Supplementary Materials for “Functional Horseshoe
Priors for Subspace Shrinkage”

A A description of the B-spline Basis Functions

The B-splines basis functions can be constructed in a recursive manner. Let the positive
integer ¢ denote the degree of the B-spline basis functions satisfying k, > ¢ + 1. Define a
sequence of knots 0 =ty < t; < --- < t,_4 = 1. In addition, define ¢ knots t_, = --- =
t_1 =ty and another set of ¢ knots t;,_, = --- = t;,. As in De Boor (2001), the B-spline
basis functions are defined as

1, t; <@ <ty

pja(z) =

0, otherwise,

— ¢, fivoril —
() + g (7).
j Livgr1 — Lj41

Djq+1 ()
forj=—q,...,k, —q—1. Wereindex j = —¢q,... .k, —q—1toj=1,... k,.

We state a set of standard regularity conditions that have been used by others (Zhou
et al. (1998), Claeskens et al. (2009)) to prove minimax optimality of B-spline estimators.
We assume that:

(Al). Let u = max;<j<(r,-1)(tj41 — t;). There exists a constant C' > 0, such that
u < C'ming<j<(r,—1)(ti41 — t;) and uw = o(k, ).

(A2). There exists a distribution function G with a positive continuous density function
that satisfies sup,¢jo 1 |Gn(2) — G(2)| = o(k, "), where G, is the empirical distribution of

the covariates {x;}1<;<n, which are assumed to be fixed by design.

B Additional Simulation Studies for Univariate Ex-

amples

In this section, we provide details for the replicated studies for the varying coefficient

model (ii) and log-density model (iii) in (11) in the main article, that were skipped for
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space constraints in Section 4 of the main article.

For (ii), we generated the covariates independently from a uniform distribution between
—7 and 7 and set the error variance o2 = 1. For each case (ii) and (iii), we considered three
parametric choices for f. For case (ii), we considered constant, quadratic and sinusoidal
functions. For (iii), we considered normal, log-normal and mixture of normal distributions.
For the first two cases, we standardized the true function so as to obtain a signal-to-noise
ratio of 1.0. The term “Mixture” in Table 1 indicates a mixture of Gaussian densities,
0.3N(2,1) + 0.7N(—1,0.5).

For the varying coefficient model (11), we set ®y = {1} to shrink f towards constant
functions, whence the resulting model reduces to a linear regression model. Finally, we set
dy = {1,Y,Y?} to shrink f towards the space of quadratic functions in (12), which results
in the density p being shrunk towards the class of Gaussian distributions. We note that
the prior for p in (12) is data-dependent.

Tables 1 shows the MSE of the posterior mean estimator for the varying coefficient
model and the log-density model with sample sizes of n = 200 and 500. When the true
function f belongs to the nominal parametric class, the posterior mean function resulting
from the fHS prior outperforms the HS prior.

When the true function does not belong to the class of the parametric functions, the fHS
prior performs comparably to the partial oracle estimator. The penalized spline method
and the procedure based on the standard HS prior show smaller estimation error than the

fHS prior and the partial oracle estimator (the standard B-spline estimator).

C Additional Real Data Examples of Linear Subspace
Shrinkage for Additive Model

In this section, we examine the nonparametric additive model in low-dimensional settings
when the component functions have linear forms. We apply the fHS prior to two well-
known data sets: the first considers housing prices in Boston and the second concerns

the progression of diabetes. The Boston housing data set has been previously analyzed in
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various places, including Buja et al. (1989), Breiman (1995), Lin & Zhang (2006) and Xue
(2009). The data set is available in the R package MASS. The diabetes data set is famously
used as a motivating example of Least Angle Regression (LARS; Efron et al. 2004) and it
is contained in the R package lars.

The Boston housing data set contains the median value of 506 owner-occupied homes in
the Boston area, together with several variables that might be associated with the median
value. Using the standard notation for the variables in this data set, we assume a model

of the following form:

medv = [+ fi(crim)+ fo(indus) + f3(nox) + fi(rm) + f5(age) + fo(dis)
+f7(tax) + fs(ptratio) + fo(b) + fio(lstat) + e,

where € ~ N(0,021,,). We also modeled the diabetes data set using each of the procedures
that were applied to the housing data set. The diabetes data set consists of 19 variables
measured on 403 patients, but we only considered continuous covariates and ignored missing
samples by following the data pre-processing step suggested in Huang et al. (2012). The
resulting data set contained 9 continuous variables and 366 samples. The response variable
is Glycosolated hemoglobin (G.hem). The model applied to these data can be expressed

as follows:

G.hem = [+ fi(age) + fo(bmi) + f3(map) + fi(tc) + f5(1d1)
+fo(tch) 4 f-(1tg) + fs(glu) + fo(hdl) + .

