Appendix to Non-bifurcating phylogenetic tree inference via the adaptive LASSO
7.1. Lemmas. Here we perform further theoretical development to establish the main theorems. We remind the reader that we will continue to assume Assumptions 2.1 and 2.2. The following lemma allows gives a lower bound on the fraction of sites with state assignments in a given set. It will prove useful to obtain an upper bound on the likelihood.

Lemma 7.1. For any non-empty set A of single-site state assignments to the leaves, we define

$$
k_{A}=\left|\left\{i: \mathbf{Y}^{i} \in A\right\}\right|
$$

There exist $c_{3}>0, c_{4}(\delta, n)>0$ such that for all k, we have

$$
\frac{k_{A}}{k} \geq c_{3}-\frac{c_{4}}{\sqrt{k}} \quad \forall A \neq \emptyset
$$

with probability at least $1-\delta$.
Proof of Lemma 7.1. Since the tree distance between any pairs of leaves of the true tree is strictly positive, there exists $c_{3}>0$ such that $P_{q^{*}}(\psi) \geq c_{3}$ for all state assignments ψ.

Using Hoeffding's inequality, for any state assignment ψ, we have

$$
\mathbb{P}\left[\left|\frac{k_{\{\psi\}}}{k}-P_{q^{*}}(\psi)\right| \geq t\right] \leq 2 e^{-2 k t^{2}}
$$

We deduce that

$$
\mathbb{P}\left[\exists \psi \text { such that }\left|\frac{k_{\{\psi\}}}{k}-P_{q^{*}}(\psi)\right| \geq t\right] \leq 2 e^{-2 k t^{2}} \cdot 4^{N}
$$

For any given $\delta>0$, by choosing

$$
c_{4}(\delta, N)=\sqrt{\frac{\log (1 / \delta)+(2 N+1) \log 2}{2}}
$$

and $t=c_{4}(\delta, N) / \sqrt{k}$ we have

$$
\left|\frac{k_{\{\psi\}}}{k}-P_{q^{*}}(\psi)\right| \leq \frac{c_{4}(\delta, N)}{\sqrt{k}} \quad \forall \psi
$$

with probability at least $1-\delta$. This proves the Lemma.
Lemma 7.2 (Generalization bound). There exists a constant $C\left(\delta, n, Q, \eta, g_{0}, \mu\right)>$ 0 such that for any $k \geq 3, \delta>0$, we have:

$$
\left|\frac{1}{k} \ell_{k}(q)-\phi(q)\right| \leq C\left(\frac{\log k}{k}\right)^{1 / 2} \quad \forall q \in \mathcal{T}(\mu)
$$

with probability greater than $1-\delta$.
Proof. Note that for $q \in \mathcal{T}(\mu), 0 \geq \log P_{q}(\psi) \geq-\mu$ for all state assignments ψ. By Hoeffding's inequality,

$$
\mathbb{P}\left[\left|\frac{1}{k} \ell_{k}(q)-\phi(q)\right| \geq y / 2\right] \leq 2 \exp \left(-\frac{y^{2} k}{2 \mu^{2}}\right)
$$

For each $q \in \mathcal{T}(\mu), k>0$, and $y>0$, define the events

$$
A(q, k, y)=\left\{\left|\frac{1}{k} \ell_{k}(q)-\phi(q)\right|>y / 2\right\}
$$

and

$$
B(q, k, y)=\left\{\exists q^{\prime} \in \mathcal{T}(\mu) \text { such that }\left\|q^{\prime}-q\right\|_{2} \leq \frac{y}{4 c_{2}} \text { and }\left|\frac{1}{k} \ell_{k}(q)-\phi(q)\right|>y\right\}
$$

then $B(q, k, y) \subset A(q, k, y)$ by the triangle inequality, (3.3), and (3.4). Let

$$
y=\sqrt{\frac{C \log k}{k}}
$$

Since $\mathcal{T}(\mu)$ is a subset of $\mathbb{R}^{2 N-3}$, there exist $C_{2 N-3} \geq 1$ and a finite set $\mathcal{H} \subset \mathcal{T}(\mu)$ such that

$$
\mathcal{T}(\mu) \subset \bigcup_{q \in \mathcal{H}} V(q, \epsilon) \quad \text { and } \quad|\mathcal{H}| \leq C_{2 N-3} / \epsilon^{2 N-3}
$$

where $\epsilon=y /\left(4 c_{2}\right), V(q, \epsilon)$ denotes the open ball centered at q with radius ϵ, and $|\mathcal{H}|$ denotes the cardinality of \mathcal{H}. By a simple union bound, we have

$$
\mathbb{P}\left[\exists q \in \mathcal{H}:\left|\frac{1}{k} \ell_{k}(q)-\phi(q)\right|>y / 2\right] \leq 2 \exp \left(-\frac{y^{2} k}{2 \mu^{2}}\right) C_{2 N-3} / \epsilon^{2 N-3} .
$$

