SUPPLEMENTARY MATERIAL

Ngoc-Hong Nguyen^a, Van-Giau Vo^b, Hoang-Vinh-Truong Phan^c, Thanh-The Ngo^c, Jirapast Sichaem^d, Thi-Phuong Nguyen^e, Huu-Hung Nguyen^f, Duc-Dung Pham^c, Tien-Cong Nguyen^c, Van-Kieu Nguyen^{g,h,*}, Thuc-Huy Duong^{c,*}

^aHo Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam

^bDepartment of BionanoTechnology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Korea

^cDepartment of Chemistry, University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City, Vietnam

^dResearch Unit in Natural Products Chemistry and Bioactivities, Faculty of Science and Technology, Thammasat University Lampang Campus, Lampang 52190, Thailand

^eNTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, Vietnam

^{*f*}*Faculty of Environment and Biotechnology, Van Lang University, 45 Nguyen Khac Nhu, District* 1, Ho Chi Minh City, Vietnam

^gInstitute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam

^hFaculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam

Corresponding Authors

Dr. Van-Kieu Nguyen, E-mail address: <u>nguyenvankieu2@duytan.edu.vn</u> Dr. Thuc-Huy Duong, E-mail address: <u>huydt@hcmue.edu.vn</u>

Abtract

Twelve benzylidene derivatives, one Baeyer-Villiger oxidative, six imine derivatives were successfully designed and synthesized from phyllanthone. In the search for potential new anti-diabetic agents, phyllanthone along with its benzylidene and oxidation analogues were evaluated for enzyme inhibition against α -glucosidase. In the benzylidene series, most analogues displayed stronger activity than the mother compound. **1c** revealed the strongest activity, outperforming the acarbose positive control with an IC₅₀ value of 19.59 μ M. Phyllanthone and

its derivatives were then tested for cytotoxic activity against the K562 cell line. The imine analogues displayed the most powerful cytotoxic activity with **3c**, **3d** having IC₅₀ values of 57.55 and 68.02 μ M, respectively.

Keywords *Phyllanthus* (Phyllanthaceae); phyllanthone derivatives; α -glucosidase inhibition; cytotoxic activity

General procedure for the synthesis of hydrazine reagents N1-N6

Aryloxyaxetohydrazides (**N1**, m.p. 138-139°C; **N2**, m.p. 105-106°C) were prepared from appropriate phenols using the method in our previous work (Cong et al. 2007). Benzohydrazide (**N3**, m.p. 130-131°C) was prepared from 2-phenylacetic acid by esterification and then hydrazination following the method of (Xu et al.2018). In the same manner with **N3**, 5-chloro-2-hydroxybenzohydrazide (**N4**, 174°C) was prepared from 5-chloro-2-hydroxybenzoic acid following the method of (Xu et al. 2018). 2-Hydroxy-5-iodobenzohydrazide (**N5**, m.p. 178°C) was prepared from salicylic acid according to the method in those published (Al-Omran and El-Khair, 2016).

Scheme S1. Pathway to preparation of hydrazides N1-N6. a: $ClCH_2CO_2C_2H_5/K_2CO_3$, acetone, refluxed, 24 h; b: N₂H₄ 80%/Ethanol, refluxed, 6 h; c: CH₃OH/H₂SO₄, refluxed, 8 h; d: KI/CH₃OH, NaClO, 12 h. Overall yield.

α-Glucosidase Inhibition Assay

α-Glucosidase inhibitory activity was determined using the method of Nguyen et al. (Nguyen et al. 2011) with slight modifications. The α-glucosidase (0.2 U/mL) and substrate (5.0 mM *p*-nitrophenyl-α-D-glucopyranoside) were dissolved in 100 mM pH 6.9 sodium phosphate buffer. The inhibitor (50 µL) was preincubated with α-glucosidase at 37°C for 20 min, and then the substrate (40 µL) was added to the reaction mixture. The enzymatic reaction was carried out at 37°C for 20 min and stopped by adding 0.2 M Na₂CO₃ (130 µL). Enzymatic activity was quantified by measuring absorbance at 405 nm. All samples were analyzed in triplicate at five different concentrations around the IC₅₀ values, and the mean values were retained. The inhibition percentage (%) was calculated by the following equation: Inhibition (%) = [1 -

 $(A_{sample}/A_{control})] \times 100$. The IC₅₀ values were calculated by log-linear regression using Microsoft Excel 2010.

Cytotoxic activity

All phyllanthol derivatives were applied to cytotoxic evaluation against K562 (chronic myelogenous leukemia) cell lines using doxorubixin as the positive control (Nguyen et al. 2019). All samples were experienced in triplicate at different concentrations to obtain the IC_{50} value of each compound.

References

- Al-Omran F, El-Khair AA. 2016. Synthesis, Spectroscopy and X-Ray Characterization, of Novel Derivatives of Substituted 2-(Benzothiazol-2'-ylthio) acetohydrazide. International Journal of Organic Chemistry. 6(1):31-43.
- Cong NT, Son TQ, Van Hien L, Thu NT. 2007. Synthesis and study of some carvone aryloxyacetylhydazones. Vietnam Journal of Chemistry. 45(2):156-161.
- Nguyen TH, Um BH, Kim SM. 2011. Two Unsaturated Fatty Acids with Potent α-Glucosidase Inhibitory Activity Purified from the Body Wall of Sea Cucumber (*Stichopus japonicus*). Journal of Food Science.76(9):H208-H214.
- Nguyen VK, Sichaem J, Nguyen HH, Nguyen XH, Huynh TTL, Nguyen TP, Niamnont N, Mac DH, Pham DD, Chavasiri W. 2019. Synthesis and cytotoxic evaluation of usnic acid benzylidene derivatives as potential anticancer agents. Natural Product Research.1-10.
- Xu FZ, Wang YY, Luo DX, Yu G, Guo SX, Fu H, Zhao YH, Wu J. 2018. Design, synthesis, insecticidal activity and 3D-QSR study for novel trifluoromethyl pyridine derivatives containing an 1,3,4-oxadiazole moiety. RSC advances. 8(12):6306-6314.

Compound	IC ₅₀ (µM)	Compound	$IC_{50}(\mu M)$
1 a	146.45 ± 2.14	1i	154.81 ± 1.92
1b	>200	1j	>200
1c	19.59 ± 2.53	1k	>200
1d	>200	11	>200
1e	>200	2	>200
1f	129.74 ± 4.17	1	>200
1g	>200	Acarbose	162.54 ± 0.19
1h	>200		

Table S1. α -Glucosidase inhibitory activity toward baker's yeast α -glucosidase of **1**, **1a-1l**, and **2**.

Table S2. Cytotoxic activity against K562 cell line of 1, 1a-1l, 2, and 3a-3f.

Compound	IC ₅₀ (µM)	Compound	IC ₅₀ (µM)		
1 a	>100	2	>100		
1b	>100	3 a	>100		
1c	>100	3 b	>100		
1d	>100	3c	57.55 ± 2.52		
1e	>100	3d	68.02 ± 3.71		
1f	>100	3e	>100		
1g	>100	3 f	>100		
1h	>100	1	98.82 ± 5.19		
1i	>100	Doxorubixin	4.1 ± 0.1		
1j	81.87 ± 3.41				
1k	>100				
11	86.53 ± 5.90				

Phyllanthone (1)

¹H-NMR (500 MHz, CDCl₃) δ 1.19 (*s*, 3H, CH₃-26), 1.07 (*s*, 3H, CH₃-23), 1.03 (*s*, 3H, CH₃-24), 0.97 (*s*, 3H, CH₃-25), 0.94 (*d*, 3H, *J* = 6.0 Hz, CH₃-29), 0.91 (*s*, 3H, CH₃-28), 0.88 (*d*, 3H, *J* = 6.0 Hz, CH₃-30), 0.63 (*d*, 1H, *J* = 5.5 Hz, CH₂-27a), 0.05 (*d*, 1H, *J* = 5.0 Hz, CH₂-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 217.9 (C-3), 55.4 (C-5), 54.5 (C-9), 49.7 (C-18), 47.6 (C-4), 42.2 (C-22), 40.9 (C-19), 39.4 (C-1), 38.6 (C-20), 37.8 (C-6), 37.2 (C-10), 36.9 (C-8), 35.7 (C-12), 34.2 (C-2), 32.7 (C-14), 32.0 (C-17), 31.2 (C-21), 28.4 (C-28), 27.3 (C-16), 26.7 (C-23), 21.5 (C-15), 21.1 (C-30), 20.8 (C-24), 20.5 (C-13), 19.6 (C-11), 18.1 (C-7), 18.0 (C-29), 17.9 (C-26), 15.8 (C-25), 13.8 (C-27). Spectral data agreed with those published (Ndlebe et al. 2008).

