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This supplementary appendix contains three parts. Appendix A extends the theoretical analysis to the

treated cases. Appendix B collects the proofs of lemmas, theorems, and corollaries. Appendix C provides

robustness checks of the empirical results.

A Treated Cases

As mentioned in the main text, treatment effects for the treated subgroup are sometimes more interesting

than for the overall population. In this section, we then consider the average counterfactual treatment effect

for the treated (ACTT) as

δ∗t = E(Y ∗1 |D∗ = 1)− E(Y ∗0 |D∗ = 1), (A.1)

and the quantile counterfactual treatment effect for the treated (QCTT) as

δ∗t (τ) = QY ∗1 |D∗(τ |1)−QY ∗0 |D∗(τ |1), (A.2)

where the expectation and quantile operators are taken with respect to the conditional distribution of Y ∗d
given D∗ = 1 for d = 0, 1, where Y ∗d and D∗ denote the potential outcomes and treatment indicator in the

counterfactual environment with Y ∗ = D∗Y ∗1 + (1−D∗)Y ∗0 . Note that since the counterfactual treatment

assignment D∗ is not observable in our framework, a different set of assumptions is needed to identify (A.1)

and (A.2). Define p∗(x) = Pr(D∗ = 1|X∗ = x) be the counterfactual propensity score for all x ∈ X ∗.

Assumption A.1 (Unconfoundedness for the Untreated).

(i) Y0 ⊥⊥ D|X.

(ii) p(X) > 0.

Assumption A.2 (Invariance of Conditional Distributions for the Treated).
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(i) FY ∗d |X∗,D∗(y|x, 1) = FYd|X,D(y|x, 1) for all x ∈ X ∗, d = 0, 1.

(ii) X ∗ ⊆ X .

Assumption A.3 (Invariance of Propensity Scores). p∗(x) = p(x) for all x ∈ X ∗.

Clearly, Assumptions A.1 and A.2 are weaker than their counterparts Assumptions 2.1 and 2.3. In fact,

they can be further weakened for the ACTT case similar to Section 7 in the main text. To identify treated

parameters, however, we need to invoke Assumption A.3 so that the counterfactual treatment assignment can

be determined. This assumption requires that the probabilities of receiving treatment must be the same for

individuals who are observationally equivalent between counterfactual and status quo populations. Given

these assumptions, ACTT and QCTT can be identified as follows.

Lemma A.1. Suppose Assumptions A.1–A.3 hold. Then ACTT and QCTT defined in (A.1) and (A.2) are

identified by

δ∗t =

∫
X

p(x)

E[p(X∗)]
[E(Y |X = x,D = 1)− E(Y |X = x,D = 0)] dFX∗(x),

δ∗t (τ) = inf

{
y ∈ Y :

∫
X

p(x)

E[p(X∗)]
FY |X,D(y|x, 1) dFX∗(x) ≥ τ

}
− inf

{
y ∈ Y :

∫
X

p(x)

E[p(X∗)]
FY |X,D(y|x, 0) dFX∗(x) ≥ τ

}
.

According to Lemma A.1, ACTT and QCTT estimators are given respectively by

δ̂∗t =

n∗∑
j=1

p̂(X∗j )
[
Ê(Y1|X = X∗j )− Ê(Y0|X = X∗j )

]/ n∗∑
j=1

p̂(X∗j ),

δ̂∗t (τ) = Q̂Y ∗1 |D∗(τ |1)− Q̂Y ∗0 |D∗(τ |1),

where p̂(x) is given in (4.9) of the main text, Ê(Yd|X = x) is the Nadaraya-Watson estimator for d = 0, 1, i.e.,

Ê(Yd|X = x) =

∑n
i=1 Yi 1{Di = d}Kx,h(Xi − x)∑n
i=1 1{Di = d}Kx,h(Xi − x)

,

and Q̂Y ∗d |D∗
(τ |1) = inf{y ∈ Y : F̂Y ∗d |D∗(y|1) ≥ τ} with

F̂Y ∗d |D∗(y|1) =

n∗∑
j=1

p̂(X∗j )F̂Yd|X(y|X∗j )

/ n∗∑
j=1

p̂(X∗j ),

where F̂Yd|X(y|x) is also given in (4.7) of the main text. Similar to the overall cases, the asymptotic properties

of ACTT and QCTT estimators can be derived under a modified version of Assumption 3.3:

Assumption A.4 (Distribution of Y ∗d for the Treated).

(i) FY ∗d |D∗(y|1) has a compact support [y∗d`, y
∗
du] ⊆ Y.

(ii) FY ∗d |D∗(y|1) is continuous on Y.

(iii) fY ∗d |D∗(y|1) is bounded away from 0 and is two-times differentiable on Y.
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Corollary A.1. Suppose Assumptions 3.1, 3.2, 3.4–3.6, and A.1–A.4 hold. Then,

√
n
(
δ̂∗t − δ∗t

)
d→ N

(
0,Var(δ̂∗t )

)
,

where Var(δ̂∗t ) = E[%δ∗t (Z)2] + E[ϕδ∗t (X∗)2] with

%δ∗t (Z) =
p(X)

E[p(X∗)]

{
D[Y − E(Y1|X)]

p(X)
− (1−D)[Y − E(Y0|X)]

1− p(X)

}
fX∗(X)

fX(X)
,

ϕδ∗t (X∗) =
√
λ

p(X∗)

E[p(X∗)]
[E(Y1|X∗)− E(Y0|X∗)− δ∗t ].

