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Appendix to Non-bifurcating phylogenetic tree inference via the adaptive LASSO

7.1. Lemmas. Here we perform further theoretical development to establish the
main theorems. We remind the reader that we will continue to assume Assump-
tions 2.1 and 2.2. The following lemma allows gives a lower bound on the fraction
of sites with state assignments in a given set. It will prove useful to obtain an upper
bound on the likelihood.

Lemma 7.1. For any non-empty set A of single-site state assignments to the leaves,
we define

kA = |{i : Yi ∈ A}|
There exist c3 > 0, c4(δ, n) > 0 such that for all k, we have

kA
k

≥ c3 −
c4√
k

∀A �= ∅

with probability at least 1− δ.

Proof of Lemma 7.1. Since the tree distance between any pairs of leaves of the true
tree is strictly positive, there exists c3 > 0 such that Pq∗(ψ) ≥ c3 for all state
assignments ψ.

Using Hoeffding’s inequality, for any state assignment ψ, we have

P
�����
k{ψ}
k

− Pq∗(ψ)

���� ≥ t

�
≤ 2e−2kt2 .

We deduce that

P
�
∃ψ such that

����
k{ψ}
k

− Pq∗(ψ)

���� ≥ t

�
≤ 2e−2kt2 · 4N .

For any given δ > 0, by choosing

c4(δ, N) =

�
log(1/δ) + (2N + 1) log 2

2

and t = c4(δ, N)/
√
k we have

����
k{ψ}
k

− Pq∗(ψ)

���� ≤
c4(δ, N)√

k
∀ψ

with probability at least 1− δ. This proves the Lemma. �
Lemma 7.2 (Generalization bound). There exists a constant C(δ, n,Q, η, g0, µ) >
0 such that for any k ≥ 3, δ > 0, we have:

����
1

k
�k(q)− φ(q)

���� ≤ C

�
log k

k

�1/2

∀q ∈ T (µ)

with probability greater than 1− δ.

Proof. Note that for q ∈ T (µ), 0 ≥ logPq(ψ) ≥ −µ for all state assignments ψ. By
Hoeffding’s inequality,

P
�����

1

k
�k(q)− φ(q)

���� ≥ y/2

�
≤ 2 exp

�
−y2k

2µ2

�
.

For each q ∈ T (µ), k > 0, and y > 0, define the events

A(q, k, y) =

�����
1

k
�k(q)− φ(q)

���� > y/2

�
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and

B(q, k, y) =

�
∃q� ∈ T (µ) such that �q� − q�2 ≤ y

4c2
and

����
1

k
�k(q)− φ(q)

���� > y

�

then B(q, k, y) ⊂ A(q, k, y) by the triangle inequality, (3.3), and (3.4). Let

y =

�
C log k

k

Since T (µ) is a subset of R2N−3, there exist C2N−3 ≥ 1 and a finite set H ⊂ T (µ)
such that

T (µ) ⊂
�

q∈H
V (q, �) and |H| ≤ C2N−3/�

2N−3

where � = y/(4c2), V (q, �) denotes the open ball centered at q with radius �, and
|H| denotes the cardinality of H. By a simple union bound, we have

P
�
∃q ∈ H :

����
1

k
�k(q)− φ(q)

���� > y/2

�
≤ 2 exp

�
−y2k

2µ2

�
C2N−3

�
�2N−3.

Using the fact that B(q, k, y) ⊂ A(q, k, y) for all q ∈ H, we deduce

P
�
∃q ∈ T (µ) :

����
1

k
�k(q)− φ(q)

���� > y

�
≤ 2 exp

�
−y2k

2µ2

�
C2N−3

�
�2N−3.

To complete the proof, we need to chose C in such a way that

C2N−3

�
4
√
kg0c2√

C log k

�2N−3

× 2 exp

�
−C log k

2µ2

�
≤ δ.

Since k ≥ 3 and C ≥ 1, the inequality is valid if

C2N−3 (4g0c2)
2N−3 × 2k

2N−3
2 − C

2µ2 ≤ δ

and can be obtained if

2N − 3

2
− C

2µ2
< 0, and C2N−3 (4g0c2)

2N−3 × 2 · 3
2N−3

2 − C
2µ2 ≤ δ.

In other words, we need to choose C such that

C ≥ 2µ2
�
log(1/δ) + logC2N−3 + (2N − 3) log(4

√
3g0c2)

�
.

This completes the proof. �

7.2. Proofs of main theorems.

Proof of Theorem 3.10. By definition of the estimator, we have

−1

k
�k(q

k,Rk) + λkRk(q
k,Rk) ≤ −1

k
�k(q

∗) + λkRk(q
∗)

which is equivalent to Uk(q
k,Rk) ≤ λkRk(q

∗)− λkRk(q
k,Rk).