(1S,2R,4aR,6aR,6bR,12aR,14aR,E)-11-Benzylidene-1,2,4a,6b,9,9,12a-heptamethylocta decahydro-6a,14a-methanopicen-10(6bH)-one (1a)

Yield: 30.4 mg, 36.0% ¹H-NMR (500 MHz, CDCl₃) δ 7.54 (*m*, 1H, H-5'), 7.50 (*br*, 1H, H-1'), 7.41 (*m*, 2H, H-3', H-7'), 7.33 (*m*, 1H, H-4', H-6'), 2.94 (*d*, 1H, *J* = 16.5 Hz, H-1a), 2.18 (*d*, 1H, *J* = 16.0 Hz, H-1b), 1.21 (*s*, 3H, CH₃-26), 1.13 (*s*, 3H, CH₃-23), 1.03 (*s*, 3H, CH₃-24), 0.98 (*d*, 3H, *J* = 6.0 Hz, CH₃-29), 0.91 (*s*, 3H, CH₃-28), 0.89 (*br*, 3H, CH₃-30), 0.83 (*s*, 3H, CH₃-25), 0.70 (*d*, 1H, *J* = 5.5 Hz, CH₂-27a), 0.09 (*d*, 1H, *J* = 5.5 Hz, CH₂-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 208.2 (C-3), 145.6 (C-2), 137.6 (C-1'), 134.3 (C-2'), 130.5 (C-4'; C-6'), 128.6 (C-3'; C-7'), 121.7 (C-5'), 54.4 (C-9), 53.3 (C-5), 48.5 (C-18), 47.1 (C-4), 44.3 (C-1), 42.2 (C-22), 40.9 (C-19), 38.6 (C-20), 37.3 (C-10), 36.8 (C-6), 36.7 (C-8), 35.6 (C-12), 32.7 (C-14), 32.5 (C-17), 31.2 (C-21), 29.6 (C-23), 28.4 (C-28), 27.3 (C-16), 26.3 (C-13), 22.4 (C-30), 21.4 (C-15), 20.9 (C-24), 20.3 (C-11), 18.2 (C-29), 18.1 (C-7), 17.5 (C-26), 15.5 (C-25), 13.6 (C-27). HRESIMS *m/z* calcd for C₃₇H₅₂ONa [M+Na]⁺ 535.3916, found 535.3917.

(1S,2R,4aR,6aR,6bR,12aR,14aR)-11-((E)-4-Fluorobenzylidene)-1,2,4a,6b,9,9,12a-heptamethyloctadecahydro-6a,14a-methanopicen-10(6bH)-one~(1b)

Yield: 40.2 mg, 46.0%. ¹H-NMR (500 MHz, CDCl₃) δ 7.46 (*br*, 1H, H-1'), 7.40 (*d*, 2H, *J* = 8.5 Hz, H-3', H-7'), 7.09 (*t*, 2H, *J* = 8.5 Hz, H-4', H-6'), 2.88 (*d*, 1H, *J* = 16.0 Hz, H-1a), 2.15 (*d*, 1H, *J* = 15.5 Hz, H-1b), 1.18 (*s*, 3H, CH₃-26), 1.16 (*s*, 3H, CH₃-23), 1.12 (*s*, 3H, CH₃-24), 0.98 (*d*, 3H, *J* = 6.0 Hz, CH₃-29), 0.91 (*s*, 3H, CH₃-28), 0.89 (*br*, 3H, CH₃-30), 0.82 (*s*, 3H, CH₃-25), 0.69 (*d*, 1H, *J* = 5.5 Hz, CH₂-27a), 0.09 (*d*, 1H, *J* = 5.5 Hz, CH₂-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 208.1 (C-3), 162.7 (C-5', *J* = 248.8 Hz), 145.7 (C-2), 136.5 (C-1'), 133.9 (C-2'), 132.3 (C-3'; C-7'), 115.7 (C-4'; C-6', *J* = 21.3 Hz), 54.4 (C-9), 53.2 (C-5), 48.5 (C-18), 45.4 (C-4), 44.3 (C-1), 42.1 (C-22), 40.9 (C-19), 38.5 (C-20), 37.2 (C-10), 36.8 (C-6), 36.7 (C-8), 35.5 (C-12), 32.5 (C-14), 32.1 (C-17), 31.2 (C-21), 29.6 (C-23), 28.4 (C-28), 27.3 (C-16), 26.6 (C-13), 22.4 (C-30), 21.4 (C-15), 20.9 (C-24), 20.3 (C-11), 18.2 (C-7), 18.1 (C-29), 17.5 (C-26), 15.5 (C-25), 13.6 (C-27). HRESIMS *m*/*z* calcd for C₃₇H₅₁FOH [M+H]⁺ 531.4002, found 531.4003.

(1S,2R,4aR,6aR,6bR,12aR,14aR,E)-11-(2-Fluorobenzylidene)-1,2,4a,6b,9,9,12aheptamethyloctadecahydro-6a,14a-methanopicen-10(6bH)-one (1c)

Yield: 41.2 mg, 47.0%. ¹H-NMR (500 MHz, CDCl3) δ 7.58 (*br*, 1H, H-1'), 7.32 (*m*, 1H, H-7'), 7.26 (*br*, 1H, H-5'), 7.16 (*t*, 1H, *J* = 7.5 Hz, H-6'), 7.09 (*t*, 1H, *J* = 8.5 Hz, H-4'), 2.79 (*d*, 1H, *J* = 16.0 Hz, H-1a), 2.08 (*d*, 1H, *J* = 16.0 Hz, H-1b), 1.18 (*s*, 3H, CH₃-26), 1.16 (*s*, 3H, CH₃-23), 1.15 (*s*, 3H, CH₃-24), 0.96 (*br*, 3H, CH₃-29), 0.90 (*s*, 3H, CH₃-28), 0.88 (*br*, 3H, CH₃-30), 0.83 (*s*, 3H, CH₃-25), 0.67 (*br*, 1H, CH₂-27a), 0.07 (*br*, 1H, CH₂-27b). ¹³C-NMR (125 MHz, CDCl₃) δ 207.7 (C-3), 161.0 (C-3', *J* = 248.8 Hz), 136.5 (C-2), 130.5 (C-1'), 130.3 (C-5'), 130.2 (C-7'), 124.1 (C-2'), 123.9 (C-6'), 115.9 (C-4', *J* = 22.5 Hz), 54.4 (C-5), 53.5 (C-9), 48.4 (C-18), 45.6 (C-4), 43.9 (C-1), 42.1 (C-22), 40.9 (C-19), 38.5 (C-20), 37.3 (C-10), 36.9 (C-6), 35.5

(C-8), 34.9 (C-12), 32.5 (C-14), 32.0 (C-17), 31.2 (C-21), 29.3 (C-23), 28.4 (C-28), 27.3 (C-16), 26.6 (C-13), 22.5 (C-30), 21.4 (C-15), 20.9 (C-24), 20.2 (C-11), 18.1 (C-29), 18.0 (C-7), 17.6 (C-26), 15.5 (C-25), 13.6 (C-27). HRESIMS m/z calcd for C₃₇H₅₁FONa [M+Na]⁺ 553.3822, found 553.3817.