Using the fact that $B(q, k, y) \subset A(q, k, y)$ for all $q \in \mathcal{H}$, we deduce

$$
\mathbb{P}\left[\exists q \in \mathcal{T}(\mu):\left|\frac{1}{k} \ell_{k}(q)-\phi(q)\right|>y\right] \leq 2 \exp \left(-\frac{y^{2} k}{2 \mu^{2}}\right) C_{2 N-3} / \epsilon^{2 N-3}
$$

To complete the proof, we need to chose C in such a way that

$$
C_{2 N-3}\left(\frac{4 \sqrt{k} g_{0} c_{2}}{\sqrt{C \log k}}\right)^{2 N-3} \times 2 \exp \left(-\frac{C \log k}{2 \mu^{2}}\right) \leq \delta .
$$

Since $k \geq 3$ and $C \geq 1$, the inequality is valid if

$$
C_{2 N-3}\left(4 g_{0} c_{2}\right)^{2 N-3} \times 2 k^{\frac{2 N-3}{2}-\frac{C}{2 \mu^{2}}} \leq \delta
$$

and can be obtained if

$$
\frac{2 N-3}{2}-\frac{C}{2 \mu^{2}}<0, \quad \text { and } \quad C_{2 N-3}\left(4 g_{0} c_{2}\right)^{2 N-3} \times 2 \cdot 3^{\frac{2 N-3}{2}-\frac{C}{2 \mu^{2}}} \leq \delta .
$$

In other words, we need to choose C such that

$$
C \geq 2 \mu^{2}\left(\log (1 / \delta)+\log C_{2 N-3}+(2 N-3) \log \left(4 \sqrt{3} g_{0} c_{2}\right)\right) .
$$

This completes the proof.

7.2. Proofs of main theorems.

Proof of Theorem 3.10. By definition of the estimator, we have

$$
-\frac{1}{k} \ell_{k}\left(q^{k, R_{k}}\right)+\lambda_{k} R_{k}\left(q^{k, R_{k}}\right) \leq-\frac{1}{k} \ell_{k}\left(q^{*}\right)+\lambda_{k} R_{k}\left(q^{*}\right)
$$

which is equivalent to $U_{k}\left(q^{k, R_{k}}\right) \leq \lambda_{k} R_{k}\left(q^{*}\right)-\lambda_{k} R_{k}\left(q^{k, R_{k}}\right)$.
We have $q^{k, R_{k}} \in \mathcal{T}(\mu)$ with probability at least $1-2 \delta$ from Lemma 3.9 for k sufficiently large. Therefore by Lemma 3.6,

$$
\mathbb{E}\left[U_{k}\left(q^{k, R_{k}}\right)\right] \leq \frac{1}{k} \quad \text { or } \quad \frac{1}{2} \mathbb{E}\left[U_{k}\left(q^{k, R_{k}}\right)\right] \leq U_{k}\left(q^{k, R_{k}}\right)+\frac{C \log k}{k^{2 / \beta}},
$$

with probability at least $1-3 \delta$. The second case implies that

$$
\begin{aligned}
\frac{c_{1}^{\beta}}{2}\left\|q^{k, R_{k}}-q^{*}\right\|_{2}^{\beta} & \leq \frac{1}{2} \mathbb{E}\left[U_{k}\left(q^{k, R_{k}}\right)\right] \\
& \leq \lambda_{k} R_{k}\left(q^{*}\right)-\lambda_{k} R_{k}\left(q^{k, R_{k}}\right)+\frac{C \log k}{k^{2 / \beta}} \leq \frac{C \log k}{k^{2 / \beta}}+\lambda_{k} R_{k}\left(q^{*}\right)
\end{aligned}
$$