To compare the procedure based on the fHS priors to existing shrinkage and penalized
likelihood methods, we considered the partially linear model that decomposes each compo-
nent function f; as a sum of linear and nonlinear parts as f;(X;) = X;f1; + ®;04;, where
B1; € R and By; € RF» for j=1,...,p.

Huang et al. (2012) proposed a partially linear model with a group sparse penalty on
Ba;’s. They considered the Minimax Concave Penalty (MCP; Zhang 2010) that can be
expressed as A\ fOHBZjH"’Q{l —x /(A1) }odx, where )g is the tuning parameter that controls
the concavity of the penalty and \; is the penalty parameter. We note that the group
LASSO (Yuan & Lin 2006) is a special case of this class of penalties when \g = co. The
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group LASSO was also included in our comparisons. For the real data analysis, we set
Ao = 1.1 (Huang et al. 2012) and choose A; by AIC and BIC. We used the HS prior in (16)
on the spline coefficient fa; for j = 1,...,p. For the fHS priors, we imposed the prior in
(14) for the additive model in (13). We defined @Q)y; as the projection matrix of {1, X;} for
7=1,...,p.

For both data sets, each component function was modeled by B-spline bases, and 50
test data points were randomly selected to estimate the out-of-sample prediction error.
For Bayesian methods, we generated 30, 000 posterior samples using the MCMC algorithm
described in Section E in the supplementary material. Only the last 20,000 samples were
used in the analysis. We used multiple hyperparameters for the fHS prior, setting b =
exp(—ky logn/10), exp(—k,logn/4), and exp(—k,logn/2), as in the previous simulation
studies. For the penalized likelihood methods, AIC and BIC were used to choose tuning
parameters. We also considered the least square estimator of the linear model and the
standard B-spline estimator. Two hundred independent simulations of each procedure
were used to generate Table 2 and Table 3. In these tables, “MSPE” refers to the average
of the out-of-sample prediction errors and “LS” indicates the average number of linear
components.

Table 2 summarizes the result for the Boston housing data set. For the considered
hyperparameters, the procedure based on the fHS prior shows comparable or better perfor-
mance than the other procedures. We note that the HS prior achieves a smaller prediction
error than the fHS prior when k, = 11. However, the variation of the prediction errors from
different choice of k,, is much larger than for the fHS procedure. Also, the use of the HS
prior does not provide model selection procedure, while the fHS prior contains a natural
measure of model selection, as discussed in Section 3.2.

For the diabetes data, Table 3 shows that for all considered hyperparameters, the pro-
cedure based on the fHS prior attained smallest prediction errors. In this specific example,
we note that AIC and BIC penalties were too strong, which led to all penalized likelihood

procedures selecting only linear component functions.



K = 5 Ky = 8 ko = 11 K = 35

MSPE LS MSPE LS MSPE LS MSPE LS
Linear 24.995(1.00)

B-spline 14.250(0.70) 24.185(1.20) 177.673(22.93) 632.141(171.25)

HS 16.166(0.81) 13.999(0.59) 13.956(0.56) 13.780(2.32)
fHS1 13.934(0.62) 1.57 | 13.940(0.73) 2.85 | 14.425(0.98) 2.34 | 13.609(0.73) 4.74
fHS2 13.808(0.62) 1.67 | 13.980(0.72) 2.83 | 14.101(0.78) 2.13 |  14.804(1.01) 4.92
FHS3 13.832(0.59) 1.72 | 14.229(0.95) 2.91 | 13.989(0.76) 2.13 |  13.780(0.76) 4.90
GMCP (AIC) | 14.000(0.58) 4.23 | 16.523(2.00) 3.12 | 15.674(1.27) 2.07 | 94.407(23.35) 2.50
GMCP (BIC) | 15.288(0.685) 5.88 | 17.497(1.37) 6.81| 19.536(1.79) 8.10 |  24.069(1.00) 10.00
GL (AIC) | 14.287(0.65) 3.81 | 14.403(0.70) 3.94 | 14.523(0.69) 3.25 |  16.714(0.92) 5.40
GL (BIC) | 15.220(0.75) 6.09 | 16.515(0.81) 6.15| 17.130(0.81) 6.81 |  24.069(1.00) 10.00