Moreover, we have

√
n
(
δ̂∗t (·)− δ∗t (·)

)
⇒ ∆t(·),

where ∆t(τ) is a Gaussian process with mean zero and covariance function Ψt(τ1, τ2) = E[ψt(τ1)ψt(τ2)], where

the variance function ψt(τ) = E[%t(τ, Z)2] + E[ϕt(τ,X
∗)2] with

%t(τ, Z) = −

[
%F1,t(QY ∗1 |D∗(τ |1), Z)

fY ∗1 |D∗(QY ∗1 |D∗(τ |1)|1)
−

%F0,t(QY ∗0 |D∗(τ |1), Z)

fY ∗0 |D∗(QY ∗0 |D∗(τ |1)|1)

]
,

ϕt(τ,X
∗) = −

[
ϕF1,t(QY ∗1 |D∗(τ |1), X∗)

fY ∗1 |D∗(QY ∗1 |D∗(τ |1)|1)
−
ϕF0,t(QY ∗0 |D∗(τ |1), X∗)

fY ∗0 |D∗(QY ∗0 |D∗(τ |1)|1)

]
,

where %Fd,t(y, Z) and ϕFd,t(y,X
∗) are given by

%Fd,t(y, Z) =
p(X)

E[p(X∗)]

1{D = d}
[
1{Y ≤ y} − FYd|X(y|X)

]
p(X)d[1− p(X)]

1−d
fX∗(X)

fX(X)
,

ϕFd,t(y,X
∗) =

√
λ

p(X∗)

E[p(X∗)]

[
FYd|X(y|X∗)− FY ∗d (y)

]
,

and the convergence takes place in `∞([0, 1]).

For uniform inference, we again propose to use multiplier bootstrap to approximate ∆t(·). That is,

∆u
t (τ) =


1√
n

n∑
i=1

Ui[%̂t(τ, Zi) + ϕ̂t(τ,X
∗
i )] if X∗ = π(X),

1√
n

n∑
i=1

Ui%̂t(τ, Zi) +
1√
n∗

n∗∑
j=1

U∗j ϕ̂t(τ,X
∗
j ) if X∗ ⊥⊥ X,

where %̂t and ϕ̂t can be estimated given f̂Y ∗d |D∗(y|1) = max{f̃Y ∗d |D∗(y|1), bn} with

f̃Y ∗d |D∗(y|1) =

n∗∑
j=1

p̂(X∗j )f̃Yd|X(y|X∗j )

/ n∗∑
j=1

p̂(X∗j ),

where p̂(x) and f̃Yd|X(y|x) are given in main text. One can show ∆u
t (·) p⇒ ∆t(·) similar to Theorem 4.1 and

then conduct uniform inference accordingly. We omit the details for brevity.
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B Proofs

Proof of Lemma 2.1:

By the law of iterated expectations, Assumption 2.3, Assumption 2.1(i), and Y = Yd for D = d, we have

FY ∗d (y) =

∫
X∗

FY ∗d |X∗(y|x) dFX∗(x) =

∫
X
FYd|X(y|x) dFX∗(x)

=

∫
X
FYd|D,X(y|d, x) dFX∗(x) =

∫
X
FY |D,X(y|d, x) dFX∗(x),

where FY |D,X(y|d, x) is well defined for all d and x under Assumption 2.3(ii). Since X∗ is defined on the same

sample space as X that takes values inside X with probability 1 by Assumption 2.3(ii), FY ∗d (y) is identified.

Accordingly, the corresponding quantile function and the QCTE are identified as well.

Proof of Lemma 3.1:

The proof consists of two parts. First, we show that
√
n(F̃Y ∗d (y)− FY ∗d (y)) is asymptotically linear with the

following influence function representation:

√
n
(
F̃Y ∗d (y)− FY ∗d (y)

)
=

1√
n

n∑
i=1

1{Di = d}
[
1{Yi ≤ y} − FYd|X(y|Xi)

]
p(Xi)d[1− p(Xi)]

1−d
fX∗(Xi)

fX(Xi)

+
1√
n∗

n∗∑
j=1

√
λ
[
FYd|X(y|X∗j )− FY ∗d (y)

]
+ op(1)

≡ 1√
n

n∑
i=1

%Fd (y, Zi) +
1√
n∗

n∗∑
j=1

ϕFd (y,X∗j ) + op(1).

(B.1)

Since %Fd (y, ·) and ϕFd (y, ·) belong to Donsker classes for all y ∈ Y and the Cartesian product of two Donsker

classes of functions is still a Donsker class as in van der Vaart (2000), Lemma 3.1 holds by the functional

central limit theorem for F̃ = (F̃Y ∗0 , F̃Y ∗1 )T in place of F̂ = (F̂Y ∗0 , F̂Y ∗1 )T . Next, we complete the proof by

establishing the first-order asymptotic equivalence between F̂Y ∗d (y) and F̃Y ∗d (y), i.e.,

sup
y∈Y

∣∣∣F̂Y ∗d (y)− F̃Y ∗d (y)
∣∣∣ = op(n

−1/2). (B.2)

The derivation of (B.1) is similar to Theorem 1 of Rothe (2010). For simplicity, let n∗ = n so that λ = 1.

Let P and P ∗ be the distribution function of X and X∗, respectively. Denote Gn ≡
√
n(Pn − P), where P

is the expectation under P and Pn is the empirical distribution under P such that for every measurable

function φ : X → R, Pφ =
∫
φdP and Pnφ = n−1

∑n
i=1 φ(Xi). Define G∗n, P∗ and P∗n similarly under P ∗.

