaust particles from the combustion of first- and second-generation biodiesel fuelsthe FuelHealth project. *Environ Sci Pollut. Res Int* 24, 24223-24234.
- Lankoff, A., Brzoska, K., Czarnocka, J., Kowalska, M., Lisowska, H., Mruk, R., Ovrevik, J., Wegierek-Ciuk, A., Zuberek, M., and Kruszewski, M. (2017). A comparative analysis of in vitro toxicity of diesel exhaust particles from combustion of 1st- and 2nd-generation biodiesel fuels in relation to their physicochemical properties-the FuelHealth project. *Environ Sci Pollut. Res Int* **24**, 19357-19374.
- Libalova, H., Rossner, P., Vrbova, K., Brzicova, T., Sikorova, J., Vojtisek-Lom, M., Beranek, V., Klema, J., Ciganek, M., Neca, J., Pencikova, K., Machala, M., and Topinka, J. (2016). Comparative analysis of toxic responses of organic extracts from diesel and selected alternative fuels engine emissions in human lung BEAS-2B cells. *Int J Mol. Sci* 17(11).
- Magnusson, P., Dziendzikowska, K., Oczkowski, M., Ovrevik, J., Eide, D. M., Brunborg, G., Gutzkow, K. B., Instanes, C., Gajewska, M., Wilczak, J., Sapierzynski, R., Kamola, D., Krolikowski, T., Kruszewski, M., Lankoff, A., Mruk, R., Duale, N., Gromadzka-Ostrowska, J., and Myhre, O. (2019). Lung effects of 7- and 28-day inhalation exposure of rats to emissions from 1st and 2nd generation biodiesel fuels with and without particle filter The FuelHealth project. *Environ Toxicol Pharmacol* 67, 8-20.
- Magnusson, P., Oczkowski, M., Ovrevik, J., Gajewska, M., Wilczak, J., Biedrzycki, J., Dziendzikowska, K., Kamola, D., Krolikowski, T., Kruszewski, M., Lankoff, A., Mruk, R., Brunborg, G., Instanes, C., Gromadzka-Ostrowska, J., and Myhre, O. (2017). No adverse lung effects of 7- and 28-day inhalation exposure of rats to emissions from petrodiesel fuel containing 20% rapeseed methyl esters (B20) with and without particulate filter the FuelHealth project. *Inhal Toxicol* **29**, 206-218.
- Malorni, L., Guida, V., Sirignano, M., Genovese, G., Petrarca, C., and Pedata, P. (2017). Exposure to sub-10nm particles emitted from a biodiesel-fueled diesel engine: In vitro toxicity and inflammatory potential. *Toxicol Lett* **270**, 51-61.
- Martin, N. R., Kelley, P., Klaski, R., Bosco, A., Moore, B., and Traviss, N. (2019). Characterization and comparison of oxidative potential of real-world biodiesel and petroleum diesel particulate matter emitted from a nonroad heavy duty diesel engine. *Sci Total Environ* **655**, 908-914.

- Mullins, B. J., Kicic, A., Ling, K. M., Mead-Hunter, R., and Larcombe, A. N. (2016). Biodiesel exhaust-induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells. *Environ Toxicol* **31**, 44-57.
- Mutlu, E., Nash. D. G., King, C., Krantz, T. Q., Preston, W. T., Kooter, I. M., Higuchi, M., DeMarini, D., Linak, W. P., Gilmour, M. I. (2015a). Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies. *Inhal Toxicol* 27, 515-32.
- Novotna, B., Sikorova, S., Milcova, A., Pechout, M., Dittrich, L., Vojtisek-Lom, M., Rossner, P., Jr., Brzicova, T., and Topinka, J. (2019). The genotoxicity of organic extracts from particulate truck emissions produced at various engine operating modes using diesel or biodiesel (B100) fuel: a pilot study. *Mutat. Res Genet. Toxicol Environ* **845**, 403034.