while for the first case, we have

$$
\frac{c_{1}^{\beta}}{2}\left\|q^{k, R_{k}}-q^{*}\right\|_{2}^{\beta} \leq \mathbb{E}\left[U_{k}\left(q^{k, R_{k}}\right)\right] \leq \frac{1}{k} \leq \frac{C \log k}{k^{2 / \beta}}+\lambda_{k} R_{k}\left(q^{*}\right)
$$

since $\beta \geq 2$ and $C \geq 1$. This demonstrates (3.7).
If the additional assumption (3.6) is satisfied, we also have

$$
\left\|q^{k, R_{k}}-q^{*}\right\|_{2}^{\beta} \leq \frac{C^{\prime} \log k}{k^{2 / \beta}}+C_{3} \lambda_{k}\left\|q^{k, R_{k}}-q^{*}\right\|_{2}
$$

Using Lemma 3.7 with

$$
\nu=1 / \beta, \quad x=\left\|q^{k, R_{k}}-q^{*}\right\|_{2}^{\beta}, \quad a=C_{3} \lambda_{k} \quad \text { and } \quad b=\frac{C^{\prime} \log k}{k^{2 / \beta}}
$$

we obtain

$$
x \leq C_{1} a^{1 /(1-\nu)}+C_{2} b
$$

which implies

$$
\left\|q^{k, R_{k}}-q^{*}\right\|_{2}^{\beta} \leq C^{\prime}\left(\delta, C_{3}\right)\left(\frac{\log k}{k^{2 / \beta}}+\lambda_{k}^{\beta /(\beta-1)}\right)
$$

This completes the proof.
Proof of Theorem 3.11. We first note that by Theorem 3.10, the estimator $q^{k, R_{k}}$ is consistent, which guarantees $\lim _{k \rightarrow \infty} q^{k, R_{k}}=q^{*}$ almost surely. Thus

$$
\lim _{k \rightarrow \infty} S_{k}\left(q^{*}\right)=\lim _{k \rightarrow \infty} \sum_{q_{i}^{*} \neq 0}\left(q_{i}^{*}\right)^{1-\gamma}<\infty
$$

The hypotheses of this theorem imply that $\lambda_{k} \rightarrow 0$ and thus by Theorem 3.10 , we also deduce that $q^{k, S_{k}}$ is also a consistent estimator. This validates (i).

To establish topological consistency under (ii), we divide the proof into two steps.
As the first step, we prove that $\lim _{k} \mathbb{P}\left(\mathcal{A}\left(q^{*}\right) \subset \mathcal{A}\left(q^{k, S_{k}}\right)\right)=1$. If $q_{i_{0}}^{*}=0$ for some i_{0}, then from Theorem 3.10, we have

$$
q_{i_{0}}^{k, R_{k}} \leq C^{\prime}(\delta)\left(\frac{\log k}{k^{2 / \beta}}+\lambda_{k}^{\beta /(\beta-1)}\right)^{1 / \beta} \quad \forall k
$$

with probability at least $1-\delta$. By the definition of $w_{k, i_{0}}$, we have

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \alpha_{k} w_{k, i_{0}} & \geq \lim _{k \rightarrow \infty} \alpha_{k}\left(C^{\prime}(\delta)\right)^{-\gamma}\left(\frac{\log k}{k^{2 / \beta}}+\lambda_{k}^{\beta /(\beta-1)}\right)^{-\gamma / \beta} \\
& =\left(C^{\prime}(\delta)\right)^{-\gamma} \lim _{k \rightarrow \infty}\left(\frac{\log k}{\alpha_{k}^{\beta / \gamma} k^{2 / \beta}}+\alpha_{k}^{-\beta / \gamma} \lambda_{k}^{\beta /(\beta-1)}\right)^{-\gamma / \beta}
\end{aligned}
$$

which goes to infinity since by the hypotheses of the Theorem

$$
\alpha_{k}^{\beta / \gamma} \succ \frac{\log k}{k^{2 / \beta}} \quad \text { and } \quad \alpha_{k}^{\beta / \gamma} \succ \lambda_{k}^{\beta /(\beta-1)} .
$$

Since $\delta>0$ is arbitrary, we deduce that $\lim _{k \rightarrow \infty} \alpha_{k} w_{k, i_{0}}=\infty$ with probability one.