To begin with, we rewrite
√
n(F̂Y ∗d (y)− FY ∗d (y)) as

√
n
(
F̂Y ∗d (y)− FY ∗d (y)

)
=G∗n

(
F̂Yd|X(y|x)− FYd|X(y|x)

)
(B.3)

+
√
nP∗

(
F̂Yd|X(y|x)− FYd|X(y|x)

)
(B.4)

+
1√
n

n∗∑
j=1

(
FYd|X(y|X∗j )− FY ∗d (y)

)
. (B.5)
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It is true that (B.3) is op(1) uniformly over y ∈ Y by Lemma 1 of Rothe (2010) and Lemma 19.24 of van der

Vaart (2000). Next, we show that uniformly over y ∈ Y,

(B.4) =
1√
n

n∑
i=1

1{Di = d}
[
1{Yi ≤ y} − FYd|X(y|Xi)

]
p(Xi)d[1− p(Xi)]

1−d
fX∗(Xi)

fX(Xi)
+ op(1).

Define Gd(y, x) ≡ E[1{Y ≤ y} 1{D = d}|X = x]fX(x), Ĝd(y, x) ≡ n−1
∑n
i=1 1{Yi ≤ y} 1{Di = d}Kx,h(Xi −

x), gd(x) ≡ E[1{D = d}|X = x]fX(x), and ĝd(x) ≡ n−1
∑n
i=1 1{Di = d}Kx,h(Xi − x). It is easy to see that

F̂Yd|X(y|x) = Ĝd(y, x)/ĝd(x). Moreover, we have

P∗
(
F̂Yd|X(y|x)− FYd|X(y|x)

)
=

∫
1

n

n∑
i=1

[
1{Yi ≤ y} − FYd|X(y|Xi)

]1{Di = d}Kx,h(Xi − x)

ĝd(x)
fX∗(x) dx (B.6)

+

∫
1

n

n∑
i=1

[
FYd|X(y|Xi)− FYd|X(y|x)

]1{Di = d}Kx,h(Xi − x)

ĝd(x)
fX∗(x) dx. (B.7)

Since Kx,h(Xi− x) is differentiable in x by Assumption 3.5(v), we can apply a second-order Taylor expansion

of ĝd(x) around gd(x) in (B.6),

(B.6) =

∫
1

n

n∑
i=1

[
1{Yi ≤ y} − FYd|X(y|Xi)

]1{Di = d}Kx,h(x−Xi)

gd(x)
fX∗(x) dx (B.8)

−
∫

1

n

n∑
i=1

[
1{Yi ≤ y} − FYd|X(y|Xi)

]1{Di = d}Kx,h(x−Xi)

g2d(x)
[ĝd(x)− gd(x)]fX∗(x) dx (B.9)

+ op(n
−1/2),

where the remainder term is op(n
−1/2) uniformly in both x and y since (i) supy∈Y | 1{Yi ≤ y}−FYd|X(y|Xi)| ≤

1; (ii) Kx,h(x−Xi) and gd(x) are bounded for all x ∈ X by Assumptions 3.5 and 3.2(ii); (iii) supx∈X |ĝd(x)−
gd(x)| = Op((log n/nhk)1/2 + hr) = op(n

−1/4) by Assumption 3.6 and Lemma B.3 of Newey (1994); (iv)

fX∗(x) is bounded by Assumption 3.2(iii); (v) the dominated convergence theorem.

To derive an expression for (B.8), we note that gd(x) = p(x)d[1 − p(x)]1−dfX(x) and define µd(x) ≡
fX∗(x)/gd(x) which is r-times differentiable under Assumptions 3.2(iii) and 3.4(i). Also denote K

(γ)
x (u) =

∂|γ|/(∂γ1u1, . . . , ∂
γkuk)Kx(u) and µ

(γ)
d (x) = ∂|γ|/(∂γ1x1, . . . , ∂

γkxk)µd(x). By a standard change of variables

x = uh+Xi and a rth-order Taylor expansion of Kuh+Xi(u) and µd(uh+Xi) around KXi(u) and µd(Xi),
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respectively, we have uniformly over y ∈ Y that

(B.8) =

∫
1

n

n∑
i=1

[
1{Yi ≤ y} − FYd|X(y|Xi)

]
1{Di = d}Kx,h(x−Xi)µd(x) dx

=
1

n

n∑
i=1

[
1{Yi ≤ y} − FYd|X(y|Xi)

]
1{Di = d}

∫
Kuh+Xi(u)µd(uh+Xi) du

=
1

n

n∑
i=1

[
1{Yi ≤ y} − FYd|X(y|Xi)

]
1{Di = d}

∫ [
KXi

(u) + · · ·+ (uh)rK
(r)
ξ (u)

]
·[

µd(Xi) + · · ·+ (uh)re
(r)
d (ξ)

]
du

=
1

n

n∑
i=1

[
1{Yi ≤ y} − FYd|X(y|Xi)

]
1{Di = d}µd(Xi) +Op(h

r)

=
1

n

n∑
i=1

1{Di = d}
p(Xi)d[1− p(Xi)]1−d

[
1{Yi ≤ y} − FYd|X(y|Xi)

]fX∗(Xi)

fX(Xi)
+ op(n

−1/2),

where ξ is some value between uh + Xi and Xi. The fourth equality follows from interchanging the

differentiation and integration (which is true by the dominated convergence theorem) and Assumption 3.5.

The last equality holds because gd(x) = p(x)d[1− p(x)]1−dfX(x) and Op(h
r) = op(n

−1/2) by Assumption 3.6.