(1S,2R,4aR,6aR,6bR,12aR,14aR)-11-((E)-4-Chlorobenzylidene)-1,2,4a,6b,9,9,12a-heptamethyloctadecahydro-6a,14a-methanopicen-10(6bH)-one (1d)

Yield: 45.4 mg, 50.3%. ¹H-NMR (500 MHz, CDCl₃) δ 7.44 (*m*, 1H, H-1'), 7.37 (*d*, 2H, *J* = 8.5 Hz, H-3', H-7'), 7.33 (*d*, 2H, *J* = 8.5 Hz, H-4', H-6'), 2.87 (*d*, 1H, *J* = 16.5 Hz, H-1a), 2.14 (*d*, 1H, *J* = 16.0 Hz, H-1b), 1.18 (*s*, 3H, CH₃-26), 1.16 (*s*, 3H, CH₃-23), 1.13 (*s*, 3H, CH₃-24), 0.98 (*d*, 3H, *J* = 6.0 Hz, CH₃-29), 0.91 (*s*, 3H, CH₃-28), 0.89 (*d*, 3H, *J* = 5.5 Hz, CH₃-30), 0.82 (*s*, 3H, CH₃-25), 0.69 (*d*, 1H, *J* = 5.5 Hz, CH₂-27a), 0.09 (*d*, 1H, *J* = 5.5 Hz, CH₂-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 208.4 (C-3), 140.1 (C-2), 136.3 (C-1'), 134.8 (C-5'), 134.6 (C-2'), 131.6 (C-3'; C-7'), 128.9 (C-4'; C-6'), 54.4 (C-9), 53.3 (C-5), 48.5 (C-18), 45.4 (C-4), 44.3 (C-1), 42.1 (C-22), 40.9 (C-19), 38.5 (C-20), 37.2 (C-10), 36.8 (C-6), 36.7 (C-8), 35.5 (C-12), 32.5 (C-14), 32.1 (C-17), 31.2 (C-21), 29.6 (C-23), 28.4 (C-28), 27.3 (C-16), 26.6 (C-13), 22.4 (C-30), 21.4 (C-15), 20.9 (C-24), 20.3 (C-11), 18.2 (C-7), 18.1 (C-29), 17.5 (C-26), 15.5 (C-25), 13.6 (C-27). HRESIMS *m*/*z* calcd for C₃₇H₅₁CIONa [M+Na]⁺ 569.3526, found 569.3529 (100.0 %), 571.3510 (37.9 %).

(1S,2R,4aR,6aR,6bR,12aR,14aR,E)-11-(3-Chlorobenzylidene)-1,2,4a,6b,9,9,12a-heptamethyloctadecahydro-6a,14a-methanopicen-10(6bH)-one (1e)

Yield: 37.9 mg, 42.0%. ¹H-NMR (500 MHz, CDCl₃) δ 7.41 (*br*, 1H, H-1'), 7.37 (*br s*, 1H, H-3'), 7.32 (*d*, 1H, *J* = 7.5 Hz, H-7'), 7.30 (*br*, 1H, H-5'), 7.28 (*br*, 1H, H-6'), 2.88 (*d*, 1H, *J* = 16.5 Hz, H-1a), 2.14 (*d*, 1H, *J* = 16.5 Hz, H-1b), 1.18 (*s*, 3H, CH₃-26), 1.16 (*s*, 3H, CH₃-23), 1.13 (*s*, 3H, CH₃-24), 0.97 (*d*, 3H, *J* = 6.0 Hz, CH₃-29), 0.91 (*s*, 3H, CH₃-28), 0.88 (*d*, 3H, *J* = 5.5 Hz, CH₃-30), 0.83 (*s*, 3H, CH₃-25), 0.69 (*d*, 1H, *J* = 5.5 Hz, CH₂-27a), 0.08 (*d*, 1H, *J* = 5.5 Hz, CH₂-27b). ¹³C-NMR (125 MHz, CDCl₃) δ 208.0 (C-3), 137.9 (C-2), 136.0 (C-1'), 135.6 (C-2'), 134.5 (C-4'), 130.2 (C-6'), 129.8 (C-3'), 128.5 (C-5'), 128.1 (C-7'), 54.3 (C-5), 53.3 (C-9), 48.4 (C-18), 45.5 (C-4), 44.1 (C-1), 42.1 (C-22), 40.9 (C-19), 38.5 (C-20), 37.2 (C-10), 36.8 (C-6), 36.7 (C-8), 35.5 (C-12), 32.5 (C-14), 32.0 (C-17), 31.2 (C-21), 29.5 (C-23), 28.4 (C-28), 27.3 (C-16), 26.6 (C-13), 22.4 (C-30), 21.4 (C-15), 20.9 (C-24), 20.3 (C-11), 18.1 (C-29), 18.0 (C-7), 17.5 (C-26), 15.5 (C-25), 13.6 (C-27). HRESIMS *m*/z calcd for C₃₇H₅₁ClONa [M+Na]⁺ 569.3526 found 569.3529 (100.0 %), 571.3513(41.1 %).

(1S,2R,4aR,6aR,6bR,12aR,14aR)-11-((E)-2-Chlorobenzylidene)-1,2,4a,6b,9,9,12a-heptamethyloctadecahydro-6a,14a-methanopicen-10(6bH)-one (1f)

Yield: 57.3 mg, 63.5%. ¹H-NMR (500 MHz, CDCl₃) δ 7.60 (*br*, 1H, H-1'), 7.41 (*m*, 1H, H-4'), 7.28 (*m*, 1H, H-5'), 7.27 (*m*, 1H, H-7'), 7.24 (*m*, 1H, H-6'), 2.74 (*d*, 1H, *J* = 15.5 Hz, H-1a), 1.99 (*d*, 1H, *J* = 16.0 Hz, H-1b), 1.17 (*s*, 3H, CH₃-26), 1.16 (*s*, 3H, CH₃-23), 1.15 (*s*, 3H, CH₃-24), 0.94 (*d*, 3H, *J* = 6.5 Hz, CH₃-29), 0.90 (*s*, 3H, CH₃-28), 0.87 (*d*, 3H, *J* = 5.5 Hz, CH₃-30), 0.85 (*s*, 3H, CH₃-25), 0.65 (*d*, 1H, *J* = 5.5 Hz, CH₂-27a), 0.05 (*d*, 1H, *J* = 5.5 Hz, CH₂-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 207.9 (C-3), 136.2 (C-2), 134.9 (C-2'), 134.7 (C-3'), 134.6 (C-1'), 130.2 (C-7'), 129.8 (C-4'), 129.4 (C-5'), 126.5 (C-6'), 54.3 (C-5), 53.7 (C-9), 48.4 (C-18), 45.9 (C-4), 43.4 (C-1), 42.1 (C-22), 40.9 (C-19), 38.5 (C-20), 37.3 (C-10), 37.0 (C-6), 36.8 (C-8), 35.4 (C-12), 32.5 (C-14), 32.0 (C-17), 31.2 (C-21), 29.1 (C-23), 28.4 (C-28), 27.3 (C-16), 26.5 (C-13), 22.5 (C-30), 21.4 (C-15), 20.8 (C-24), 20.1 (C-11), 18.1 (C-29), 17.9 (C-7), 17.6 (C-26), 15.4 (C-25), 13.5 (C-27). HRESIMS *m*/*z* calcd for C₃₇H₅₂ClO [M+H]⁺ 547.3707, found 547.3700 (100.0 %), 549.3677 (35.1 %).

(1S,2R,4aR,6aR,6bR,12aR,14aR)-11-((E)-4-Bromobenzylidene)-1,2,4a,6b,9,9,12a-(heptamethyloctadecahydro-6a,14a-methanopicen-10(6bH)-one~(1g)

Yield: 49.2 mg, 50.4%. ¹H-NMR (400 MHz, CDCl₃) δ 7.52 (*t*, 2H, *J* = 8.4 Hz, H-3', H-7'), 7.41 (*br*, 1H, H-1'), 7.26 (*t*, 2H, *J* = 8.0 Hz, H-4', H-6'), 2.86 (*d*, 1H, *J* = 16.0 Hz, H-1a), 2.13 (*d*, 1H, *J* = 16.0 Hz, H-1b), 1.18 (*s*, 3H, CH₃-26), 1.16 (*s*, 3H, CH₃-23), 1.13 (*s*, 3H, CH₃-24), 0.97 (*br*, 3H, CH₃-29), 0.91 (*s*, 3H, CH₃-28), 0.89 (*br*, 3H, CH₃-30), 0.82 (*s*, 3H, CH₃-25), 0.68 (*br*, 1H, CH₂-27a), 0.08 (*br*, 1H, CH₂-27b); ¹³C-NMR (100 MHz, CDCl₃) δ 208.1 (C-3), 139.9 (C-2), 136.3 (C-2'), 134.8 (C-1'), 131.8 (C-4'; C-6'), 131.7 (C-3'; C-7'), 122.8 (C-5'), 54.2 (C-9), 53.1 (C-5), 48.4 (C-18), 45.4 (C-4), 44.2 (C-1), 42.1 (C-22), 40.9 (C-19), 38.5 (C-20), 37.2 (C-10), 36.8 (C-6), 36.6 (C-8), 35.4 (C-12), 32.4 (C-14), 32.0 (C-17), 31.2 (C-21), 29.5 (C-23), 28.4 (C-28), 27.3 (C-16), 26.5 (C-13), 22.4 (C-30), 21.4 (C-15), 20.9 (C-24), 20.2 (C-11), 18.1 (C-7), 18.0 (C-29), 17.5 (C-26), 15.5 (C-25), 13.4 (C-27). HRESIMS *m*/*z* calcd for C₃₇H₅₁BrONa [M+Na]⁺ 613.3021, found 615.2998 (100.0 %), 613.3022 (94.3 %).

