SUPPLEMENTARY MATERIAL

Benzofuran Derivatives With Nerve Growth Factor-Potentiating Activity from *Phellinus ribis*

Mei-Yue Dong^{a, *}, Yan Zhang^{b, *}, Hai-Qiang Jiang^a, Wen-Jing Ren^a, Ling-Chuan Xu^{a, c}, Yong-Qing Zhang^a and Yu-Hong Liu^a

a School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China

b Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China

c Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan, China

* These authors contributed equally to this work.

Contact

Prof. Dr. Yu-Hong Liu, School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P.R. China. E-mail: yhliu@sdutcm.edu.cn Phone: +8613791112163

ABSTRACT

Three new benzofuran derivatives, namely ribisin E (1) ribisin F (2) along with ribisin G (3) were isolated from the MeOH extract of the fruiting bodies of *Phellinus ribis*. Their structures were elucidated based on the NMR analysis. Furthermore, the absolute configuration of ribisin E (1) and ribisin G (3) were deduced by the CD calculations, and the absolute configuration of ribisin F (2) was determined by comparing its CD spectrum and specific rotation with the data of known analogues. All compounds (1-3) exhibited the activity of promoting neurite outgrowth in nerve growth factor (NGF)-mediated PC 12 cell at concentrations ranging from 1 to 30 μ M.

Keywords: Phellinus ribis; benzofuran derivatives; NGF-potentiating activity

List of supporting information

Table S1. ¹ H and ¹³ C NMR data for compounds 1-3
Figure S1. May HMBC() and ¹ H- ¹ H COSY () correlations of compounds 1-3
Figure S2. Key NOESY correlations of compounds 1-3
Figure S3. The EIMS of compound 15
Figure S4. ¹ H NMR spectrum of compound 1 in CD ₃ OD6
Figure S5. ¹ H- ¹ H COSY NMR spectrum of compound 1 in CD ₃ OD6
Figure S6. 13C NMR spectrum of compound 1 in CD ₃ OD7
Figure S7. HMQC spectrum of compound 1 in CD ₃ OD7
Figure S8. HMBC spectrum of compound 1 in CD ₃ OD8
Figure S9. NOESY spectrum of compound 1 in CD ₃ OD8
Figure S10. CD and UV spectrum of <i>p</i> -bromobenzoate derivative of 19
Figure S11. The EIMS of compound 2 10
Figure S12. 1H NMR spectrum of compound 2 in CD ₃ OD 10
Figure S13. ¹³ C NMR spectrum of compound 2 in CD ₃ OD 11
Figure S14. ¹ H- ¹ H COSY NMR spectrum of compound 2 in CD ₃ OD 11
Figure S15. HMQC spectrum of compound 2 in CD ₃ OD12
Figure S16. HMBC spectrum of compound 2 in CD ₃ OD12
Figure S17. NOESY spectrum of compound 2 in CD ₃ OD13
Figure S18. The CD spectrum of compound 2 13
Figure S19. The EIMS of compound 314
Figure S20. ¹ H NMR spectrum of compound 3 in CDCl ₃ 14
Figure S21. ¹³ C NMR spectrum of compound 3 in CDCl ₃ 15
Figure S22. ¹ H- ¹ H COSY NMR spectrum of compound 3 in CDCl ₃ 16
Figure S23. HMQC spectrum of compound 3 in CDCl ₃ 17
Figure S24. HMBC spectrum of compound 3 in CDCl ₃ 18
Figure S25. NOESY spectrum of compound 3 in CDCl ₃ 19

Figure S26. CD and UV spectrum of <i>p</i> -bromobenzoate derivative of 3	19
Figure S27. Morphological changes observed in PC12 cells treated with	20
Figure S28. Quantitative analysis of neurite outgrowth promoted by 1, 2,	20