Equation (B.9) can be derived in a similar manner. To be more specific, define νd(x) ≡ fX∗(x)/g2d(x)

which is also r-times differentiable in x. By the definition of ĝd(x),

(B.9) =
1

n2

n∑
i=1

n∑
j=1

1{Di = d}
[
1{Yi ≤ y} − FYd|X(y|Xi)

]
·∫

[1{Dj = d}Kx,h(Xj − x)− gd(x)]Kx,h(x−Xi)νd(x) dx

=
1

n2

n∑
i=1

n∑
j=1

1{Di = d}
[
1{Yi ≤ y} − FYd|X(y|Xi)

]
·{∫

1{Dj = d}Kx,h(Xj − x)Kx,h(x−Xi)νd(x) dx−
∫
Kx,h(x−Xi)µd(x) dx

}
=

1

n2

n∑
i=1

n∑
j=1

1{Di = d}
[
1{Yi ≤ y} − FYd|X(y|Xi)

]
·{[

1{Dj = d}KXi,h(Xj −Xi)νd(Xi) + op(n
−1/2)

]
−
[
µd(Xi) + op(n

−1/2)
]}

=
1

n2

n∑
i=1

n∑
j=1

1{Di = d}
[
1{Yi ≤ y} − FYd|X(y|Xi)

]
νd(Xi)·

[1{Dj = d}KXi,h(Xj −Xi)− g(Xi)] + op(n
−1/2)

=
1

n2

n∑
i=1

n∑
j=1

1{Di = d}
[
1{Yi ≤ y} − FYd|X(y|Xi)

]
νd(Xi)·

{1{Dj = d}KXi,h(Xj −Xi)− E[1{Dj = d}KXi,h(Xj −Xi)]}+ op(n
−1/2),

(B.10)

where the second equality holds by µd(x) = gd(x)νd(x), the third holds by applying a similar argument

as for (B.8), the fourth holds again by µd(x) = gd(x)νd(x), and the last equality holds because E[1{Dj =

d}Kx,h(Xj − x)]− g(x) = Op(h
r) = op(n

−1/2) uniformly in x by Lemma B.2 of Newey (1994). Moreover, the
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leading term in (B.10) is a degenerate second-order U-process as pointed out by Rothe (2010). We therefore

apply the uniform law of large numbers for U-processes (Nolan and Pollard, 1987; Sherman, 1994) to show

that (B.10) is Op(h
−kn−1) + op(n

−1/2) = op(n
−1/2) under Assumption 3.6.

Combining all the results obtained above, (B.6) can be rewritten as

1

n

n∑
i=1

1{Di = d}
[
1{Yi ≤ y} − FYd|X(y|Xi)

]
p(Xi)d[1− p(Xi)]

1−d
fX∗(Xi)

fX(Xi)
+ op(n

−1/2).

One can also show that (B.7) is op(n
−1/2) through similar arguments. As a result, (B.4) is equivalent to

1√
n

n∑
i=1

1{Di = d}
[
1{Yi ≤ y} − FYd|X(y|Xi)

]
p(Xi)

d[1− p(Xi)]
1−d

fX∗(Xi)

fX(Xi)
+ op(1),

and we have the asymptotic linear representation in (B.1). Since 1{Y ≤ y} is a type I function and the

other functions in (B.1) are type II functions defined in Andrews (1994), %Fd (y, ·) and ϕFd (y, ·) belong to some

Donsker classes for all y ∈ Y . By van der Vaart (2000, p.270) in which the Cartesian product of two Donsker

classes of functions is still a Donsker class, Lemma 3.1 holds by the functional central limit theorem for F̃ in

place of F̂ .

We now show the second part of the proof which claims that F̂Y ∗d (y) and F̃Y ∗d (y) are asymptotically

equivalent to the first-order approximation, or supy∈Y |F̂Y ∗d (y)− F̃Y ∗d (y)| = op(n
−1/2) as stated in (B.2). For

simplicity assume that F̃Y ∗d (0) ≥ 0 so that φ1(F̃Y ∗d )(y) = supy′≤y F̃Y ∗d (y′) for all y ∈ Y = [0, ȳ]. From the first

part of the proof, it is true that supy∈Y |
√
n(F̃Y ∗d (y)− FY ∗d (y))| = Op(1), implying that for any ε1 > 0, there

exist an M > 0 and a large N = NM such that for all n > N ,

P

(
sup
y∈Y

∣∣∣√n(F̃Y ∗d (y)− FY ∗d (y)
)∣∣∣ ≤M) ≥ 1− ε1. (B.11)

Next, it can also be shown that
√
n(F̃Y ∗d (y) − FY ∗d (y)) is stochastic equicontinuous with respect to the

pseudometric ρ(y1, y2) = |FY ∗d (y1)− FY ∗d (y2)|1/2 for all (y1, y2) ∈ Y from Theorem 3.1 of Hsu, Lai, and Lieli

(2019), meaning that for any ε2 > 0 and ε3 > 0, there exist a δ > 0 small enough and an Nδ large enough

such that for all n > Nδ,

P

(
sup

ρ(y1,y2)≤δ

∣∣∣√n(F̃Y ∗d (y1)− FY ∗d (y1)
)
−
√
n
(
F̃Y ∗d (y2)− FY ∗d (y2)

)∣∣∣ ≤ ε2) ≥ 1− ε3. (B.12)

If we pick a large N such that

2M
/√

N < δ2, (B.13)

for y1 ≤ y2 with ρ(y1, y2) > δ and for n > N with supy∈Y |
√
n(F̃Y ∗d (y)− FY ∗d (y))| ≤M almost surely,

F̃Y ∗d (y1)− F̃Y ∗d (y2) =
(
F̃Y ∗d (y1)− FY ∗d (y1)

)
−
(
F̃Y ∗d (y2)− FY ∗d (y2)

)
−
(
FY ∗d (y2)− FY ∗d (y1)