(1S,2R,4aR,6aR,6bR,12aR,14aR)-11-((E)-3-Bromobenzylidene)-1,2,4a,6b,9,9,12a-heptamethyloctadecahydro-6a,14a-methanopicen-10(6bH)-one (1h)

Yield: 51.8 mg, 53.1%. ¹H-NMR (500 MHz, CDCl₃) δ 7.48 (*br*, 1H, H-1'), 7.39 (*br*, 1H, H-3'), 7.35 (*br*, 1H, H-5'), 7.28 (*br*, 1H, H-7'), 7.26 (*br*, 1H, H-6'), 2.83 (*d*, 1H, *J* = 16.0 Hz, H-1a), 2.19 (*d*, 1H, *J* = 16.5 Hz, H-1b), 1.15 (*s*, 3H, CH₃-26), 1.11 (*s*, 3H, CH₃-23), 1.08 (*s*, 3H, CH₃-24), 0.92 (*d*, 3H, *J* = 6.0 Hz, CH₃-29), 0.86 (*s*, 3H, CH₃-28), 0.79 (*br*, 3H, CH₃-30), 0.78 (*s*, 3H, CH₃-25), 0.64 (*d*, 1H, *J* = 5.5 Hz, CH₂-27a), 0.04 (*d*, 1H, *J* = 5.5 Hz, CH₂-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 208.0 (C-3), 145.5 (C-2), 135.9 (C-1'), 135.8 (C-2'), 133.2 (C-3'), 131.3 (C-5'), 130.0 (C-6'), 128.4 (C-7'), 122.6 (C-4'), 54.4 (C-9), 53.3 (C-5), 48.4 (C-18), 47.0 (C-4),

44.1 (C-1), 42.1 (C-22), 40.9 (C-19), 38.6 (C-20), 37.2 (C-10), 36.9 (C-6), 36.5 (C-8), 35.5 (C-12), 32.7 (C-14), 32.2 (C-17), 31.3 (C-21), 29.5 (C-23), 28.4 (C-28), 27.3 (C-16), 26.3 (C-13), 22.9 (C-30), 21.4 (C-15), 20.9 (C-24), 20.2 (C-11), 18.2 (C-29), 18.1 (C-7), 17.5 (C-26), 15.5 (C-25), 13.6 (C-27). HRESIMS *m*/*z* calcd for $C_{37}H_{51}BrONa [M+Na]^+$ 613.3021, found 615.3019 (100.0 %), 613.3021 (99.9 %).

(1S,2R,4aR,6aR,6bR,12aR,14aR,E)-11-(2-Bromobenzylidene)-1,2,4a,6b,9,9,12aheptamethyloctadecahydro-6a,14a-methanopicen-10(6bH)-one (1i)

Yield: 73.4 mg, 75.2%.¹H-NMR (400 MHz, CDCl₃) δ 7.59 (*t*, 1H, *J* = 1.6 Hz, H-1'), 7.35 (*m*, 1H, H-4'), 7.31 (*m*, 1H, H-6'), 7.20 (*m*, 1H, H-7'), 7.16 (*m*, 1H, H-5'), 2.71 (*d*, 1H, *J* = 16.0 Hz, H-1a), 2.08 (*d*, 1H, *J* = 16.0 Hz, H-1b), 1.19 (*s*, 3H, CH₃-26), 1.17 (*s*, 3H, CH₃-23), 1.14 (*s*, 3H, CH₃-24), 0.88 (*s*, 3H, CH₃-28), 0.85 (*d*, 3H, *J* = 6.0 Hz, CH₃-29), 0.82 (*s*, 3H, CH₃-25), 0.79 (*d*, 3H, *J* = 5.5 Hz, CH₃-30), 0.63 (*d*, 1H, *J* = 5.2 Hz, CH₂-27a), 0.04 (*d*, 1H, *J* = 5.6 Hz, CH₂-27b). ¹³C-NMR (100 MHz, CDCl₃) δ 208.1 (C-3), 145.5 (C-2), 136.9 (C-1'), 133.0 (C-2'), 130.3 (C-4'), 127.1 (C-7'), 125.0 (C-5'), 124.2 (C-6'), 121.5 (C-3'), 54.2 (C-5), 53.6 (C-9), 48.3 (C-18), 46.9 (C-4), 43.2 (C-1), 42.1 (C-22), 40.8 (C-19), 38.5 (C-20), 37.3 (C-10), 37.1 (C-6), 36.8 (C-8), 35.3 (C-12), 32.7 (C-14), 32.0 (C-17), 31.2 (C-21), 29.0 (C-23), 28.3 (C-28), 27.2 (C-16), 26.4 (C-13), 22.5 (C-30), 21.3 (C-15), 20.9 (C-24), 20.1 (C-11), 18.0 (C-29), 17.9 (C-7), 17.6 (C-26), 15.4 (C-25), 13.4 (C-27). HRESIMS *m*/*z* calcd for C₃₇H₅₁BrONa [M+Na]⁺ 613.3021, found 615.3001 (100.0 %), 613.3023 (97.0 %).

(1S,2R,4aR,6aR,6bR,12aR,14aR)-1,2,4a,6b,9,9,12a-Heptamethyl-11-((E)-4-nitrobenzylidene)octadecahydro-6a,14a-methanopicen-10(6bH)-one (1j)

Yield: 45.2 mg, 49.2%. ¹H-NMR (500 MHz, CDCl₃) δ 8.25 (*d*, 2H, *J* = 8.5 Hz, H-4', H-6'), 7.53 (*d*, 2H, *J* = 8.5 Hz, H-3', H-7'), 7.49 (*br*, 1H, H-1'), 2.87 (*d*, 1H, *J* = 16.5 Hz, H-1a), 2.19 (*d*, 1H, *J* = 16.5 Hz, H-1b), 1.18 (*s*, 3H, CH₃-26), 1.17 (*s*, 3H, CH₃-23), 1.14 (*s*, 3H, CH₃-24), 0.97 (*d*, 3H, *J* = 6.0 Hz, CH₃-29), 0.91 (*s*, 3H, CH₃-28), 0.88 (*d*, 3H, *J* = 5.5 Hz, CH₃-30), 0.83 (*s*, 3H, CH₃-25), 0.68 (*d*, 1H, *J* = 5.5 Hz, CH₂-27a), 0.09 (*d*, 1H, *J* = 5.5 Hz, CH₂-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 207.8 (C-3), 147.3 (C-5'), 142.7 (C-2), 137.9 (C-2'), 134.7 (C-1'), 130.8 (C-3'; C-7'), 123.8 (C-4'; C-6'), 54.3 (C-9), 53.3 (C-5), 48.4 (C-18), 45.6 (C-4), 44.3 (C-1), 42.1 (C-22), 40.9 (C-19), 38.5 (C-20), 37.2 (C-10), 36.8 (C-6), 36.7 (C-8), 35.4 (C-12), 32.5 (C-14), 32.0 (C-17), 31.2 (C-21), 29.5 (C-23), 28.4 (C-28), 27.3 (C-16), 26.6 (C-13), 22.5 (C-30), 21.4 (C-15), 20.9 (C-24), 20.2 (C-11), 18.2 (C-7), 18.1 (C-29), 17.5 (C-26), 15.6 (C-25), 13.6 (C-27). HRESIMS *m*/z calcd for C₃₇H₅₁NO₃Na [M+Na]⁺ 580.3767, found 580.3769.