- Shvedova, A. A., Yanamala, N., Murray, A. R., Kisin, E. R., Khaliullin, T., Hatfield, M. K., Tkach, A. V., Krantz, Q. T., Nash, D., King, C., Ian, G. M., and Gavett, S. H. (2013). Oxidative stress, inflammatory biomarkers, and toxicity in mouse lung and liver after inhalation exposure to 100% biodiesel or petroleum diesel emissions. J Toxicol Environ Health A 76, 907-921.
- Skuland, T. S., Refsnes, M., Magnusson, P., Oczkowski, M., Gromadzka-Ostrowska, J., Kruszewski, M., Mruk, R., Myhre, O., Lankoff, A., and Ovrevik, J. (2017). Proinflammatory effects of diesel exhaust particles from moderate blend concentrations of 1st and 2nd generation biodiesel in BEAS-2B bronchial epithelial cells-The FuelHealth project. *Environ Toxicol Pharmacol* 52, 138-142.
- Steiner, s., Czerwinski, J., Comte, P., Popovicheva, O., Kireeva, E., Müller, L., Heeb, N., Mayer, A., Fink, A., and Rothen-Rutishauser, B. (2013). Comparison of the toxicity of diesel exhaust produced by bio- and fossil diesel combustion in human lung cells in vitro. *Atmos. Environ.* **81**, 380-388.
- Swanson, K. J., Kado, N. Y., Funk, W. E., Pleil, J. D., Madden, M. C., and Ghio, A. J. (2009). Release of the pro-inflammatory markers by BEAS-2B cells following in vitro exposure to biodiesel extracts. *The Open Toxicol J* **3**, 8-15.
- Traviss, N., Li, M., Lombard, M., Thelen, B. A., Palmer, B. C., Poynter, M. E., Mossman, B. T., Holmen, B. A., and Fukagawa, N. K. (2014). Petrodiesel and Waste Grease Biodiesel (B20) Emission Particles at a Rural Recycling Center: Characterization and Effects on Lung Epithelial Cells and Macrophages. Air Qual. Atmos. Health 7, 59-70.
- Tzamkiozis, T., Stoeger, T., Cheung, K., Ntziachristos, L., Sioutas, C., and Samaras, Z. (2010). Monitoring the inflammatory potential of exhaust particles from passenger cars in mice. *Inhal Toxicol* **22 Suppl 2**, 59-69.
- Vaughan, A., Stevanovic, S., Banks, A. P. W., Zare, A., Rahman, M. M., Bowman, R. V., Fong, K. M., Ristovski, Z. D., and Yang, I. A. (2019a). The cytotoxic, inflammatory and oxidative potential of coconut oil-substituted diesel emissions on bronchial epithelial cells at an air-liquid interface. *Environ Sci Pollut. Res Int 26, 27783-27791..*

- Vaughan, A., Stevanovic, S., Jafari, M., Bowman, R. V., Fong, K. M., Ristovski, Z. D., and Yang, I. A. (2019b). Primary human bronchial epithelial cell responses to diesel and biodiesel emissions at an air-liquid interface. *Toxicol In Vitro* **57**, 67-75.
- Vogel, C. F. A., Kado, S. Y., Kobayashi, R., Liu, X., Wong, P., Na, K., Durbin, T., Okamoto, R. A., and Kado, N. Y. (2019). Inflammatory marker and aryl hydrocarbon receptor-dependent responses in human macrophages exposed to emissions from biodiesel fuels. *Chemosphere* **220**, 993-1002.
- Yanamala, N., Hatfield, M. K., Farcas, M. T., Schwegler-Berry, D., Hummer, J. A., Shurin, M. R., Birch, M. E., Gutkin, D. W., Kisin, E., Kagan, V. E., Bugarski, A. D., and Shvedova, A. A. (2013). Biodiesel versus diesel exposure: enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung. *Toxicol Appl Pharmacol* 272, 373-383.
- Yang, P. M., Wang, C. C., Lin, Y. C., Jhang, S. R., Lin, L. J., and Lin, Y. C. (2017). Development of novel alternative biodiesel fuels for reducing PM emissions and PM-related genotoxicity. *Environ Res* **156**, 512-518.