Table 2: Boston data set. fHS1, fHS2, and fHS3 are the procedures based on the fHS prior
with b = exp(—k, logn/10), exp(—kylogn/4), and exp(—k, logn/2), respectively. GMCP
and GL are the penalized likelihood procedure based on the group MCP penalty and the
group LASSO penalty, respectively. The smallest MSPE is noted in bold for each k,.

D Proofs of Theorems

We first provide some lemmas that will be used to prove the main results.

Lemma D.1. For arbitrary positive sequences u,, and w,,

Un+Wn 2
Uy, u
1 > iy ——m L 1
( un+wn) _eXP{ ¢ +2(un+wn)} W
Proof. By Talyor’s theorem, there exists g% € (0, u,/(u, + w,)) such that
Up+Wn
u u
1- ——— = Ctw)log (1 - —2—
( un+wn) exp{(u —i—w)og( un+wn)}
(ot o (- )
= exp? (u, +wy) | —
P Up +wn, (1= @)% 2(up + wy,)?
> ui
Z exXpq —Up + m .
L]



kn=25 kn,=38 k, =11 kn, =35
MSPE LS MSPE LS MSPE LS MSPE LS
Linear 3147.478(54.9)
B-spline 3445.47(66.9) 3750.42(91.6) 5432.97(758.3) 21777.20(1176.8)
HS 3154.97(55.7) 3132.83(56.3) 3154.06(56.3) 4399.06(161.1)
fHS1 3149.68(56.5) 5.37 | 3125.68(55.6) 7.11 | 3054.99(54.1) 7.17 | 4418.07(207.2) 8.98
fHS2 3145.99(56.3) 5.64 | 3119.21(55.9) 7.09 | 3065.60(54.9) 7.18 | 4388.90(161.5) 8.98
fHS3 3146.30(56.3) 5.57 | 3120.05(55.4) 7.08 | 3070.96(57.7) 7.17 4399.06(161.5) 8.98
GMCP (AIC) | 3147.48(54.9) 9.00 | 3147.48(54.9) 9.00 | 3147.48(549) 9.00 | 3147.48(54.9) 9.00
GMCP (BIC) | 3147.48(54.9) 9.00 | 3147.48(54.9) 9.00 | 3147.48(54.9) 9.00 3147.48(54.9) 9.00
GL (AIC) 3147.48(54.9) 9.00 | 3147.48(54.9) 9.00 | 3147.48(54.9) 9.00 3147.48(54.9) 9.00
GL (BIC) 3147.48(54.9) 9.00 | 3147.48(54.9) 9.00 | 3147.48(54.9) 9.00 3147.48(54.9) 9.00

Table 3: Diabetes data set. The description of this table is the same as Table 3.

Lemma D.2. Suppose W follows a non-central chi-square distribution with m,, degrees of

freedom and non-centrality parameter X\, > 0, i.e, W ~ x2, (\,). Also, let w, — 0 and

t, — 00 as n — oo and assume that m, < t,. Then,
P(W S Anwn> S cl)\qZI eXp{_)‘TL(]- - wn)2/8}7 (2>
and
t Mn /2 t2
PW >\, +t,) <co <2nzn> exp {m,/2 —t,/2} + 03)\}/215;1 exp {—327;”} . (3)

where ¢1, co, and c3 are some positive constants.