(1S,2R,4aR,6aR,6bR,12aR,14aR)-1,2,4a,6b,9,9,12a-Heptamethyl-11-((E)-2-nitrobenzylidene)octadecahydro-6a,14a-methanopicen-10(6bH)-one (1k)

Yield: 32.3 mg, 35.1%. ¹H-NMR (500 MHz, CDCl₃) δ 8.11 (*d*, 1H, *J* = 8.0 Hz, H-4'), 7.61 (*br*, 1H, H-1'), 7.50 (*t*, 1H, *J* = 7.8 Hz, H-5'), 7.47 (*t*, 1H, *J* = 7.8 Hz, H-6'), 7.28 (*dd*, 1H, *J* = 8.0, 3.0 Hz, H-7'), 2.55 (*d*, 1H, *J* = 16.0 Hz, H-1a), 1.98 (*d*, 1H, *J* = 16.5 Hz, H-1b), 1.19 (*s*, 3H, CH₃-26), 1.17 (*s*, 3H, CH₃-23), 1.14 (*s*, 3H, CH₃-24), 0.90 (*d*, 3H, *J* = 6.0 Hz, CH₃-29), 0.88 (*s*, 3H, CH₃-28), 0.85 (*br*, 3H, CH₃-30), 0.82 (*s*, 3H, CH₃-25), 0.60 (*d*, 1H, *J* = 5.5 Hz, CH₂-27a), 0.03 (*d*, 1H, *J* = 5.5 Hz, CH₂-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 207.6 (C-3), 148.3 (C-3'), 145.6 (C-2), 136.3 (C-2'), 134.2 (C-1'), 133.3 (C-6'), 131.1 (C-5'), 128.9 (C-7'), 125.0 (C-4'), 54.3 (C-5), 53.9 (C-9), 48.3 (C-18), 47.0 (C-4), 43.0 (C-1), 42.1 (C-22), 40.9 (C-19), 38.5 (C-20), 37.3 (C-10), 37.2 (C-6), 36.8 (C-8), 35.4 (C-12), 32.7 (C-14), 32.0 (C-17), 31.2 (C-21), 28.7 (C-23), 28.3 (C-28), 27.3 (C-16), 26.2 (C-13), 22.5 (C-30), 21.4 (C-15), 20.8 (C-24), 20.0 (C-11), 18.0 (C-29), 17.9 (C-7), 17.6 (C-26), 15.4 (C-25), 13.5 (C-27). HRESIMS *m*/*z* calcd for C₃₇H₅₁NO₃Na [M+Na]⁺ 580.3767, found 580.3764.

(1S,2R,4aR,6aR,6bR,12aR,14aR)-11-((E)-4-Methoxybenzylidene)-1,2,4a,6b,9,9,12a-Heptamethyloctadecahydro-6a,14a-methanopicen-10(6bH)-one (1l)

Yield: 14.3 mg, 16%. ¹H-NMR (500 MHz, CDCl₃) δ 7.48 (*br*, 1H, H-1'), 7.41 (*d*, 2H, *J* = 9.5 Hz, H-3', H-7'), 7.40 (*d*, 2H, *J* = 8.5 Hz, H-4', H-6'), 3.84 (*s*, 3H, 5'-OCH₃), 2.95 (*d*, 1H, *J* = 16.0 Hz, H-1a), 2.17 (*d*, 1H, *J* = 16.5 Hz, H-1b), 1.19 (*s*, 3H, CH₃-26), 1.16 (*s*, 3H, CH₃-23), 1.12 (*s*, 3H, CH₃-24), 0.99 (*d*, 3H, *J* = 6.0 Hz, CH₃-29), 0.92 (*s*, 3H, CH₃-28), 0.89 (*s*, 3H, CH₃-25), 0.82 (*br*, 3H, CH₃-30), 0.71 (*d*, 1H, *J* = 5.5 Hz, CH₂-27a), 0.09 (*d*, 1H, *J* = 5.5 Hz, CH₂-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 208.1 (C-3), 160.0 (C-5'), 145.6 (C-2), 137.5 (C-1'), 132.3 (C-3'; C-7'), 128.9 (C-2'), 114.1 (C-4'; C-6'), 59.4 (5'-OCH₃), 55.5 (C-9), 53.1 (C-5), 48.5 (C-18), 45.2 (C-4), 44.5 (C-1), 42.2 (C-22), 40.9 (C-19), 38.6 (C-20), 37.3 (C-10), 36.8 (C-6), 36.6 (C-8), 35.6 (C-12), 32.5 (C-14), 32.1 (C-17), 31.2 (C-21), 29.8 (C-23), 28.4 (C-28), 27.3 (C-16), 26.6 (C-13), 22.4 (C-30), 21.4 (C-15), 20.9 (C-24), 20.3 (C-11), 18.2 (C-7), 18.1 (C-29), 17.5 (C-26), 15.5 (C-25), 13.6 (C-27). HRESIMS *m*/*z* calcd for C₃₈H₅₄O₂Na [M+Na]⁺ 565.4022, found 565.4027.

(7aR,7bR,9aR,12R,13S,13bR,15bR)-5,5,7a,9a,12,13,15b-Heptamethyloctadecahydro-7b,13bmethanochryseno[2,1-c]oxepin-3(2H)-one (2)

Yield: 15.6 mg, 42.2%. ¹H-NMR (500 MHz, Acetone- d_{δ}) δ 1.39 (*s*, 3H, CH₃-23), 1.32 (*s*, 3H, CH₃-26), 1.20 (*s*, 3H, CH₃-24), 1.04 (*s*, 3H, CH₃-25), 0.92 (*d*, 3H, *J* = 5.0 Hz, CH₃-29), 0.90

(*s*, 3H, CH₃-28), 0.83 (*d*, 3H, J = 5.5 Hz, CH₃-30), 0.67 (*d*, 1H, J = 5.5 Hz, CH₂-27a), 0.06 (*d*, 1H, J = 5.5 Hz, CH₂-27b). ¹³C-NMR (125 MHz, Acetone-*d*₆) δ 174.3 (C-3), 85.7 (C-4), 55.9 (C-5), 53.9 (C-9), 51.0 (C-18), 42.7 (C-22), 41.4 (C-19), 40.3 (C-8), 40.0 (C-1), 39.5 (C-10), 39.2 (C-20), 37.9 (C-6), 37.8 (C-12), 32.8 (C-2), 32.6 (C-14), 31.9 (C-17), 31.7 (C-21), 31.5 (C-23), 28.8 (C-28), 27.8 (C-16), 27.2 (C-13), 26.8 (C-26), 23.7 (C-11), 22.0 (C-15), 21.0 (C-30), 19.3 (C-7), 18.4 (C-29), 18.2 (C-25), 18.1 (C-24), 14.7 (C-27). HRESIMS *m*/*z* calcd for C₃₀H₄₈O₂Na [M+Na]⁺ 463.3552, found 463.3551.

(E) - N' - ((1S, 2R, 4aR, 6aR, 6bR, 12aR, 14aR) - 1, 2, 4a, 6b, 9, 9, 12a - Heptamethylhexadecahydro-6a, 14a - methanopicen - 10(6bH, 11H, 12bH) - ylidene) - 2 - (p - tolyloxy)acetohydrazide (3a)

Yield: 15.6 mg, 37%; ¹H-NMR (500 MHz, CDCl₃) δ 8.77 (*s*, 1H, NH), 7.08 (*d*, 2H, *J* = 8.0 Hz, H-5', H-7'), 6.87 (*d*, 2H, *J* = 8.5 Hz, H-4', H-8'), 4.80 (*m*, 2H, H-2'), 2.30 (*s*, 3H, 6'-CH₃), 1.19 (*s*, 3H, CH₃-26), 1.16 (*s*, 3H, CH₃-23), 1.12 (*s*, 3H, CH₃-24), 1.06 (*s*, 3H, CH₃-25), 0.93 (*br s*, 3H, CH₃-29), 0.91 (*s*, 3H, CH₃-28), 0.87 (*d*, 3H, *J* = 5.0 Hz, CH₃-30), 0.62 (*t*, 1H, *J* = 5.0 Hz, CH₂-27a), 0.04 (*d*, 1H, *J* = 5.0 Hz, CH₂-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 171.1 (C-1'), 167.3 (C-3), 155.2 (C-3'), 130.4 (C-5'-C-7'), 130.3 (C-6'), 114.8 (C-4'-C-8'), 67.3 (C-2'), 55.5 (C-5), 54.5 (C-9), 49.7 (C-18), 47.6 (C-4), 42.2 (C-22), 40.9 (C-19), 39.4 (C-1), 38.6 (C-20), 37.8 (C-6), 37.1 (C-10), 36.9 (C-8), 35.7 (C-12), 32.6 (C-14), 32.1 (C-17), 31.2 (C-21), 29.9 (C-13), 28.4 (C-28), 27.4 (C-16), 26.7 (C-23), 21.5 (6'-CH₃), 21.1 (C-30), 20.8 (C-15), 20.6 (C-24), 19.6 (C-11), 18.1 (C-29), 18.0 (C-2), 18.0 (C-7), 17.9 (C-26), 15.8 (C-25), 13.8 (C-27); HRESIMS *m/z* calcd for C₃₉H₅₉N₂O₂ [M+H]⁺ 587.4577, found 587.4575.