We have qk,Rk ∈ T (µ) with probability at least 1 − 2δ from Lemma 3.9 for k
sufficiently large. Therefore by Lemma 3.6,

E[Uk(q
k,Rk)] ≤ 1

k
or

1

2
E[Uk(q

k,Rk)] ≤ Uk(q
k,Rk) +

C log k

k2/β
,
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with probability at least 1− 3δ. The second case implies that

cβ1
2
�qk,Rk − q∗�β2 ≤ 1

2
E[Uk(q

k,Rk)]

≤ λkRk(q
∗)− λkRk(q

k,Rk) +
C log k

k2/β
≤ C log k

k2/β
+ λkRk(q

∗)

while for the first case, we have

cβ1
2
�qk,Rk − q∗�β2 ≤ E[Uk(q

k,Rk)] ≤ 1

k
≤ C log k

k2/β
+ λkRk(q

∗)

since β ≥ 2 and C ≥ 1. This demonstrates (3.7).
If the additional assumption (3.6) is satisfied, we also have

�qk,Rk − q∗�β2 ≤ C � log k

k2/β
+ C3λk�qk,Rk − q∗�2.

Using Lemma 3.7 with

ν = 1/β, x = �qk,Rk − q∗�β2 , a = C3λk and b =
C � log k

k2/β
,

we obtain

x ≤ C1a
1/(1−ν) + C2b,

which implies

�qk,Rk − q∗�β2 ≤ C �(δ, C3)

�
log k

k2/β
+ λ

β/(β−1)
k

�
.

This completes the proof. �

Proof of Theorem 3.11. We first note that by Theorem 3.10, the estimator qk,Rk is
consistent, which guarantees limk→∞ qk,Rk = q∗ almost surely. Thus

lim
k→∞

Sk(q
∗) = lim

k→∞

�

q∗i �=0

(q∗i )
1−γ < ∞.

The hypotheses of this theorem imply that λk → 0 and thus by Theorem 3.10, we
also deduce that qk,Sk is also a consistent estimator. This validates (i).

To establish topological consistency under (ii), we divide the proof into two steps.
As the first step, we prove that limk P(A(q∗) ⊂ A(qk,Sk)) = 1. If q∗i0 = 0 for some

i0, then from Theorem 3.10, we have

qk,Rk

i0
≤ C �(δ)

�
log k

k2/β
+ λ

β/(β−1)
k

�1/β

∀k

with probability at least 1− δ. By the definition of wk,i0 , we have

lim
k→∞

αkwk,i0 ≥ lim
k→∞

αk(C
�(δ))−γ

�
log k

k2/β
+ λ

β/(β−1)
k

�−γ/β

= (C �(δ))−γ lim
k→∞

�
log k

α
β/γ
k k2/β

+ α
−β/γ
k λ

β/(β−1)
k

�−γ/β

which goes to infinity since by the hypotheses of the Theorem

α
β/γ
k � log k

k2/β
and α

β/γ
k � λ

β/(β−1)
k .
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Since δ > 0 is arbitrary, we deduce that limk→∞ αkwk,i0 = ∞ with probability
one.

Now for any branch length vector q, we define f(q) as the vector obtained from
q by setting the i0 component of q to 0. By definition of the estimator qk,Sk , we
have

−1

k
�k(q

k,Sk) + αk

�

i

wk,i q
k,Sk

i ≤ −1

k
�k(f(q

k,Sk)) + αk

�

i

wk,i[f(q
k,Sk)]i

or equivalently

αkwk,i0q
k,Sk

i0
≤ 1

k
�k(q

k,Sk)− 1

k
�k(f(q

k,Sk)).

Lemma 3.8 establishes that there exist, µ∗ > 0 and a neighborhood V of q∗ in T
such that V ⊂ T (µ∗). Since the estimator qk,Sk is consistent and q∗i0 = 0, we can

assume that both qk,Sk and f(qk,Sk) belong to T (µ∗) with k large enough. Thus,
from Lemma 3.5, we have

����
1

k
�k(q

k,Sk)− 1

k
�k(f(q

k,Sk))

���� ≤ c2�qk,Sk − f(qk,Sk)�2 = c2q
k,Sk

i0
.

If qk,Sk

i0
> 0, we deduce that αkwk,i0 is bounded from above by c2, which is a

contradiction. This implies that qk,Sk

i0
= 0, and we conclude that

lim
k

P(A(q∗) ⊂ A(qk,Sk)) = 1.

As the second step, we prove that limk P(A(qk,Sk) ⊂ A(q∗)) = 1. Indeed, the
consistency of qk,Sk guarantees that

lim
k→∞

qk,Sk = q∗

almost surely. Therefore, if q∗i0 > 0 for some i0, then qk,Sk

i0
> 0 for k large enough.