Proof. W can be expressed as W = S {Z; + (An/mn)/2}2, where Z; ‘%' N(0,1) for

i =1,...,m. Then, by the fact that P(Z > a) < (2m)~2a~ ' exp{—a?/2} for any a > 0,



we can show that there exist some positive constants ¢; such that

mMn

P(W < M\aw,) = P{ZZ2+2>\/mn I/ZZZ + A < A, )

IN

P{m,** Z Zy < =M1 —w,)/2}
=1

= P{Zi| > N1 —w,)/2}/2
< A eXp{ An(1 wn) /8%,

since Z; follows a standard normal distribution.
By using Chernoffs’s bound and the fact that P(Z > a) < (27) "2~ exp{—a?/2} for

any a > 0, one can show that

P(W >\, +1,) {Zz%mmn VQZZ >t}
< P (Z 7 > tn/2> + P {mnl/QZZi > /\n1/2tn/4}

i=1 i=1

My /2 2
t, t
< o <2m > exp {mn/2 — t,/2} + csA2t 1 exp{—SQT/‘\ },

where ¢y and c3 are some positive constants. O

Lemma D.3.
n)|Qu®8 — QoY ||} /0% | Viw ~ X3
and
nl|Q®8 — (1 =) Y[} /{1 = w)o®} | Viw ~ xF, gy
Proof. Recall that
B1Y,w~N(B,, ),

where

—1 -1
Bw = (CI)TQ) + %@T(I - Q(])(I)) CI)TY7 Y, = 02 (CDTCI) + %@T(I - QO)(I)> :
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As shown in the proof of Lemma 3.1, ® (®7® + - &™(I — Qo)@)_l O = (1-w)Qs+wQy,

SO

E QoS | Y,w] = QY
Var [Qu®f | Y, w] = 02Qo,

which shows that n||Qo®S3 — Q0Y||i2/02 | Y, w~ X5,
Similarly,

E[Q128|Y,w] = (1 -w)@Q1Y
Var [Q1 93 | YV, w] = 0(1 — w)Q1,

which proves that n||Q;®8 — (1 — w)QlY”fﬂ/{(l —w)o’} | Y,w e~ xi g

O

Proof of Lemma 3.1. As discussed in the paragraphs following Lemma 3.1 when £(®,) C

0
£(P), we can generate a new basis d = [@g, P1] such that ®jP; = 0 and £(P) = £(P),
which implies Q3 = Qo. Then,

-1
i) (@% + %@T(I — Qo)<b> PT

-1

_ 3 (213215 = QO@) 3

(@7 D)~ 0 ] [@3]
0 (1-w)(®)"| |}

= (1-w)Qz +who

= (1-w)Qo + wQo.

= [®g, P4

[l
Proof of Lemma 3.2. From Polson & Scott (2012) it follows that
! ['(A,)(B,) = (A) H,™
Apn—1 1— Bp—1 _Hn dw = n n _Hn n)(m) n
/0 w1 — w) P exp{—H,w}dw T4 By exp{ }mZ:O (A, + Bo)om ml
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where (@) () = a(a+1) ... (a+m—1). We shall show that )~ {%Hnﬁf } > 14+QE.

By using Lemma D.1 and Stirling’s approximation, i.e., m! < m™ /2 exp{—m}, it follows
that

5 (i)
— (An + Bn)(m) m!
B, = (B4 Vmy  H,™ }
= 14+—<qH,
+An+Bn{ +Z[(An+Bn+1)(m)(m+1)!
0 | m+1
- B, H o+ (B, +m)! H,
A, + B, ‘ [(Ap + B+ m)! (m +1)!

B, +m An+Br+m+1/2
A,+ B,+m

v

(Bn +m) ~An

Y
—_
+

m=1

[V
—_
+
I
3
S8
3
&
——
=
+
-
1=
VR
N
AL
&) +
+r—t
—
N——
©
3
+
S
>

Bn+m Apn+Bn+m A Hnm+1
X\ —————— e —0

B 1/2
1+—" (H, +D—2—— B, +T,) A
e A L Gy ea) MCASE

A2 Tn+1 H m
n n 4
XeXp{Q(AnJFBnJrTn)}Z:2 ml [ )

m=

v

where T}, = max{A2% 3 [H,|]}, and D is some positive constant.
Since H, < (T,+2) exp{1}, by using the Stirling’s approximation, the term """ ' [, /m!

m=2
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in (4) can be expressed as follows:

Thn+1 o)
Hy Hy
ZW = exp{H,} —1—-H, - Z m
m=2 m=Tp+2
= YH,N\™
< Hy)Y —1— Hy, — (T, +2)~ /2 exp{l}Hy
< exp{H,} g2 S (22U

m=Typ+2

< exp{H,} —1—H, — (T, +2)"/?