(E) - N' - ((1S, 2R, 4aR, 6aR, 6bR, 12aR, 14aR) - 1, 2, 4a, 6b, 9, 9, 12a - Heptamethylhexadecahydro-6a, 14a - methanopicen - 10(6bH, 11H, 12bH) - ylidene) - 2 - (m-tolyloxy)acetohydrazide (3b)

Yield: 12.05 mg, 30%; ¹H-NMR (500 MHz, CDCl₃) δ 7.19 (*m*, 1H, H-7'), 6.85 (*br*, 1H, H-6'), 6.80 (*m*, 1H, H-4'), 6.76 (*m*, 1H, H-8'), 4.82 (*m*, 1H, H-2'), 2.34 (*s*, 3H, 5'- CH₃), 1.19 (*s*, 3H, CH₃-26), 1.07 (*s*, 3H, CH₃-23), 1.03 (*s*, 3H, CH₃-24), 0.97 (*s*, 3H, CH₃-25), 0.93 (*br*, 3H, CH₃-29), 0.91 (*s*, 3H, CH₃-28), 0.87 (*d*, 3H, *J* = 5.5 Hz, CH₃-30), 0.63 (*d*, 1H, *J* = 5.5 Hz, H-27a), 0.05 (*d*, 1H, *J* = 5.5 Hz, H-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 170.5 (C-1'), 162.0 (C-3), 157.2 (C-3'), 140.2 (C-5'), 129.7 (C-7'), 123.3 (C-6'), 115.5 (C-4'), 111.6 (C-8'), 67.1 (C-2'), 55.4 (C-5), 54.5 (C-9), 49.7 (C-18), 47.6 (C-4), 42.2 (C-22), 40.9 (C-19), 39.4 (C-1), 38.5 (C-20), 38.2 (C-10), 38.0 (C-6), 37.1 (C-8), 35.7 (C-12), 32.6 (C-14), 32.0 (C-17), 31.2 (C-21), 28.4 (C-28), 27.3 (C-16), 26.7 (C-13), 26.6 (C-23), 21.6 (C-15), 21.4 (C-24), 21.1 (C-30), 20.9 (5'-CH₃), 19.5 (C-11), 19.0 (C-2), 18.1 (C-29), 18.0 (C-26), 17.9 (C-7), 15.7 (C-25), 13.8 (C-27); HRESIMS *m*/*z* calcd for C₃₉H₅₉N₂O₂ [M+H]⁺: 587.4577, found 587.4571.

(E)-N'-((1S,2R,4aR,6aR,6bR,12aR,14aR)-1,2,4a,6b,9,9,12a-Heptamethylhexadecahydro-6a,14a-methanopicen-10(6bH,11H,12bH)-ylidene)-2-phenylacetohydrazide (3c)

Yield: 13.7 mg, 35%; ¹H-NMR (500 MHz, CDCl₃) δ 8.37 (s, 1H, NH), 7.34 (d, 2H, J = 7.0 Hz, H-5'-H-7'), 7.29 (t, 2H, J = 7.5 Hz, H-6'), 7.23 (d, 1H, J = 7.5 Hz, H-4'-H-8'), 4.00 (m, 2H, H-2'), 1.18 (s, 3H, CH₃-26), 1.06 (s, 3H, CH₃-23), 1.03 (s, 3H, CH₃-24), 0.97 (s, 3H, CH₃-25), 0.94 (m, 3H, CH₃-29), 0.91 (s, 3H, CH₃-28), 0.87 (d, 3H, J = 5.0 Hz, CH₃-30), 0.62 (m, 1H, CH₂-27a), 0.04 (m, 1H, CH₂-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 173.7 (C-1'), 161.5 (C-3), 136.1 (C-3'), 129.7 (C-4'-C-8'), 128.7 (C-5'-C-7'), 127.0 (C-6'), 55.4 (C-5), 54.4 (C-9), 49.6 (C-18), 42.2 (C-22), 40-9 (C-19), 39.9 (C-4), 39.8 (C-2'), 39.4 (C-1), 38.5 (C-20), 38.1 (C-10), 38.0 (C-6), 37.8 (C-8), 35.6 (C-12), 32.6 (C-14), 32.0 (C-17), 31.2 (C-21), 28.4 (C-28), 27.3 (C-16), 26.9 (C-13), 26.6 (C-23), 21.4 (C-15), 21.1 (C-30), 20.9 (C-24), 19.5 (C-11), 18.1 (C-29), 18.0 (C-2), 18.0 (C-26), 117.9 (C-7), 15.8 (C-25), 13.7 (C-27); HRESIMS *m/z* calcd for C₃₈H₅₇N₂O [M+H]⁺: 557.4471, found 557.4462.

(E)-5-chloro-N'-((1S,2R,4aR,6aR,6bR,12aR,14aR)-1,2,4a,6b,9,9,12a-Heptamethylhexadecahydro-6a,14a-methanopicen-10(6bH,11H,12bH)-ylidene)-2hydroxybenzohydrazide (3d)

Yield: 15.46 mg, 36.7%; ¹H-NMR (500 MHz, DMSO-*d*₆) δ 11.01 (*s*, 1H, 3'-OH), 7.88 (*d*, 1H, *J* = 2.5 Hz, H-7'), 7.42 (*t*, 1H, *J* = 8.0 Hz, H-5'), 6.99 (*d*, 1H, *J* = 8.5 Hz, H-4'), 1.17 (*s*, 3H, CH₃-26), 1.15 (*s*, 3H, CH₃-23), 1.06 (*s*, 3H, CH₃-24), 0.98 (*s*, 3H, CH₃-25), 0.90 (*br*, 3H, CH₃-29), 0.89 (*s*, 3H, CH₃-28), 0.85 (*br*, 3H, CH₃-30), 0.69 (*m*, 1H, CH₂-27a), 0.01 (*br*, 1H, CH₂-27b); ¹³C-NMR (125 MHz, DMSO-*d*₆) δ 162.9 (C-1'), 158.9 (C-3), 156.5 (C-3'), 133.2 (C-5'), 128.1 (C-6'), 127.5 (C-7'), 123.6 (C-2'), 119.4 (C-4'), 55.2 (C-5), 54.2 (C-9), 49.4 (C-18), 47.0 (C-4), 42.2 (C-22), 40.6 (C-19), 38.8 (C-1), 38.3 (C-20), 37.9 (C-10), 37.7 (C-8), 36.8 (C-6), 35.5 (C-12), 32.4 (C-14), 32.0 (C-17), 31.0 (C-21), 28.4 (C-28), 27.1 (C-16), 26.6 (C-23), 26.4 (C-13), 21.4 (C-15), 21.1 (C-30), 21.0 (C-24), 19.3 (C-11), 18.3 (C-29), 18.0 (C-26), 17.8 (C-2), 17.7 (C-7), 15.7 (C-25), 13.4 (C-27); HRESIMS *m*/*z* calcd for C₃₇H₅₃CIN₂O₂Na [M+Na]⁺: 615.3693, found 615.3694.

(E) - N' - ((1S, 2R, 4aR, 6aR, 6bR, 12aR, 14aR) - 1, 2, 4a, 6b, 9, 9, 12a - Heptamethylhexadecahydro-6a, 14a - methanopicen - 10(6bH, 11H, 12bH) - ylidene) - 2 - hydroxy - 5 - iodobenzohydrazide (3e)

Yield: 19.3 mg, 57%; ¹H-NMR (500 MHz, CDCl₃) δ 7.93 (*br s*, 1H, H-7'), 7.61 (*d*, 1H, J = 8.0 Hz, H-5'), 6.76 (*d*, 1H, J = 8.5 Hz, H-4'), 1.19 (*s*, 3H, CH₃-26), 1.07 (*s*, 3H, CH₃-23), 1.03 (*s*, 3H, CH₃-24), 0.98 (*s*, 3H, CH₃-25), 0.94 (*d*, 3H, J = 6.0 Hz, CH₃-29), 0.91 (*s*, 3H, CH₃-

28), 0.87 (*br*, 3H, CH₃-30), 0.65 (*t*, 1H, J = 5.5 Hz CH₂-27a), 0.05 (*br d*, 1H, J = 5.0 Hz, CH₂-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 166.9 (C-3), 162.3 (C-1'), 155.6 (C-3'), 143.2 (C-5'), 134.7 (C-7'), 121.3 (C-4'), 110.2 (C-2'), 81.0 (C-6'), 55.5 (C-9), 53.4 (C-5), 49.8 (C-18), 45.2 (C-4), 42.1 (C-22), 40-9 (C-19), 38.6 (C-1), 38.5 (C-20), 37.0 (C-10), 36.3 (C-6), 36.2 (C-8), 35.4 (C-12), 32.5 (C-14), 32.0 (C-17), 31.2 (C-21), 28.4 (C-28), 27.3 (C-16), 26.6 (C-13), 26.4 (C-23), 22.8 (C-30), 21.4 (C-15), 20.9 (C-24), 19.4 (C-11), 19.1 (C-2), 18.1 (C-29), 18.0 (C-7), 17.7 (C-26), 15.7 (C-25), 13.6 (C-27); HRESIMS *m*/*z* calcd for C₃₇H₅₃IN₂O₂Na [M+Na]⁺: 707.3049, found 707.3087.