)
≤2M

/√
n− δ2 < 2M

/√
N − δ2 < 0 a.s., (B.14)

where the inequality holds almost surely because
√
n
(
F̃Y ∗d (y1)− FY ∗d (y1)

)
≤M ,

√
n
(
F̃Y ∗d (y2)− FY ∗d (y2)

)
≥
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−M , and FY ∗d (y2)− FY ∗d (y1) > δ2 by the definition of ρ(y1, y2). This implies that for n > N ,

φ1(F̃Y ∗d )(y) = sup
y′≤y

F̃Y ∗d (y′) = sup
{y′:y′≤y,ρ(y′,y)≤δ}

F̃Y ∗d (y′). (B.15)

Therefore, for all y ∈ Y and for n > N with supy∈Y |
√
n(F̃Y ∗d (y)− FY ∗d (y))| ≤M , we have that

0 ≤
√
n
(
φ1(F̃Y ∗d )(y)− F̃Y ∗d (y)

)
=
√
n
(
φ1(F̃Y ∗d )(y)− FY ∗d (y)−

(
F̃Y ∗d (y)− FY ∗d (y)

))
=
√
n

(
sup

{y′:y′≤y,ρ(y′,y)≤δ}

(
F̃Y ∗d (y′)− FY ∗d (y)−

(
F̃Y ∗d (y)− FY ∗d (y)

)))
≤ sup
{y′:y′≤y,ρ(y′,y)≤δ}

√
n
(
F̃Y ∗d (y′)− FY ∗d (y′)−

(
F̃Y ∗d (y)− FY ∗d (y)

))
≤ sup
ρ(y1,y2)≤δ

∣∣∣√n(F̃Y ∗d (y1)− FY ∗d (y1)
)
−
√
n
(
F̃Y ∗d (y2)− FY ∗d (y2)

)∣∣∣ a.s., (B.16)

where the second-to-last inequality holds because FY ∗d (y′) ≤ FY ∗d (y) for y′ ≤ y, and the last inequality holds

because the last supremum is taken over all y1 and y2 such that ρ(y1, y2) ≤ δ instead of over y′ such that

y′ ≤ y and ρ(y′, y) ≤ δ. That is,
√
n(φ1(F̃Y ∗d )(y)− F̃Y ∗d (y)) is op(1) by (B.12).

Finally, since it is true that supy∈Y
√
n(φ1(F̃Y ∗d )(y)− 1) = supy∈Y

√
n(F̃Y ∗d (y)− 1) = op(1) by Theorem

3.1 of Hsu, Lai, and Lieli (2019), we have for all y ∈ Y,

√
n
(
F̂Y ∗d (y)− F̃Y ∗d (y)

)
=
√
n

(
φ1(F̃Y ∗d )(y)

supy∈Y φ1(F̃Y ∗d )(y)
− F̃Y ∗d (y)

)

=
√
n
(
φ1(F̃Y ∗d )(y)− F̃Y ∗d (y)

)
− φ1(F̃Y ∗d )(y)

√
n

(
sup
y∈Y

φ1(F̃Y ∗d )(y)− 1

)
+ op(1)

=
√
n
(
φ1(F̃Y ∗d )(y)− F̃Y ∗d (y)

)
+ op(1), (B.17)

where the second equality follows from a mean-valued expansion of supy∈Y φ1(F̃ )Y ∗d (y) around 1 and the

last equality holds because φ1(F̃Y ∗d )(y)
p→ 1 and supy∈Y

√
n(φ1(F̃Y ∗d )(y) − 1) = op(1). Put together, when

conditions for (B.11), (B.12) and (B.13) hold, by (B.16) and (B.17),

P

(
sup
y∈Y

∣∣∣√n(F̂Y ∗d (y)− F̃Y ∗d (y)
)∣∣∣ ≤ ε2)

≥P

(
sup

ρ(y1,y2)≤δ

∣∣∣√n(F̃Y ∗d (y1)− FY ∗d (y1)
)
−
(
F̃Y ∗d (y2)− FY ∗d (y2)

)∣∣∣ ≤ ε2) ≥ 1− ε3.

Proof of Theorem 3.1:

Given the quantile map is Hadamard differentiable, Theorem 3.1 follows immediately from Lemma 3.1 and

the functional delta method.
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Proof of Theorem 4.1:

We consider only the independent case here since the proof for the transformed case is similar to that of

Donald and Hsu (2014, Theorem 4.5). We first show that

Fud (y) ≡ 1√
n

n∑
i=1

Ui%̂
F
d (y, Zi) +

1√
n∗

n∗∑
j=1

U∗j ϕ̂
F
d (y,X∗j )

p⇒ Fd(y).

To see this, note that

Fud (y) =
1√
n

n∑
i=1

Ui%
F
d (y, Zi) +

1√
n∗

n∗∑
j=1

U∗j ϕ
F
d (y,X∗j ) (B.18)

+
1√
n

n∑
i=1

Ui
[
%̂Fd (y, Zi)− %Fd (y, Zi)

]
(B.19)

+
1√
n∗

n∗∑
j=1

U∗j
[
ϕ̂Fd (y,X∗j )− ϕFd (y,X∗j )

]
. (B.20)

We now show (B.19) converges weakly to a zero process conditional on the sample path Z ≡ {ω ∈ Zi : i =

1, 2, . . . } with probability approaching one. That is,

1√
n

n∑
i=1

Ui
[
%̂Fd (y, Zi)− %Fd (y, Zi)

] p⇒ 0. (B.21)

Note that (B.21) is true if and only if for any subsequence kn of n, there exists a further subsequence `n of

kn such that

1√
`n

`n∑
i=1

Ui
[
%̂Fd,`n(y, Zi)− %Fd (y, Zi)

] a.s.⇒ 0, (B.22)

where %̂Fd,`n(y, z) denotes the estimator at `n. By Lemma 4.1, we have supy∈Y,z∈Z |%̂Fd,`n(y, z)− %Fd (y, z)| a.s.→
0 for any subsequence kn of n and a further subsequence `n of kn. We then define Z`n ≡ {ω ∈ Z :

supy∈Y,z∈Z |%̂Fd,`n(y, z)(ω)− %Fd (y, z)| → 0} where %̂Fd,`n(y, z)(ω) denotes the realization at ω and P(Z`n) = 1.