In other words, we have limk P(A(qk,Sk) ⊂ A(q∗)) = 1.
Combing step 1 and step 2, we deduce that the adaptive estimator is topologically

consistent. �

Proof of Lemma 3.12. Since qk,Sk is topologically consistent and qk,Rk is consistent,
we have

A(qk,Sk) = A(q∗) and qk,Rk

i ≥ q∗i /2 ∀i �∈ A(q∗)

with probability one for sufficiently large k. Defining b = mini�∈A(q∗) q
∗
i , we have

|Sk(q
k,Sk)− Sk(q

∗)| =

������
�

q∗i �=0

wk,i(q
k,Sk

i − q∗i )

������
≤

√
2N − 3 (b/2)−γ �qk,Sk − q∗�2

via Cauchy-Schwarz which completes the proof. �

Proof of Theorem 3.13. We note that for the LASSO estimator, R
[0]
k (q∗) =

�
i q

∗
i

is uniformly bounded from above. Hence, the LASSO estimator is consistent. We
can then use this as the base case to prove, by induction, that adaptive LASSO
and the multiple-step LASSO are consistent via Theorem 3.11 (part (i)). Moreover,

R
[0]
k is uniformly Lipschitz and satisfies (3.6), so using part (ii) of Theorem 3.11,

we deduce that adaptive LASSO (i.e., the estimator with penalty function R
[1]
k ) is

topologically consistent.
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We will prove that the multiple-step LASSOs are topologically consistent by

induction. Assume that qk,R
[m]
k is topologically consistent, and that qk,R

[m−1]
k is

consistent. From Lemma 3.12, we deduce that there exists C > 0 independent of k
such that

(7.1)
���R[m]

k

�
qk,R

[m]
k

�
−R

[m]
k (q∗)

��� ≤ C
���qk,R

[m]
k − q∗

���
2

∀k.

This enables us to use part (ii) of Theorem 3.11 to conclude that qk,R
[m+1]
k is topo-

logically consistent. This inductive argument proves part (i) of the Theorem. We
can now use (7.1) and Theorem 3.10 to derive the convergence rate of the estima-
tors. �

7.3. Technical proofs.

Lemma 2.3. If the penalty Rk is continuous on T , then for λ > 0 and observed
sequences Yk, there exists a q ∈ T minimizing

Zλ,Yk(q) = −1

k
�k(q) + λRk(q).

Proof of Lemma 2.3. Let {qn} be a sequence such that

Zλ,Yk(qn) → ν := inf
q
Zλ,Yk(q).

We note that since �k(q
∗) �= −∞ and Rk is continuous on the compact set T , ν is

finite. Since T is compact, we deduce that a subsequence {qm} converges to some
q0 ∈ T . Since the log likelihood (defined on T with values in the extended real line
[−∞, 0]) and the penalty Rk are continuous, we deduce that q0 is a minimizer of
Zλ,Yk . �

Lemma 3.5. For any µ > 0, there exists a constant c2(N,Q, η, g0, µ) > 0 such
that

(3.3)

����
1

k
�k(q)−

1

k
�k(q

�)

���� ≤ c2�q − q��2

and

(3.4) |φ(q)− φ(q�)| ≤ c2�q − q��2
for all q, q� ∈ T (µ).

Proof of Lemma 3.5. Using the same arguments as in the proof of Lemma 4.2 of
Dinh et al. (2018), we have ����

∂Pq(ψ)

∂qi

���� ≤ ς4n

for any state assignment ψ where ς is the element of largest magnitude in the rate
matrix Q. By the Mean Value Theorem, we have

| logPq(ψ)− logPq�(ψ)| ≤ c2
√
2N − 3�q − q��2 ∀q, q�,ψ

where c2 := ς4n/e−µ, and � ·�2 is the �2-distance in R2N−3. This implies both (3.3)
and (3.4). �
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Lemma 3.6. Let Gk be the set of all branch length vectors q ∈ T (µ) such that
E [Uk(q)] ≥ 1/k. Let β ≥ 2 be the constant in Lemma 3.3. For any δ > 0 and
previously specified variables there exists C(δ, N,Q, η, g0, µ,β) ≥ 1 (independent of
k) such that for any k ≥ 3, we have:

Uk(q) ≥
1

2
E[Uk(q)]−

C log k

k2/β
∀q ∈ Gk

with probability greater than 1− δ.

Proof of Lemma 3.6. The difference of average likelihoods Uk(q) is bounded by
Lemma 3.5 and the boundedness assumption on T , thus by Hoeffding’s inequality

P [Uk(q)− E [Uk(q)] ≤ −y] ≤ exp

�
− 2y2k

c22�q − q∗�2
�
.