(E) - 2 - (benzo[d]thiazol - 2 - ylthio) - N' - ((1S, 2R, 4aR, 6aR, 6bR, 12aR, 14aR) - 1, 2, 4a, 6b, 9, 9, 12a - Heptamethylhexadecahydro - 6a, 14a - methanopicen - 10(6bH, 11H, 12bH) - ylidene) acetohydrazide (3f)

Yield: 17.01 mg, 37%; ¹H-NMR (500 MHz, CDCl₃) δ 7.90 (*d*, 1H, *J* = 8.0 Hz, H-8'), 7.77 (*d*, 1H, *J* = 7.5 Hz, H-5'), 7.45 (*m*, 1H, H-7'), 7.35 (*m*, 1H, H-6'), 4.26 (*m*, 1H, H-2'), 1.19 (*s*, 3H, CH₃-26), 1.07 (*s*, 3H, CH₃-23), 1.03 (*s*, 3H, CH₃-24), 0.97 (*s*, 3H, CH₃-25), 0.94 (*d*, 3H, *J* = 6.0 Hz, CH₃-29), 0.91 (*s*, 3H, CH₃-28), 0.87 (*d*, 3H, *J* = 5.5 Hz, CH₃-30), 0.63 (*d*, 1H, *J* = 5.5 Hz, H-27a), 0.05 (*d*, 1H, *J* = 5.5 Hz, H-27b); ¹³C-NMR (125 MHz, CDCl₃) δ 171.4 (C-1'), 165.3 (C-3'), 158.6 (C-3), 153.9 (C-9'), 135.3 (C-4'), 126.5 (C-7'), 125.0 (C-6'), 122.2 (C-8'), 121.3 (C-5'), 55.5 (C-5), 54.5 (C-9), 49.7 (C-18), 47.6 (C-4), 42.2 (C-22), 40.9 (C-19), 39.4 (C-1), 38.6 (C-20), 37.8 (C-6), 37.1 (C-10), 36.9 (C-8), 35.7 (C-12), 34.2 (C-2'), 32.6 (C-14), 32.1 (C-17), 31.2 (C-21), 28.4 (C-28), 27.5 (C-13), 27.3 (C-16), 26.7 (C-23), 21.5 (C-15), 21.1 (C-30), 20.8 (C-24), 19.8 (C-2), 19.6 (C-11), 18.1 (C-29), 18.0 (C-26), 17.9 (C-7), 15.8 (C-25), 13.8 (C-27); HRESIMS *m/z* calcd for C₃₉H₅₅N₃OS₂Na [M+Na]⁺ 668.3684, found 668.3675.

Figure S1. ¹H-NMR (CDCl₃, 500 MHz) spectrum of 1.

Figure S2. ¹³C-NMR (CDCl₃, 125 MHz) spectrum of 1.

Chemical Formula: C₃₇H₅₂NaO [M+Na]⁺ Exact Mass: 535.39159

Figure S3. HRESIMS spectrum of 1a.

Figure S4. ¹H-NMR (CDCl₃, 500 MHz) spectrum of 1a.

Figure S5. J-mod (CDCl₃, 125 MHz) spectrum of 1a.

Chemical Formula: C₃₇H₅₂FO [M+H]⁺ Exact Mass: 531.40022

Figure S6. HRESIMS spectrum of 1b.

Figure S7. ¹H-NMR (CDCl₃, 500 MHz) spectrum of 1b.

Chemical Formula: C₃₇H₅₁FNaO [M+Na]⁺ Exact Mass: 553.38216

Figure S9. HRESIMS spectrum of 1c.

Figure S10. ¹H-NMR (CDCl₃, 500 MHz) spectrum of 1c.

Chemical Formula: C₃₇H₅₁CINaO [M+Na]⁺ Exact Mass: 569.35261

Figure S12. HRESIMS spectrum of 1d.

Figure S13. 1 H-NMR (CDCl₃, 500 MHz) spectrum of 1d.

Figure S14. J-mod (CDCl₃, 125 MHz) spectrum of 1d.

Chemical Formula: C₃₇H₅₁CINaO [M+Na]⁺ Exact Mass: 569.35261

Figure S15. HRESIMS spectrum of 1e.

Figure S17. J-mod (CDCl₃, 125 MHz) spectrum of 1e.

Chemical Formula: C₃₇H₅₂CIO [M+H]⁺ Exact Mass: 547.37067

Figure S18. HRESIMS spectrum of 1f.

					Mass	s Spec	trum Li	st Re	eport			
Analysi	s Info											
Analysis	Name	OSKVN	041020	19008.0	d				Acquisition Da	ite 10	0/4/2019 12:	00:13 PM
Method Sample Name		Tune_I	ow_POS	_2019.	m				Operator	A	dministrator	
		Ph4Br						Instrument	m	micrOTOF 72		
		Ph4Br										
Acquisi	tion Pa	rameter			les D	ele cito	Desitive		Set Corre	ector Fill	I 50 V	
Source Type Scan Range		n/a			Capil	larv Exit	220.0 V		Set Pulsa	ar Push	337 V	
Scan Begin		50 m/z	50 m/z Hexapole RF 4			400.0 V		Set Reflector 1300 V				
Scan End		3000 m	Vz		Skimi	mer 1 nole 1	45.0 V 24.3 V		Set Fligh Set Dete	t Tube ctor TO	9000 V F 2295 V	
	Intens.				110.00	poie i	21.0 0				+MS 05-05	min #(29-3
	x104						615.	2998				
	3											
	2-											
	1							ulu –				
					553 404	7				005	4 400	
		507	2/34 5	32.0879		58	7.5449	631.2	2839	000.4	4422	726.7724
		500	52	5	550	575	600	625	650	675	700	725 m
	#	m/z		1%	S/N	Res						
	1	144.9684	2233	6.7	14.8	7000						
	2	145.0077	2052	6.2	13.5	10240						
	- 3	252 2822	10374	31.3	74.1	4658						
	4				18.2	4612						
	4 5	354.2674	2346	(.1	10.3	4013						
	4 5 6	354.2674 381.2940	2346 12268	7.1 37.0	86.3	4909						
	4 5 6 7	354.2674 381.2940 382.2966	2346 12268 2919	7.1 37.0 8.8	86.3 20.0	4909 5068						
	4 5 7 8	354.2674 381.2940 382.2966 393.2916	2346 12268 2919 5137	7.1 37.0 8.8 15.5	86.3 20.0 35.5	4013 4909 5068 4705						
	4 5 7 8 9	354.2674 381.2940 382.2966 393.2916 413.2639 414.2689	2346 12268 2919 5137 14500 3988	7.1 37.0 8.8 15.5 43.8 12.0	86.3 20.0 35.5 100.3 27.0	4013 4909 5068 4705 4661 4684						
	4 5 7 8 9 10	353.2032 354.2674 381.2940 382.2966 393.2916 413.2639 414.2669 425.2145	2346 12268 2919 5137 14500 3988 5286	7.1 37.0 8.8 15.5 43.8 12.0 16.0	86.3 20.0 35.5 100.3 27.0 35.8	4013 4909 5068 4705 4661 4684 4533						
	4 5 7 8 9 10 11 12	354.2674 381.2940 382.2966 393.2916 413.2639 414.2669 425.2145 441.2952	2346 12268 2919 5137 14500 3988 5286 6766	7.1 37.0 8.8 15.5 43.8 12.0 16.0 20.4	10.3 86.3 20.0 35.5 100.3 27.0 35.8 45.6	4013 4909 5068 4705 4661 4684 4533 4689						
	4 5 7 8 9 10 11 12 13	353.2032 354.2674 381.2940 382.2966 393.2916 413.2639 414.2689 425.2145 441.2952 447.3431	2346 12268 2919 5137 14500 3988 5286 6766 5305	7.1 37.0 8.8 15.5 43.8 12.0 16.0 20.4 16.0	10.3 86.3 20.0 35.5 100.3 27.0 35.8 45.6 35.5	4013 4909 5068 4705 4661 4684 4533 4689 4748						
	4 5 6 7 8 9 10 11 12 13 14	354.2674 381.2940 382.2966 393.2916 413.2639 414.2669 425.2145 441.2952 447.3431 502.5515	2346 12268 2919 5137 14500 3988 5286 6766 5305 2172 2075	7.1 37.0 8.8 15.5 43.8 12.0 16.0 20.4 16.0 6.6	10.3 86.3 20.0 35.5 100.3 27.0 35.8 45.6 35.5 13.5	4013 4909 5068 4705 4661 4684 4533 4689 4748 31319						
	4 5 6 7 8 9 10 11 12 13 14 15 18	354.2674 381.2940 382.2966 393.2916 413.2639 414.2669 425.2145 441.2952 4447.3431 502.5515 507.2734	2346 12268 2919 5137 14500 3988 5286 6766 5305 2172 3075 2804	7.1 37.0 8.8 15.5 43.8 12.0 16.0 20.4 16.0 6.6 9.3 10.0	10.3 86.3 20.0 35.5 100.3 27.0 35.8 45.6 35.5 13.5 13.5 19.4 22.0	4013 4909 5068 4705 4661 4684 4533 4689 4748 31319 4561 2567						
	4 5 6 7 8 9 10 11 12 13 14 5 16 17	354.2674 381.2940 382.2966 393.2916 413.2639 414.2669 412.2145 441.2952 447.3431 502.5515 507.2734 553.4217 556.24043	2346 12268 2919 5137 14500 3988 5286 6766 5305 2172 3075 3604 2190	7.1 37.0 8.8 15.5 43.8 12.0 16.0 20.4 16.0 6.6 9.3 10.9 6.6	10.3 86.3 20.0 35.5 100.3 27.0 35.8 45.6 35.5 13.5 19.4 22.9 13.6	4013 4909 5008 4705 4661 4684 4533 4689 4748 31319 4561 3557 31144						
	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	354.2674 381.2940 382.2966 393.2916 413.2639 414.2669 412.2145 441.2952 447.3431 502.5515 507.2734 553.4217 5562.4043 613.3022	2346 12268 2919 5137 14500 3988 5286 6766 5305 2172 3075 3604 2190 31255	7.1 37.0 8.8 15.5 43.8 12.0 16.0 20.4 16.0 6.6 9.3 10.9 6.6 94.3	10.3 86.3 20.0 35.5 100.3 27.0 35.8 45.6 35.5 13.5 19.4 22.9 13.6 220.9	4909 5068 4705 4661 4684 4533 4689 4748 31319 4561 3557 31144 4940						