Therefore, (4) can be bounded by

B, B,+1 \* )
1 Hn D — Bn Tn o
+An+Bn{ - (An+Bn+1) (Bu+ 1)

x (exp{H,} =1 - H, — (T, +2)7"?), }

> 14 B, H, n DB,
- A, + B, (A, + B,)3?

(Bn+ 1)~ (exp{Hy} —1— H, — (T, +2)"'%)
where (-); denotes the positive hinge function (i.e., for any t € R, (¢); = ¢, if ¢ > 0, and
(t)+ = 0, otherwise).

Also, since (B, +m)!/(A,, + B, +m)! < 1 for any positive integer m, it follows that

= (B, +m)  H,"™
H, < H,¥,
+mZ:1[(An—|—Bn+m)!(m+l)! < expifln}

which completes the proof. O]

Proof of Theorem 3.3. Let §* denote the projection of the true Fy on the basis

{0} 1<i<kn» 1€,
B = argmin g g, HFO — (I)BHZW (5)

We shall treat 5* as the pseudo-true parameter and study the posterior concentration of
®f in the posterior around ®5*.

11



To prove Theorem 3.3, it is sufficient to show that the posterior probability in the
equation Eg [P{H(IJB — FOHM > M, (fo)'/? | Y}] converges in probability to zero. The
posterior probability in the expectation can be decomposed as follows:

P||o8 - ||, > My?| Y]

Hn,?

o> M2 Y] 41 ||0g - Ry|,, > MY2/2],

< Pl|os-op

where * is defined in (5) and 1(+) is the indicator function. The second term on the right-
hand side of this expression is always zero when Fy € £(®y), since we assume that the
column space of @ is contained in the column space of ®, and its expectation with respect
to the true density is asymptotically zero when Fj' (I — Qo) Fo =< n from (9). Therefore, we
focus on the first term on the right-hand side. Since &5 = Q198 + QoPS, by Lemma 3.1.

the first term can be decomposed as

n,

P||og - a8,
E.y :P (chﬁ — @], , > MY2/4] Y, wﬂ
+Euy :P (H@Bw _3p
By [P (@8 — (1 - 0)QuY],, > MY?/8 | V.0)]
By [P (@05 — (1= @)@1Y, , > MY?/8 | Y,w))]
By [P (|Qo®8 — QoY , > MY?/8| V)]

w1 [lQues - Qur ], > 2]

, > MY?/2 | Y} = By [P <Hc1>ﬁ — ||, > MY2)2 | y}wﬂ

IN

1/2
> MY2/AY, w)}

IN

where ®3, = (1 — w)QaY 4+ wQoY = (1 — w)QY + QpY.
We denote

W, — P<HQ1<I>B—(l—w)QlYHn72>Mi/2/8|Y,w>,
W, — P(HQlcbﬂ*—(l—w)QlYHw > MY2/8 | Y,w),

Wy = P(HQOM—QOYuM>M5/2/8|Y,w>.

12



The indicator function in the fourth term converges to zero in probability, since HQOY —

Qo®pB"

expectations of Wy, Wy, and W5 with respect to the marginal posterior distribution of w

;n achieves the parametric optimal rate. To complete the proof we show that the

converge to zero in probability.
First consider W3. Since n”QOCI)B — QOYHin/J2 | Y,w ~ x3, by Lemma D.3, by using
Lemma D.2 it follows that

Euy W3] = Euy [P{[lQu®8 - QuYl,,, > MY2/8 |V} ]

nM, \ %/?
< n —nM, /(128>
< C (640d0) exp{—nM, /(128¢°)},

for some constant C'.

The last quantity converges to zero as n tends to oo, which implies that E,y [W3] =
0p(1). Now we obtain the bounds on W;. By Lemma D.3 nHQﬁDB -1 —w)QlYH;,n/{(l —
w)o®} | Y ~ X3, _q,- By using Lemma D.2, it follows that

kn — do nMn _1
_ 1 —
P { 2 128021 %) }

kn—dg
2

e S

nM,, 1
! [6402(1 mw)T >k _do} o [

Wi

nM,,
6402

(1-w)t< kn—do] .