Now for any branch length vector q, we define $f(q)$ as the vector obtained from q by setting the i_{0} component of q to 0 . By definition of the estimator $q^{k, S_{k}}$, we have

$$
-\frac{1}{k} \ell_{k}\left(q^{k, S_{k}}\right)+\alpha_{k} \sum_{i} w_{k, i} q_{i}^{k, S_{k}} \leq-\frac{1}{k} \ell_{k}\left(f\left(q^{k, S_{k}}\right)\right)+\alpha_{k} \sum_{i} w_{k, i}\left[f\left(q^{k, S_{k}}\right)\right]_{i}
$$

or equivalently

$$
\alpha_{k} w_{k, i_{0}} q_{i_{0}}^{k, S_{k}} \leq \frac{1}{k} \ell_{k}\left(q^{k, S_{k}}\right)-\frac{1}{k} \ell_{k}\left(f\left(q^{k, S_{k}}\right)\right) .
$$

Lemma 3.8 establishes that there exist, $\mu^{*}>0$ and a neighborhood V of q^{*} in \mathcal{T} such that $V \subset \mathcal{T}\left(\mu^{*}\right)$. Since the estimator $q^{k, S_{k}}$ is consistent and $q_{i_{0}}^{*}=0$, we can assume that both $q^{k, S_{k}}$ and $f\left(q^{k, S_{k}}\right)$ belong to $\mathcal{T}\left(\mu^{*}\right)$ with k large enough. Thus, from Lemma 3.5, we have

$$
\left|\frac{1}{k} \ell_{k}\left(q^{k, S_{k}}\right)-\frac{1}{k} \ell_{k}\left(f\left(q^{k, S_{k}}\right)\right)\right| \leq c_{2}\left\|q^{k, S_{k}}-f\left(q^{k, S_{k}}\right)\right\|_{2}=c_{2} q_{i_{0}}^{k, S_{k}}
$$

If $q_{i_{0}}^{k, S_{k}}>0$, we deduce that $\alpha_{k} w_{k, i_{0}}$ is bounded from above by c_{2}, which is a contradiction. This implies that $q_{i_{0}}^{k, S_{k}}=0$, and we conclude that

$$
\lim _{k} \mathbb{P}\left(\mathcal{A}\left(q^{*}\right) \subset \mathcal{A}\left(q^{k, S_{k}}\right)\right)=1
$$

As the second step, we prove that $\lim _{k} \mathbb{P}\left(\mathcal{A}\left(q^{k, S_{k}}\right) \subset \mathcal{A}\left(q^{*}\right)\right)=1$. Indeed, the consistency of $q^{k, S_{k}}$ guarantees that

$$
\lim _{k \rightarrow \infty} q^{k, S_{k}}=q^{*}
$$

almost surely. Therefore, if $q_{i_{0}}^{*}>0$ for some i_{0}, then $q_{i_{0}}^{k, S_{k}}>0$ for k large enough. In other words, we have $\lim _{k} \mathbb{P}\left(\mathcal{A}\left(q^{k, S_{k}}\right) \subset \mathcal{A}\left(q^{*}\right)\right)=1$.

Combing step 1 and step 2 , we deduce that the adaptive estimator is topologically consistent.

Proof of Lemma 3.12. Since $q^{k, S_{k}}$ is topologically consistent and $q^{k, R_{k}}$ is consistent, we have

$$
\mathcal{A}\left(q^{k, S_{k}}\right)=\mathcal{A}\left(q^{*}\right) \quad \text { and } \quad q_{i}^{k, R_{k}} \geq q_{i}^{*} / 2 \quad \forall i \notin \mathcal{A}\left(q^{*}\right)
$$

with probability one for sufficiently large k. Defining $b=\min _{i \notin \mathcal{A}\left(q^{*}\right)} q_{i}^{*}$, we have

$$
\left|S_{k}\left(q^{k, S_{k}}\right)-S_{k}\left(q^{*}\right)\right|=\left|\sum_{q_{i}^{*} \neq 0} w_{k, i}\left(q_{i}^{k, S_{k}}-q_{i}^{*}\right)\right| \leq \sqrt{2 N-3}(b / 2)^{-\gamma}\left\|q^{k, S_{k}}-q^{*}\right\|_{2}
$$

via Cauchy-Schwarz which completes the proof.
Proof of Theorem 3.13. We note that for the LASSO estimator, $R_{k}^{[0]}\left(q^{*}\right)=\sum_{i} q_{i}^{*}$ is uniformly bounded from above. Hence, the LASSO estimator is consistent. We can then use this as the base case to prove, by induction, that adaptive LASSO and the multiple-step LASSO are consistent via Theorem 3.11 (part (i)). Moreover, $R_{k}^{[0]}$ is uniformly Lipschitz and satisfies (3.6), so using part (ii) of Theorem 3.11, we deduce that adaptive LASSO (i.e., the estimator with penalty function $R_{k}^{[1]}$) is topologically consistent.