Chemical Formula: C₃₇H₅₁BrNaO [M+Na]⁺ Exact Mass: 613.30210

Figure S21. HRESIMS spectrum of 1g.

Figure S22. ¹H-NMR (CDCl₃, 400 MHz) spectrum of 1g.

Chemical Formula: C₃₇H₅₁BrNaO [M+Na]⁺ Exact Mass: 613.30210

Figure S24. HRESIMS spectrum of 1h.

42 40 38 36 34 32 f1 (ppm) Figure S26. J-mod (CDCl₃, 125 MHz) spectrum of 1h.

Chemical Formula: C₃₇H₅₁BrNaO [M+Na]⁺ Exact Mass: 613.30210

Figure S27. HRESIMS spectrum of 1i.

36 34 32 f1 (ppm) 42 40 Figure S29. ¹³C-NMR (CDCl₃, 100 MHz) spectrum of 1i.

Chemical Formula: C₃₇H₅₁NNaO₃ [M+Na]⁺ Exact Mass: 580.37666

Figure S30. HRESIMS spectrum of 1j.

Figure S31. ¹H-NMR (CDCl₃, 500 MHz) spectrum of 1j.

Mass Spectrum List Report						
Analysis Info Analysis Name Method Sample Name	OSKVN04102019010.d Tune_low_POS_2019.m P2N P2N				Acquisition Date Operator Instrument	10/4/2019 12:07:46 PM Administrator micrOTOF 72
Acquisition Para Source Type Scan Range Scan Begin Scan End	ameter ESI n/a 50 m/z 3000 m/z	lon Pola Capillar Hexapo Skimme Hexapo	rrity y Exit le RF r 1 le 1	Positive 280.0 V 400.0 V 45.0 V 24.3 V	Set Correcto Set Pulsar P Set Pulsar P Set Reflecto Set Flight Tu Set Detector	or Fill 50 V 'ull 337 V 'ush 337 V r 1300 V ibe 9000 V 'TOF 2295 V
Intens. ×10 ⁵ 2.5 2.0 1.5				580.3764		+MS, 0.8-0.8min #(49-50
0.0	200	413.2	500	600	700 800	900 1000 m/z

Chemical Formula: C₃₇H₅₁NNaO₃ [M+Na]⁺ Exact Mass: 580.37666

Figure S33. HRESIMS spectrum of 1k.

Figure S34. ¹H-NMR (CDCl₃, 500 MHz) spectrum of 1k.

Chemical Formula: C₃₈H₅₄NaO₂ [M+Na]⁺ Exact Mass: 565.40215

Figure S36. HRESIMS spectrum of 11.

Figure S37. ¹H-NMR (CDCl₃, 500 MHz) spectrum of 11.

Figure S38. J-mod (CDCl₃, 125 MHz) spectrum of 1l.

Chemical Formula: C₃₀H₄₈NaO₂ [M+Na]⁺ Exact Mass: 463.35520

Figure S39. HRESIMS spectrum of 2.

Figure S40. ¹H-NMR (Acetone- d_6 , 500 MHz) spectrum of **2**.

Figure S41. J-mod (Acetone- d_6 , 125 MHz) spectrum of 2.

Chemical Formula: C₃₉H₅₉N₂O₂ [M+H]⁺ Exact Mass: 587.45765

Figure S42. HRESIMS spectrum of 3a.

Figure S43. ¹H-NMR (CDCl₃, 500 MHz) spectrum of 3a.

Figure S44. ¹³C-NMR (CDCl₃, 125 MHz) spectrum of 3a.

Figure S45. HSQC (CDCl₃) spectrum of 3a.

Figure S46. HMBC (CDCl₃) spectrum of 3a.

Chemical Formula: C₃₉H₅₉N₂O₂ [M+H]⁺ Exact Mass: 587.45765

Figure S47. HRESIMS spectrum of 3b.

Figure S48. ¹H-NMR (CDCl₃, 500 MHz) spectrum of 3b.

Figure S49. ¹³C-NMR (CDCl₃, 125 MHz) spectrum of 3b.

Figure S50. HSQC (CDCl₃) spectrum of 3b.

Figure S51. HMBC (CDCl₃) spectrum of 3b.

Chemical Formula: C₃₈H₅₇N₂O [M+H]⁺ Exact Mass: 557.44709

Figure S52. HRESIMS spectrum of 3c.

Figure S54. J-mod (CDCl₃, 125 MHz) spectrum of 3c.

Figure S55. HSQC (CDCl₃) spectrum of 3c.

Figure S56. HMBC (CDCl₃) spectrum of 3c.

Chemical Formula: C₃₇H₅₃CIN₂NaO₂ [M+Na]⁺ Exact Mass: 615.36933

Figure S57. HRESIMS spectrum of 3d.

Figure S58. ¹H-NMR (DMSO-*d*₆, 500 MHz) spectrum of 3d.

Figure S59. J-mod (DMSO-*d*₆, 125 MHz) spectrum of **3d**.

Figure S60. HSQC (DMSO- d_6) spectrum of 3d.

Figure S61. HMBC (DMSO- d_6) spectrum of **3d**.

Chemical Formula: C₃₇H₅₃IN₂NaO₂ [M+Na]⁺ Exact Mass: 707.30494

Figure S62. HRESIMS spectrum of 3e.

Figure S63. ¹H-NMR (CDCl₃, 500 MHz) spectrum of 3e.

Figure S65. HSQC (CDCl₃) spectrum of 3e.

Figure S66. HMBC (CDCl₃) spectrum of 3e.

Chemical Formula: C₃₉H₅₅N₃NaOS₂ [M+Na]⁺ Exact Mass: 668.36842

Figure S67. HRESIMS spectrum of 3f.

Figure S68. ¹H-NMR (CDCl₃, 500 MHz) spectrum of 3f.

Figure S70. HSQC (CDCl₃) spectrum of 3f.

Figure S71. HMBC (CDCl₃) spectrum of 3f.