We denote the two terms in this expression as Wi ; and W o.
By using Lemma 3.2 and defining & = (k,, — do)/{nM,/(640?) + k, — do}, it follows

13



that

IE’w|Y [Wl,l]
kn—dg 1
B B
m(Y) | 6402(k, — dy) -
M,
X exp {— 17;802 (1—w)™— Hnw} dw

i [aent) )

_kn—dg N Fkn—dg TLMn ~\—1
x 1- - 1-—
01— 0 e { IR (1 -0

IN

1
/ w1 = w) exp {—How} dw

mn

Mn

where m,, = max|0, 1 — nM,,/{1602(k,, — do)}].
Also,

EUJ|Y[W1:2] = Pw|y |:CL) <1-—
nMnp

1 /1640%”0) (ko —do) /2 _
= —— Wt =do) /2211 _ )oY exp{ — H,w}dw
m(Y) Jo

nM,,
6402 (kn - do)

1 nM. b=l 1 (kn—do)/
< n a+(kn—do)/2—1 —H d
= () (6402(kn — do)) /0 w exp{—Hyw}dw
b—1
< nM, [(a+b+ (k, —dy)/2) o (1— nM, >0
6402(ky, — do) ) T(a+ (kn — do)/2)T(D) 6402 (ky, — do)

bH, b(b+ T,,)~a (kn=do)/2

1+ +
a+b+ (k, —doy)/2 (a+b+ (k, —doy)/2)3/?

x exp{H,}

x (exp{H,} —1—H, — (T, + 2)1/2)+] )

where T, = max{(a + (k, — dy)/2)?,3[H, |} and D is some constant.

14



We now consider two cases: (i) when Fy € £(®¢) and (ii) when Fj' (I — Qg)Fy =< n.

Case (i) Fy € £(®g): Recall that in this case M, = (,n~! for any arbitrary diverging
sequence (,. First, we show that E,y [W] % 0 by proving that Eupy [Wial 2 0 and
Eoy [Wia] 2 0.

Applying Lemma 3.2, it follows that (6) is bounded above by

Cexp {—nM,/(12802)} (1 + L= exp{H,})

Ew e < a+b
W] < 1+ 6, + un 25 (exp{H,} — 1 — H, — (T,, +2)~1/?),
nM,, b
< - 1 H
< Cexp { 12802} ( + P exp{ n}) ; (8)

where 6, = bH,, /(a4 b+ (k, — dy)/2) and u,, = (a +b)(b+ T,,) "%~ Fn=d0)/2 /(¢ + b+ (k,, —
do)/2)3/* with T,, = max{(a + (k, — do)/2)?,3[H,]}, and C and D are some constants.

Since 2H, ~ xj _4,» by Lemma D.2 and defining ¢, = ken 2 (log k) V/2(— log b)1/2, it
follows that

P [Hn > kngn/Q] < eXp{_Cann}a (9)

for some constant c¢. Hence, by the condition that k,logk, < —logb, it is clear that
bexp{H,} = 0,(1), which shows that E,,y[W11] = o,(1).
Similarly, since I'(b)~! =< b, (7) is bounded by

, nM,, b1
C'bexp{H,} (—6402(kn — do)) ,

for some constant C’. By (9), bexp{H,} = 0,(1), which implies E.y[W1 2] = 0,(1).
We next show that £,y [Ws] converges in probability to zero. Applying Lemma 3.2, it
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follows that

Eoy [Wa] = By |P[[[(1 - )@Y - Quos"

nM 1/2
1 _ n
“= (6402Hn>

nMn

1/2
1 1_( 02 n)
- _mm/o ST e (] ) exp(— Hyw

M 1/2 1 VARG
191 = = > =
<12802Hn> =0 m(Y) <640'2Hn)

1
X / Wtk =do)/2=L ey p f— H, w}dw
0
(e NP L Dt b (e —do)/2) (M, \OTP
12802H, ) = [ T(0)T(a+ (k, — do)/2) \12802H,

Db -1
x exp{H,} {1 + 6, + n—— (exp{H,} —1— H, — (T, + 2)1/2)+}

1/2
o> MY2/81Y,u]|

= Pw\Y

IN

IN

M, 2
< Cb(g&ﬂ) H2 exp{H,},

where C' is some constant, and d,, and u, are defined following (8).

From (9), it follows that b{nM, /(12852)}¢=V/2H}/? exp{H,} is bounded by
b{nM, /(12802)}b=V/2(k,q,/2)"/? exp{k,q,/2} with probability greater than 1—exp{—ck,q, }
from which it follows that E,y [Wa2] = o,(1).