We will prove that the multiple-step LASSOs are topologically consistent by induction. Assume that $q^{k, R_{k}^{[m]}}$ is topologically consistent, and that $q^{k, R_{k}^{[m-1]}}$ is consistent. From Lemma 3.12, we deduce that there exists $C>0$ independent of k such that

$$
\begin{equation*}
\left|R_{k}^{[m]}\left(q^{k, R_{k}^{[m]}}\right)-R_{k}^{[m]}\left(q^{*}\right)\right| \leq C\left\|q^{k, R_{k}^{[m]}}-q^{*}\right\|_{2} \quad \forall k \tag{7.1}
\end{equation*}
$$

This enables us to use part (ii) of Theorem 3.11 to conclude that $q^{k, R_{k}^{[m+1]}}$ is topologically consistent. This inductive argument proves part (i) of the Theorem. We can now use (7.1) and Theorem 3.10 to derive the convergence rate of the estimators.

7.3. Technical proofs.

Lemma 2.3. If the penalty R_{k} is continuous on \mathcal{T}, then for $\lambda>0$ and observed sequences \mathbf{Y}^{k}, there exists a $q \in \mathcal{T}$ minimizing

$$
Z_{\lambda, \mathbf{Y}^{k}}(q)=-\frac{1}{k} \ell_{k}(q)+\lambda R_{k}(q)
$$

Proof of Lemma 2.3. Let $\left\{q^{n}\right\}$ be a sequence such that

$$
Z_{\lambda, \mathbf{Y}^{k}}\left(q^{n}\right) \rightarrow \nu:=\inf _{q} Z_{\lambda, \mathbf{Y}^{k}}(q) .
$$

We note that since $\ell_{k}\left(q^{*}\right) \neq-\infty$ and R_{k} is continuous on the compact set \mathcal{T}, ν is finite. Since \mathcal{T} is compact, we deduce that a subsequence $\left\{q^{m}\right\}$ converges to some $q^{0} \in \mathcal{T}$. Since the \log likelihood (defined on \mathcal{T} with values in the extended real line $[-\infty, 0])$ and the penalty R_{k} are continuous, we deduce that q^{0} is a minimizer of $Z_{\lambda, \mathbf{Y}^{k}}$.

Lemma 3.5. For any $\mu>0$, there exists a constant $c_{2}\left(N, Q, \eta, g_{0}, \mu\right)>0$ such that

$$
\begin{equation*}
\left|\frac{1}{k} \ell_{k}(q)-\frac{1}{k} \ell_{k}\left(q^{\prime}\right)\right| \leq c_{2}\left\|q-q^{\prime}\right\|_{2} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\phi(q)-\phi\left(q^{\prime}\right)\right| \leq c_{2}\left\|q-q^{\prime}\right\|_{2} \tag{3.4}
\end{equation*}
$$

for all $q, q^{\prime} \in \mathcal{T}(\mu)$.
Proof of Lemma 3.5. Using the same arguments as in the proof of Lemma 4.2 of Dinh et al. (2018), we have

$$
\left|\frac{\partial P_{q}(\psi)}{\partial q_{i}}\right| \leq \varsigma 4^{n}
$$

for any state assignment ψ where ς is the element of largest magnitude in the rate matrix Q. By the Mean Value Theorem, we have

$$
\left|\log P_{q}(\psi)-\log P_{q^{\prime}}(\psi)\right| \leq c_{2} \sqrt{2 N-3}\left\|q-q^{\prime}\right\|_{2} \quad \forall q, q^{\prime}, \psi
$$

where $c_{2}:=\varsigma 4^{n} / e^{-\mu}$, and $\|\cdot\|_{2}$ is the ℓ_{2}-distance in $\mathbb{R}^{2 N-3}$. This implies both (3.3) and (3.4).