Compound 1		Compound 2		Compound 3		
Position	δ _c	$\delta_{\rm H}$ mult. (J in Hz)	δ _C	$\delta_{\rm H}$ mult. (J in Hz)	δ _C	$\delta_{\rm H}$ mult. (J in Hz)
1	193.9		191.2		189.4	
1a	116.1		144.5		115.4	
2	74.1	4.84 d (2.7)	43.4	3.12 dd (3.5,6.4)	81.8	4.24 d (2.5)
				2.72 dd (6.9,6.4)		
3	87.6	4.00 dd (3.4, 2.7)	67.9	4.31 m	84.6	3.90 dd (6.4, 2.5)
4	64.9	5.12 d (3.4)	71.9	4.61 brs	66.0	5.32 d (6.4)
4a	167.7		168.0		165.9	
5a	157.3		156.1		156.0	
6	112.8	7.60 dd (7.8, 0.9)	111.5	7.66 dd (7.4, 0.9)	111.8	7.66 ddd (7.1, 1,9, 0,7)
7	127.1	7.42 td (7.8, 1.4)	124.7	7.38 td (7.4, 1.0)	126.1	7.38 dd (7.1, 1.8)
8	125.9	7.38 td (7.8, 0.9)	123.3	7.32 td (7.4, 0.9)	124.9	7.36 td (7.1, 1.9)
9	122.8	7.98 dd (7.8, 1.4)	120.9	7.89 dd (7.4,1.0)	122.3	8.06 ddd (7.1,1.8, 0.7)
9a	124.3		123.2		123.1	
$2-OCH_3$					59.2	3.60 s
3-OCH ₃	59.8	3.52 s			58.9	3.57 s

Table S1. ¹H and ¹³C NMR data for compounds 1-3

Figure S1. May HMBC() and ¹H-¹H COSY () correlations of compounds 1-3.

Figure S2. Key NOESY correlations of compounds 1-3.

Figure S3. The EIMS of compound 1.

Figure S4. ¹H NMR spectrum of compound 1 in CD₃OD

Figure S5. ¹H-¹H COSY NMR spectrum of compound 1 in CD₃OD

Figure S6. 13C NMR spectrum of compound 1 in CD₃OD

Figure S7. HMQC spectrum of compound 1 in CD₃OD

Figure S8. HMBC spectrum of compound 1 in CD₃OD

Figure S9. NOESY spectrum of compound 1 in CD₃OD

Figure S10. CD and UV spectrum of *p*-bromobenzoate derivative of 1

Figure S11. The EIMS of compound 2.

Figure S12. 1H NMR spectrum of compound 2 in CD₃OD

Figure S13. ¹³C NMR spectrum of compound 2 in CD₃OD

Figure S14. ¹H-¹H COSY NMR spectrum of compound 2 in CD₃OD

Figure S15. HMQC spectrum of compound 2 in CD₃OD

Figure S16. HMBC spectrum of compound 2 in CD₃OD

Figure S17. NOESY spectrum of compound 2 in CD₃OD

Figure S18. The CD spectrum of compound 2.

Figure S19. The EIMS of compound 3.

Figure S20. ¹H NMR spectrum of compound 3 in CDCl₃

Figure S21. ¹³C NMR spectrum of compound 3 in CDCl₃

Figure S22. ¹H-¹H COSY NMR spectrum of compound 3 in CDCl₃

Figure S23. HMQC spectrum of compound 3 in CDCl₃

Figure S24. HMBC spectrum of compound 3 in CDCl₃

Figure S25. NOESY spectrum of compound 3 in CDCl₃

Figure S26. CD and UV spectrum of *p*-bromobenzoate derivative of 3

Figure S27. Morphological changes observed in PC12 cells treated with
(A) NGF 1 ng/mL, (B) 1 (30 μM) + NGF 1 ng/mL, (C) 2 (30 μM) +
NGF 1 ng/mL, (D) 3 (30 μM) + NGF 1 ng/mL.

Figure S28. Quantitative analysis of neurite outgrowth promoted by 1, 2, and 3. PC12 cells were supplemented with NGF (1 ng/mL) and 1, 2,

or 3. After 4 days, the neurite lengths of the PC12 cells were quantified. Data are expressed as the mean±SE (n= 100).**p< 0.01 vs control; Dunnett's t test.