By choosing y = 1
2E [Uk(q)] + t/2, we have y2 ≥ tE [Uk(q)]. For any q ∈ Gk, we

deduce using (3.5) (and the fact that β ≥ 2) that

P
�
Uk(q) ≤

1

2
E [Uk(q)]− t/2

�
≤ exp

�
−2c21tkE[Uk(q)]

c22E[Uk(q)]2/β

�
≤ exp

�
−2c21tk

2/β

c22

�
.

For each q ∈ Gk, define the events

A(q, k, t) =

�
Uk(q)−

1

2
E [Uk(q)] ≤ −t/2

�

and

B(q, k, t) =

�
∃q� ∈ Gk such that �q� − q�2 ≤ t

4c2
and Uk(q

�)− 1

2
E [Uk(q

�)] ≤ −t

�

then B(q, k, t) ⊂ A(q, k, t) by the triangle inequality, (3.3), and (3.4). Let

t =
C log k

k2/β
.

To obtain a union bound and complete the proof, we need to chose C in such a way
that

C2N−3

�
4k2/βg0c2
C log k

�2N−3

× 2 exp

�
−2c21C log k

c22

�
≤ δ

where C2N−3 is defined as in the proof of Lemma 7.2. This can be done by choosing

C ≥ 4βc22
9c21

�
log(1/δ) + logC2N−3 + (2N − 3) log(4 · 32/βg0c2)

�
.

�

Lemma 3.8. There exist µ∗ > 0 and an open neighborhood V of q∗ in T such that
V ⊂ T (µ∗).

Proof of Lemma 3.8. Let
µ∗ = −2min

ψ
logPq∗(ψ)

then we have logPq∗(ψ) > −µ∗ for all state assignments ψ.
For a fixed value of ψ, logPq(ψ) is a continuous function of q around q∗. Hence,

there exists an neighborhood Vψ of q∗ such that Vψ is open in T and logPq(ψ) >
−µ∗. Let V = ∩ψVψ. Because the set of all possible labels ψ of the leaves is finite,
V is open in T and

logPq(ψ) > −µ∗ ∀ψ, ∀q ∈ V.
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In other words, we have V ⊂ T (µ∗). �
Lemma 3.9. If the sequence {λkRk(q

∗)} is bounded, then for any δ > 0, there
exist µ(δ) > 0 and K(δ) > 0 such that for all k ≥ K, qk,Rk ∈ T (µ) with probability
at least 1− 2δ.

Proof of Lemma 3.9. We first assume that µ > µ∗, where µ∗ is defined in Lemma 3.8.
Thus, we have q∗ ∈ T (µ∗) ⊂ T (µ). By definition, we have

−1

k
�k(q

k,Rk) + λkRk(q
k,Rk) ≤ −1

k
�k(q

∗) + λkRk(q
∗)

which implies via Lemma 7.2 that

(7.2) φ(q∗)− C(δ)
log k√

k
+ λkRk(q

k,Rk)− λkRk(q
∗) ≤ 1

k
�k(q

k,Rk)

with probability at least 1− δ.
Let c3 and c4(δ, N) be as in Lemma 7.1, and assume that k is large enough such

that

(7.3) c3 − c4(δ, N)
log k√

k
> 0.

Denoting the upper bound of {λkRk(q
∗)} by U , we define

µ = max

�
−2

�
c3 − c4(δ, N)

log k√
k

�−1 �
φ(q∗)− C(δ)

log k√
k

− U

�
, µ∗

�
.

If we assume that qk,Rk �∈ T (µ), then the set I = {ψ : logPqk,Rk (ψ) ≤ −µ} is
non-empty. Using Lemma 7.1, we have

(7.4)
1

k
�k(q

k,Rk) ≤ 1

k

�

Yi∈I

logPqk,Rk (Yi) ≤ −µ · kI
k

≤ −µ ·
�
c3 − c4(δ)

log k√
k

�

with probability at least 1− δ.
Combining equations (7.2) and (7.4), and using the fact that {λkRk(q

∗)} is
bounded by U , we obtain

φ(q∗)− C(δ)
log k√

k
− U ≤ −µ ·

�
c3 − c4(δ, N)

log k√
k

�
.

This contradicts the choice of µ for k large enough such that (7.3) holds.
We deduce that qk,Rk ∈ T (µ) with probability at least 1− 2δ. �

7.4. More experimental results. Here we present additional experimental re-
sults for the case of γ > 1.
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Figure S1. Topological consistency comparison of different phy-
logenetic LASSO procedures on simulation 2. γ = 1.01.
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Figure S2. Topological consistency comparison of different phy-
logenetic LASSO procedures on simulation 2. γ = 1.1.
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Figure S3. Box plot showing performance of multistep adaptive
phylogenetic LASSO and rjMCMC at detecting short branches.
γ = 1.1