Lemma 3.6. Let G_{k} be the set of all branch length vectors $q \in \mathcal{T}(\mu)$ such that $\mathbb{E}\left[U_{k}(q)\right] \geq 1 / k$. Let $\beta \geq 2$ be the constant in Lemma 3.3. For any $\delta>0$ and previously specified variables there exists $C\left(\delta, N, Q, \eta, g_{0}, \mu, \beta\right) \geq 1$ (independent of k) such that for any $k \geq 3$, we have:

$$
U_{k}(q) \geq \frac{1}{2} \mathbb{E}\left[U_{k}(q)\right]-\frac{C \log k}{k^{2 / \beta}} \quad \forall q \in G_{k}
$$

with probability greater than $1-\delta$.
Proof of Lemma 3.6. The difference of average likelihoods $U_{k}(q)$ is bounded by Lemma 3.5 and the boundedness assumption on \mathcal{T}, thus by Hoeffding's inequality

$$
\mathbb{P}\left[U_{k}(q)-\mathbb{E}\left[U_{k}(q)\right] \leq-y\right] \leq \exp \left(-\frac{2 y^{2} k}{c_{2}^{2}\left\|q-q^{*}\right\|^{2}}\right)
$$

By choosing $y=\frac{1}{2} \mathbb{E}\left[U_{k}(q)\right]+t / 2$, we have $y^{2} \geq t \mathbb{E}\left[U_{k}(q)\right]$. For any $q \in G_{k}$, we deduce using (3.5) (and the fact that $\beta \geq 2$) that

$$
\mathbb{P}\left[U_{k}(q) \leq \frac{1}{2} \mathbb{E}\left[U_{k}(q)\right]-t / 2\right] \leq \exp \left(-\frac{2 c_{1}^{2} t k \mathbb{E}\left[U_{k}(q)\right]}{c_{2}^{2} \mathbb{E}\left[U_{k}(q)\right]^{2 / \beta}}\right) \leq \exp \left(-\frac{2 c_{1}^{2} t k^{2 / \beta}}{c_{2}^{2}}\right)
$$

For each $q \in G_{k}$, define the events

$$
A(q, k, t)=\left\{U_{k}(q)-\frac{1}{2} \mathbb{E}\left[U_{k}(q)\right] \leq-t / 2\right\}
$$

and
$B(q, k, t)=\left\{\exists q^{\prime} \in G_{k}\right.$ such that $\left\|q^{\prime}-q\right\|_{2} \leq \frac{t}{4 c_{2}}$ and $\left.U_{k}\left(q^{\prime}\right)-\frac{1}{2} \mathbb{E}\left[U_{k}\left(q^{\prime}\right)\right] \leq-t\right\}$ then $B(q, k, t) \subset A(q, k, t)$ by the triangle inequality, (3.3), and (3.4). Let

$$
t=\frac{C \log k}{k^{2 / \beta}}
$$

To obtain a union bound and complete the proof, we need to chose C in such a way that

$$
C_{2 N-3}\left(\frac{4 k^{2 / \beta} g_{0} c_{2}}{C \log k}\right)^{2 N-3} \times 2 \exp \left(-\frac{2 c_{1}^{2} C \log k}{c_{2}^{2}}\right) \leq \delta
$$

where $C_{2 N-3}$ is defined as in the proof of Lemma 7.2. This can be done by choosing

$$
C \geq \frac{4 \beta c_{2}^{2}}{9 c_{1}^{2}}\left(\log (1 / \delta)+\log C_{2 N-3}+(2 N-3) \log \left(4 \cdot 3^{2 / \beta} g_{0} c_{2}\right)\right)
$$

Lemma 3.8. There exist $\mu^{*}>0$ and an open neighborhood V of q^{*} in \mathcal{T} such that $V \subset \mathcal{T}\left(\mu^{*}\right)$.