For any ω ∈ Z`n , define

t`n,i(Ui, y|ω) =
Ui√
`n

[
%̂Fd,`n(y, Zi)(ω)− %Fd (y, Zi)

]
.

Note that since we have conditioned t`n,i(Ui, y|ω) on the sample path ω, the randomness comes from the Ui’s

which is independent of the sample path ω.

Next, we claim that the triangular array {t`n,i(Ui, y|ω), 1 ≤ i ≤ `n, `n ≥ 1} satisfies assumptions (i)–(v)

of Theorem 10.6 in Pollard (1990). If this is the case, we can then apply the functional central limit theorem

to show:

1√
`n

`n∑
i=1

Ui
[
%̂Fd,`n(y, Zi)(ω)− %Fd (y, Zi)

]
⇒ 0,
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meaning that (B.22) and (B.21) would follow accordingly. By Theorem 3.1 in Hsu (2016), it is sufficient to

check that %̂Fd,`n(y, Zi) satisfies (i)–(iii) of Assumption 3.2 in Hsu (2016):

(i) {%̂Fd,`n(y, Zi) : y ∈ Y, 1 ≤ i ≤ `n, `n ≥ 1} is manageable with respect to the envelope function

{Ω̂`n(Zi) : 1 ≤ i ≤ `n, `n ≥ 1} in the sense of Definition 7.9 of Pollard (1990).

(ii) supy1,y2∈Y |`
−1
n

∑`n
i=1 %̂

F
d,`n

(y1, Zi)%̂
F
d,`n

(y2, Zi)− E[%Fd (y1, Z)%Fd (y2, Z)]| p→ 0.

(iii) There exists a δ > 0 such that

1

`n

`n∑
i=1

Ω̂2
`n(Zi)−

1

`n

`n∑
i=1

Ω2
`n(Zi)

p→ 0,
1

`n

`n∑
i=1

Ω̂2+δ
`n

(Zi)−
1

`n

`n∑
i=1

Ω2+δ
`n

(Zi)
p→ 0.

To check (i), recall that

%̂Fd,`n(y, Zi) =
1{Di = d}

[
1{Yi ≤ y} − F̂Yd|X,`n(y|Xi)

]
p̂`n(Xi)d[1− p̂`n(Xi)]

1−d
f̂X∗,`n(Xi)

f̂X,`n(Xi)
,

where the subscript `n indicates estimators at `n. Since 1{Yi ≤ y} for all y ∈ Y forms a Vapnik-Chervonenkis

class of functions, it is manageable with respect to the envelope function of 1’s. In addition, due to monotonicity

F̂Yd|X,`n(y|x) satisfies Pollard’s entropy condition as in (4.2) of Andrews (1994) with the envelope function

being M`n ≥ 1. Next, by construction a`n = infx∈X p̂`n(x) = infx∈X 1 − p̂`n(x) and b`n = infx∈X f̂X,`n(x).

Since f̂X∗,`n(x) is uniformly bounded by, say B`n , it belongs to a type II class of functions with the envelope

function being B`n . Taken all together, %̂Fd,`n(y, Zi) is manageable with respect to a constant envelope function

Ω̂`n = a`nb`nB`n(1 +M`n) > 0, and hence (i) is satisfied.

To check (ii) and (iii), note that the functions involved in %̂Fd (y, z) are uniformly consistent over y ∈ Y
and z ∈ Z by Lemma 4.1. It is therefore easy to see (ii) and (iii) follow accordingly. In other words, the

triangular array {t`n,i(Ui, y|ω)} for all ω ∈ Z satisfies all requirements in Theorem 10.6 of Pollard (1990).

We then argue that conditional on the sample path ω and given the randomness coming from the Ui’s,

1√
`n

`n∑
i=1

Ui
[
%̂Fd,`n(y,Xi)(ω)− %Fd (y,Xi)

]
⇒ 0.

By a similar argument, it can be shown that (B.20) also converges weakly to a zero process conditional on

the sample path {ω ∈ X∗j : j = 1, 2, . . . }. Finally, by Corollary 2.9.3 in van der Vaart and Wellner (1996), it

is true that (B.18) converges weakly to Fd(y) with probability approaching one.