Case (ii) Fj(I—Qo)Fo < n:
Recall that in this case M, = (,n2*/1+2%) Jogn for any arbitrary diverging sequence
Cn, and 9, and w,, are defined following (8). From (6) it follows that

1 n, g b—1
Eypy [Wha] < m(Y) “XP\ 12852 . w (1 —w)" exp {—Hyw} dw
M, 1+ 2 exp{H,
< Cexp {— n } - atb p{H,} 7
12802 J 1+ bn + uny (exp{Hn} — 1 = Hy = (T, +2)71/7),
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for some constant C'.

By Lemma D.2, for any sequence w, — 0, H, is larger than w,FyQFy/0? with
probability greater than 1 — exp{—cFyQ1Fy(1 — w,)?/0?} for some constant c. Since
Fy(I—Qo)Fy < n implies FfQ1Fy < n, the last line in the above display can be expressed

as

nM,,
12802

C’" exp {— (k,, — d0)3/2(b + Tn)(k"_dO)/Q} + 0,(1),

where T, = max{(a + (k, — dy)/2)?,3H,,} and C’ is some positive constant. Therefore, to
show E,jy[Wi1] = 0, it is sufficient to prove that k= o)/2 exp{—nM,/(1280%)} = 0,(1).
For any € > 0,

M,
P T(kn—do)/Q _Tl n
[ " P 12802 -

p [(3Hn)(knd0)/2 exp {_ nM,

128;2} > e} + P [3H, < (a+ (k, — do)/2)*]
< PllogH, > (,logn] + P [3H, < (a+ (k, — do)/2)?] .

IN

Since ¢, — oo as n tends to oo, from (3) in Lemma D.2, it follows that the first term in
the above display can be bounded above by exp{—c/(n$, — FfQ,Fy/0?)} for some constant
. Similarly, from (2) in Lemma D.2, the second term is bounded by exp{—c"FyQ,Fy/0?}
with some constant ¢”, which proves that E,,y [ 1] 20.

Since nM,, = k,, the indicator function 1(1 — nM,, /(6402 (k, — dy)) > 0) in (7) is zero
when n is large enough, which results in E,y [ 2] 50.

The marginal posterior mean of W5 can be decomposed as

1
Ew|y[W2] S Pw‘y |:H(1 — W)Qly — QlYHn,Q > 1_6M7’1L/2:|
1
+1 [HQlY - Quop[,,, > 1—6M;/2] :

Results provided by Zhou et al. (1998) (see equation (9) on page 10) show that the
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second term in the previous expression is 0,(1). The first term can be expressed as

N WM, 1/2
“ =\ 256020,
1 / '

o m(Y) ( nMp

1/2
25602Hn)
1 1
m(Y) eXp {—Hrll/Z (nMn/<2560_2))1/2} /(; wa+(k5n*do)/27l(1 _ w)bfldw

< [“"exp{—Hn} o (exp{Hn}—1—Hn—<Tn+2)_1/2)+}

Pw\Y

wa—l—(kn—do)/?—l(l — w)b_l exp{—H,w}dw

IN

a+b
xexp { ~HL? (M, /(2560%)) "}

for some positive constant D. Since H,/n = O,(1) and —logb < n'/2ky/?, the above quan-

tity converges in probability to zero, which completes the proof. O

Proof of Theorem 3.4. We shall prove the result by separating two cases that are
Fy € £(Pg) and F (I — Q) Fp < 0.

Case (i) Fy € (Pg): We use the formulation in (7). By plugging M,, = 646%(k,, —do)So.n/n
in (7), it follows that

P(w<1—580,|Y)<Chexp{H,} (b"/k,)" ",

for some constant C' > 0. Since k, b exp{H,} = 0,(1) by (9), P(w <1—==Sp, |Y) = 0,(1).
Case (ii) Fj (I — Qo)Fy < 0: By following the formulation in (8), it follows that
1 1
Plw>5,1Y)= —/ Wt kn—do)/2=1¢1 _ , bexp —H,wldw
( 1, ’ ) m(Y) s ( ) { }

Db _ -
P (exp{H,} —1—H, — (T, +2) 1/2)+ exp{—H,S1,}

< Cb_l exp{_HnSI,n}a

1,n

S Unp, eXP{_Hn}

for some constant C' > 0. Since H,,/n = Dy+0,(1) for some constant Dy > 0, b~ exp{—H,S1,} =
0p(1), which completes the proof. O
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E Computation Strategy: Slice Sampling

In model (1), the conditional posterior distribution of 7 based on the fHS prior can be

expressed as
(7| Y, B) oc (72)7Unm 0BT (] 4 72) 707 oxp{ =TT (1 — Qo) @/ (207)}.