Proof of Lemma 3.8. Let

$$
\mu^{*}=-2 \min _{\psi} \log P_{q^{*}}(\psi)
$$

then we have $\log P_{q^{*}}(\psi)>-\mu^{*}$ for all state assignments ψ.
For a fixed value of $\psi, \log P_{q}(\psi)$ is a continuous function of q around q^{*}. Hence, there exists an neighborhood V_{ψ} of q^{*} such that V_{ψ} is open in \mathcal{T} and $\log P_{q}(\psi)>$ $-\mu^{*}$. Let $V=\cap_{\psi} V_{\psi}$. Because the set of all possible labels ψ of the leaves is finite, V is open in \mathcal{T} and

$$
\log P_{q}(\psi)>-\mu^{*} \quad \forall \psi, \forall q \in V
$$

In other words, we have $V \subset \mathcal{T}\left(\mu^{*}\right)$.
Lemma 3.9. If the sequence $\left\{\lambda_{k} R_{k}\left(q^{*}\right)\right\}$ is bounded, then for any $\delta>0$, there exist $\mu(\delta)>0$ and $K(\delta)>0$ such that for all $k \geq K, q^{k, R_{k}} \in \mathcal{T}(\mu)$ with probability at least $1-2 \delta$.

Proof of Lemma 3.9. We first assume that $\mu>\mu^{*}$, where μ^{*} is defined in Lemma 3.8. Thus, we have $q^{*} \in \mathcal{T}\left(\mu^{*}\right) \subset \mathcal{T}(\mu)$. By definition, we have

$$
-\frac{1}{k} \ell_{k}\left(q^{k, R_{k}}\right)+\lambda_{k} R_{k}\left(q^{k, R_{k}}\right) \leq-\frac{1}{k} \ell_{k}\left(q^{*}\right)+\lambda_{k} R_{k}\left(q^{*}\right)
$$

which implies via Lemma 7.2 that

$$
\begin{equation*}
\phi\left(q^{*}\right)-C(\delta) \frac{\log k}{\sqrt{k}}+\lambda_{k} R_{k}\left(q^{k, R_{k}}\right)-\lambda_{k} R_{k}\left(q^{*}\right) \leq \frac{1}{k} \ell_{k}\left(q^{k, R_{k}}\right) \tag{7.2}
\end{equation*}
$$

with probability at least $1-\delta$.
Let c_{3} and $c_{4}(\delta, N)$ be as in Lemma 7.1, and assume that k is large enough such that

$$
\begin{equation*}
c_{3}-c_{4}(\delta, N) \frac{\log k}{\sqrt{k}}>0 \tag{7.3}
\end{equation*}
$$

Denoting the upper bound of $\left\{\lambda_{k} R_{k}\left(q^{*}\right)\right\}$ by U, we define

$$
\mu=\max \left\{-2\left(c_{3}-c_{4}(\delta, N) \frac{\log k}{\sqrt{k}}\right)^{-1}\left(\phi\left(q^{*}\right)-C(\delta) \frac{\log k}{\sqrt{k}}-U\right), \mu^{*}\right\}
$$

If we assume that $q^{k, R_{k}} \notin \mathcal{T}(\mu)$, then the set $I=\left\{\psi: \log P_{q^{k, R_{k}}}(\psi) \leq-\mu\right\}$ is non-empty. Using Lemma 7.1, we have

$$
\begin{equation*}
\frac{1}{k} \ell_{k}\left(q^{k, R_{k}}\right) \leq \frac{1}{k} \sum_{Y_{i} \in I} \log P_{q^{k, R_{k}}}\left(Y_{i}\right) \leq-\mu \cdot \frac{k_{I}}{k} \leq-\mu \cdot\left(c_{3}-c_{4}(\delta) \frac{\log k}{\sqrt{k}}\right) \tag{7.4}
\end{equation*}
$$

with probability at least $1-\delta$.
Combining equations (7.2) and (7.4), and using the fact that $\left\{\lambda_{k} R_{k}\left(q^{*}\right)\right\}$ is bounded by U, we obtain

$$
\phi\left(q^{*}\right)-C(\delta) \frac{\log k}{\sqrt{k}}-U \leq-\mu \cdot\left(c_{3}-c_{4}(\delta, N) \frac{\log k}{\sqrt{k}}\right)
$$

This contradicts the choice of μ for k large enough such that (7.3) holds.
We deduce that $q^{k, R_{k}} \in \mathcal{T}(\mu)$ with probability at least $1-2 \delta$.
7.4. More experimental results. Here we present additional experimental results for the case of $\gamma>1$.

Figure S1. Topological consistency comparison of different phylogenetic LASSO procedures on simulation 2. $\gamma=1.01$.

Figure S2. Topological consistency comparison of different phylogenetic LASSO procedures on simulation 2. $\gamma=1.1$.

Figure S3. Box plot showing performance of multistep adaptive phylogenetic LASSO and rjMCMC at detecting short branches. $\gamma=1.1$