We are now ready to show the conditional weak convergence of the simulated process for QCTE,

∆u(τ) = −

[
Fu1 (Q̂Y ∗1

(τ))

f̂Y ∗1 (Q̂Y ∗1
(τ))

−
Fu0 (Q̂Y ∗0

(τ))

f̂Y ∗0 (Q̂Y ∗0
(τ))

]
p⇒ ∆(τ). (B.23)
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Note that by Assumptions 3.3(iii) and 4.1, it follows that

sup
τ∈[0,1]

∣∣∣f̂Y ∗d (Q̂Y ∗d
(τ))− fY ∗d (QY ∗d

(τ))
∣∣∣

≤ sup
τ∈[0,1]

∣∣∣f̂Y ∗d (Q̂Y ∗d
(τ))− fY ∗d (Q̂Y ∗d

(τ))
∣∣∣+ sup

τ∈[0,1]

∣∣∣fY ∗d (Q̂Y ∗d
(τ))− fY ∗d (QY ∗d

(τ))
∣∣∣

≤ sup
τ∈[0,1]

∣∣∣f̂Y ∗d (Q̂Y ∗d
(τ))− fY ∗d (Q̂Y ∗d

(τ))
∣∣∣+ C · sup

τ∈[0,1]

∣∣∣Q̂Y ∗d
(τ)−QY ∗d

(τ)
∣∣∣ = op(1),

for some constant C. Moreover, it is also true that supτ∈[0,1] |Fud (Q̂Y ∗d
(τ))−Fud (QY ∗d

(τ))| = op(1) conditioning

on the sample path with probability approaching one by the equicontinuity of Fud (y) and the uniform

consistency of Q̂Y ∗d
(τ). As a result, we have

sup
τ∈[0,1]

∣∣∣∣∣ F
u
d (Q̂Y ∗d

(τ))

f̂Y ∗d (Q̂Y ∗d
(τ))

−
Fud (QY ∗d

(τ))

fY ∗d (QY ∗d
(τ))

∣∣∣∣∣
≤ sup
τ∈[0,1]

∣∣∣∣∣ F
u
d (Q̂Y ∗d

(τ))

f̂Y ∗d (Q̂Y ∗d
(τ))

−
Fud (Q̂Y ∗d

(τ))

fY ∗d (QY ∗d
(τ))

∣∣∣∣∣+ sup
τ∈[0,1]

∣∣∣∣∣ F
u
d (Q̂Y ∗d

(τ))

fY ∗d (QY ∗d
(τ))

−
Fud (QY ∗d

(τ))

fY ∗d (QY ∗d
(τ))

∣∣∣∣∣
≤ sup
τ∈[0,1]

∣∣∣Fud (Q̂Y ∗1
(τ))

∣∣∣ sup
τ∈[0,1]

∣∣∣∣∣ f̂Y ∗d (Q̂Y ∗d
(τ))− fY ∗d (QY ∗d

(τ))

f̂Y ∗d (Q̂Y ∗d
(τ))fY ∗d (QY ∗d

(τ))

∣∣∣∣∣+ sup
τ∈[0,1]

∣∣∣∣∣Fu1 (Q̂Y ∗1
(τ))−Fu1 (QY ∗1

(τ))

fY ∗d (QY ∗d
(τ))

∣∣∣∣∣
≤ C · sup

τ∈[0,1]

∣∣∣Fud (Q̂Y ∗1
(τ))

∣∣∣ sup
τ∈[0,1]

∣∣∣f̂Y ∗d (Q̂Y ∗d
(τ))− fY ∗d (QY ∗d

(τ))
∣∣∣+ C ′ · sup

τ∈[0,1]

∣∣∣Fu1 (Q̂Y ∗1
(τ))−Fu1 (QY ∗1

(τ))
∣∣∣

= C ·Op(1) · op(1) + C ′ · op(1) = op(1),

where the last inequality holds by Assumption 3.3(iii) and the fact that f̂Y ∗d (y) is bounded from below for all

y by the trimming method. Finally, (B.23) holds because

∆u(τ) = −

{[
Fu1 (Q̂Y ∗1

(τ))

f̂Y ∗1 (Q̂Y ∗1
(τ))

−
Fu1 (QY ∗1

(τ))

fY ∗1 (QY ∗1
(τ))

]
+

[
Fu0 (Q̂Y ∗0

(τ))

f̂Y ∗0 (Q̂Y ∗0
(τ))

−
Fu0 (QY ∗0

(τ))

fY ∗0 (QY ∗0
(τ))

]

+

[
Fu1 (QY ∗1

(τ))

fY ∗1 (QY ∗1
(τ))

−
Fu0 (QY ∗0

(τ))

fY ∗0 (QY ∗0
(τ))

]}
p⇒ ∆(τ).

Proof of Lemma 4.1:

It suffices to check that

sup
y∈Y

∣∣∣F̂Y ∗d (y)− FY ∗d (y)
∣∣∣+ sup

y∈Y,x∈X

∣∣∣F̂Yd|X(y|x)− FYd|X(y|x)
∣∣∣+ sup

x∈X
|p̂(x)− p(x)|

+ sup
x∈X

∣∣∣f̂X(x)− fX(x)
∣∣∣+ sup

x∈X

∣∣∣f̂X∗(x)− fX∗(x)
∣∣∣+ sup

y∈Y

∣∣∣f̂Y ∗d (y)− fY ∗d (y)
∣∣∣ = op(1).

(B.24)

The first term in (B.24) has already been shown by Lemma 3.1. Regarding the second and third terms in

(B.24), note that the uniform consistency of the unmodified estimators F̃Yd|X(y|x) and p̃(x) are established

by Härdle, Jansson and Serfling (1988). We then follow Lemma 4.1 of Donald and Hsu (2014) to show that

the monotonized estimator F̂Yd|X(y|x) is also uniformly consistent for both y and x, i.e., the second term

in (B.24) holds. For a fixed x, suppose y′ is the first point at which F̃Yd|X(y|x) jumps down. Then for

y ∈ [y′, y′+ε) where ε > 0, F̂Yd|X(y|x) = F̃Yd|X(y′−ε|x) > F̃Yd|X(y|x). On the other hand, for y ∈ [y′−ε, y, y′),
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F̂Yd|X(y|x) = F̃Yd|X(y′ − ε|x). Now, focus on the case where y′ ≤ y < y′ + ε. If F̂Yd|X(y|x) ≤ FYd|X(y|x),

we have FYd|X(y|x)− F̃Yd|X(y|x) > FYd|X(y|x)− F̂Yd|X(y|x) ≥ 0. If F̂Yd|X(y|x) > FYd|X(y|x) and recall that

FYd|X(y|x) is nondecreasing in y, we have F̃Yd|X(y′ − ε|x)− FYd|X(y′ − ε|x) ≥ F̂Yd|X(y|x)− FYd|X(y|x) > 0.