By reparameterizing n = 1/72, the resulting conditional posterior distribution of 7 can be

expressed as

1

7_((77 | Yv’ ﬁ) o na+(kn—d0)/2_1 eXp{—ﬂT(I)T(I — QO)(I)ﬂ/(QO'Q)}(l_i_—W

As in Polson et al. (2014), a slice sampling method (Neal 2003) can be used to sample
71 from its conditional posterior distribution. The resulting MCMC algorithm is described
in Algorithm 1.

Algorithm 1 MCMC algorithm for simple nonparametric regression models

Choose an initial value () and 7,
Forlin0:(L—1)
Sample B¢+ from N(Ewm,a?iw(l)), where Ew and 3, are defined in (7).
(Slice sampling step) Set n = 1/72® and ¢t = (n + 1),
Sample u ~ Unif(0,t) and set t* = (@)™ — 1,
Sample n* ~ truncated Gamma(a + (k, — do)/2, BFVTOT(1 — Qo) @Y /(202)) on (0,t%),
Update 701 by n*=1/2,
End.

In the additive model in (13) with a product of the fHS priors, the conditional posterior
distribution of 3; given w; and the other coefficients 3_;), for j = 1,..., p, can be expressed

as
Bj | wi, By, Y ~N (ij UQijw) :
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where

a - T - T -1
Biw=Sw®lr;, Y= (1—w)(®]D;), r=Y— Z@lﬁl. (10)

1%

It follows that sampling Algorithm 1 can be extended to additive regression models to
obtain Algorithm 2 below.

Algorithm 2 MCMC algorithm for additive regression models

Choose an initial value 6](0) and T;O) forj=1,---,p.
Forlin0:(L—1)
For jinl:p
Sample ﬁ](‘lﬂ) from N(gj,wﬂh U2ij’w(l)); where B},w and ij,w are defined in (10).
End.
For jinl:p
(Slice sampling step)
Set n = 1/7}2(1) and t = (n+1)727°.
Sample u ~ Unif(0,t) and set t* = u- et 1
Sample n* ~ truncated Gamma(a + ky,/2, ﬁj(-l+1)T<I>]T-<I>jBJ(-l+1)/(202)) on (0,t%),
Update T]-(l+1) by n*1/2.
End.
End.

The computational complexity of Algorithm 2 for each iteration is O(pk?) + O(npk,,).
The term O(pk?) arises from updating the p blocks of 3, each of length k,. The joint
update of 8 without separating into blocks is also available, but it requires the inversion
of a pk, x pk, matrix. Even though this joint update may improve the convergence of
the MCMC chain, its computational burden for each iteration will significantly increase to
O(p*k3). While Bhattacharya et al. (2016) proposed a procedure reducing this complexity

to O(n*pk,) by avoiding the matrix inversion step, we stick to the block-wise update pro-
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Figure 1: Trace plots. The first and the second row are cases when k, = 11 and k,, = 35,
respectively. Scenario 1, 2, and 3 are illustrated in the left, middle, and right column,

respectively.

cedure in Algorithm 2, and its empirical performance was promising in various simulation

and real data analysis.

F Trace Plots for Simulation Scenarios

In this section, we examine some trace plots of simulated data sets considered in Section 4
in the main article.

We examine the mixing behavior of the fHS procedure in the additive model context.
We selected six component functions, three of which were null while the other three non-

null. Each sub-plot of Figure 1 shows the trace plots of the empirical Ly norms of these
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six functions, with the different functions color-coded. The different columns correspond
to the three simulation scenarios, while the top and bottom rows correspond to k, = 11
and 35 respectively. The mixing in all the cases seems reasonable from examination of the

trace plots, and no obvious difference is potted between k,, = 11 and k,, = 35.
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