These results imply that for y′ ≤ y < y′ + ε,∣∣∣F̂Yd|X(y|x)− FYd|X(y|x)
∣∣∣ ≤ max

{∣∣∣F̃Yd|X(y′ − ε|x)− FYd|X(y′ − ε|x)
∣∣∣, ∣∣∣F̃Yd|X(y|x)− FYd|X(y|x)

∣∣∣}.
From the above inequality and the fact that F̂Yd|X(y|x) = F̃Yd|X(y|x) for 0 ≤ y < y′, it is true that

sup
0≤y≤y′+ε

∣∣∣F̂Yd|X(y|x)− FYd|X(y|x)
∣∣∣ ≤ sup

0≤y≤y′+ε

∣∣∣F̃Yd|X(y|x)− FYd|X(y|x)
∣∣∣.

Since this inequality holds for all x and by induction for y′, we can then show that

sup
y∈Y,x∈X

∣∣∣F̂Yd|X(y|x)− FYd|X(y|x)
∣∣∣ ≤ sup

y∈Y,x∈X

∣∣∣F̃Yd|X(y|x)− FYd|X(y|x)
∣∣∣ = op(1).

For the third term in (B.24), since |an| ≤ 1, it follows that supx∈X |p̂(x)−p(x)| ≤ supx∈X |p̃(x)−p(x)| = op(1).

Regarding the fourth term in (B.24), note that supx∈X |f̃X(x)− fX(x)| = op(1) is already established by

Jones (1993). Given the fact that bn converges to 0 and by Assumption 3.2(ii), we have infx∈X fX(x) ≥ bn
with probability approaching one. This implies that

sup
x∈X

∣∣∣f̃X(x)− f̂X(x)
∣∣∣ = op(1).

By triangular inequality we then have

sup
x∈X

∣∣∣f̂X(x)− fX(x)
∣∣∣ ≤ sup

x∈X

∣∣∣f̂X(x)− f̃X(x)
∣∣∣+ sup

x∈X

∣∣∣f̃X(x)− fX(x)
∣∣∣ = op(1).

For the other parts in (B.24), since supy∈Y,x∈X |f̃Yd|X(y|x) − fYd|X(y|x)| = op(1) as shown by Hyndman,

Bashtannyk and Grunwald (1996), the results regarding the fifth and the last terms follow similarly.

Proof of Corollary 7.1:

The proof is omitted since it is similar to the proof of Lemma 3.1 by replacing 1{Yi ≤ y}’s with Yi’s.
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Proof of Lemma A.1:

To see this, note that QY ∗d |D∗
(τ |1) = inf{y ∈ Y : FY ∗d |D∗(y|1) ≥ τ} and

FY ∗d |D∗(y|1) =

∫
X∗

FY ∗d |X∗,D∗(y|x, 1) dFX∗|D∗(x|1)

=

∫
X
FYd|X,D(y|x, 1)fX∗|D∗(x|1) dx

=

∫
X
FY |X,D(y|x, d)

p∗(x)fX∗(x)

P(D∗ = 1)
dx

=

∫
X
FY |X,D(y|x, d)

p(x)∫
X p(x)fX∗(x) dx

dFX∗(x)

=

∫
X
FY |X,D(y|x, d)

p(x)

E[p(X∗)]
dFX∗(x),

where the second equality follows from Assumption 7.6 and the third holds since Y1 = Y if D = 1,

FY0|X,D(y|x, 1) = FY0|X,D(y|x, 0) = FY |X,D(y|x, 0) by Assumption 7.5(i), and by Bayes’ theorem. The fourth

equality is true given Assumption 7.7. Since p(x) > 0 for all x ∈ X by Assumption 7.5(ii) and Y , X, D, and

X∗ are all observable, the last line is well defined and is identified. Thus, ACTT and QCTT can be identified

as well.

Proof of Corollary A.1:

The proof follows the same line of reasoning as in Lemma 3.1 and Theorem 3.1 and so is omitted.

C Robustness Checks

In this section, we undertake several sensitivity checks to examine the robustness of our empirical results.

First, since age is recorded in years (i.e., an integer variable) in our dataset, we then vary the bandwidths from

hd to 3hd and 6hd for d = 0, 1 such that the bandwidth values are less than 1, between 1 and 2, and between

2 and 3, respectively, for both males and females. Next, we “continuize” the age variable by adding a small

random noise. To be more specific, we add a uniformly distributed random number in the range [−0.5, 0.5] to

the integer-valued age to make it more continuous. The point estimates of QTEs and QCTEs under these

conditions are presented in Figure C.1. As can be seen from the figure, the estimates are virtually identical

to those reported in the main text, suggesting that our empirical results are not sensitive with respect to the

choice of bandwidth. Thus, we conclude that these robustness checks confirm our main findings.
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(a) QTEs of Job Corps on earnings for males.
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(b) QTEs of Job Corps on earnings for females.
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(c) QCTEs for females with male’s earnings structure.
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(d) QCTEs for males with female’s earnings structure.
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(e) QCTEs for males with increased education.
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(f) QCTEs for females with increased education.

Figure C.1. Robustness checks.
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