
Supplementary Materials for “Functional Horseshoe
Priors for Subspace Shrinkage”

A A description of the B-spline Basis Functions

The B-splines basis functions can be constructed in a recursive manner. Let the positive

integer q denote the degree of the B-spline basis functions satisfying kn > q + 1. Define a

sequence of knots 0 = t0 < t1 < · · · < tkn−q = 1. In addition, define q knots t−q = · · · =

t−1 = t0 and another set of q knots tkn−q = · · · = tkn . As in De Boor (2001), the B-spline

basis functions are defined as

φj,1(x) =

1, tj ≤ x < tj+1,

0, otherwise,

φj,q+1(x) =
x− tj
tj+q − tj

φj,q(x) +
tj+q+1 − x
tj+q+1 − tj+1

φj+1,q(x),

for j = −q, . . . , kn − q − 1. We reindex j = −q, . . . , kn − q − 1 to j = 1, . . . , kn.

We state a set of standard regularity conditions that have been used by others (Zhou

et al. (1998), Claeskens et al. (2009)) to prove minimax optimality of B-spline estimators.

We assume that:

(A1). Let u = max1≤j≤(kn−1)(tj+1 − tj). There exists a constant C > 0, such that

u ≤ C min1≤j≤(kn−1)(tj+1 − tj) and u = o(k−1
n ).

(A2). There exists a distribution function G with a positive continuous density function

that satisfies supx∈[0,1] |Gn(x) − G(x)| = o(k−1
n ), where Gn is the empirical distribution of

the covariates {xi}1≤i≤n, which are assumed to be fixed by design.

B Additional Simulation Studies for Univariate Ex-

amples

In this section, we provide details for the replicated studies for the varying coefficient

model (ii) and log-density model (iii) in (11) in the main article, that were skipped for
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space constraints in Section 4 of the main article.

For (ii), we generated the covariates independently from a uniform distribution between

−π and π and set the error variance σ2 = 1. For each case (ii) and (iii), we considered three

parametric choices for f . For case (ii), we considered constant, quadratic and sinusoidal

functions. For (iii), we considered normal, log-normal and mixture of normal distributions.

For the first two cases, we standardized the true function so as to obtain a signal-to-noise

ratio of 1.0. The term “Mixture” in Table 1 indicates a mixture of Gaussian densities,

0.3N(2, 1) + 0.7N(−1, 0.5).

For the varying coefficient model (11), we set Φ0 = {1} to shrink f towards constant

functions, whence the resulting model reduces to a linear regression model. Finally, we set

Φ0 = {1, Y, Y 2} to shrink f towards the space of quadratic functions in (12), which results

in the density p being shrunk towards the class of Gaussian distributions. We note that

the prior for p in (12) is data-dependent.

Tables 1 shows the MSE of the posterior mean estimator for the varying coefficient

model and the log-density model with sample sizes of n = 200 and 500. When the true

function f belongs to the nominal parametric class, the posterior mean function resulting

from the fHS prior outperforms the HS prior.

When the true function does not belong to the class of the parametric functions, the fHS

prior performs comparably to the partial oracle estimator. The penalized spline method

and the procedure based on the standard HS prior show smaller estimation error than the

fHS prior and the partial oracle estimator (the standard B-spline estimator).

C Additional Real Data Examples of Linear Subspace

Shrinkage for Additive Model

In this section, we examine the nonparametric additive model in low-dimensional settings

when the component functions have linear forms. We apply the fHS prior to two well-

known data sets: the first considers housing prices in Boston and the second concerns

the progression of diabetes. The Boston housing data set has been previously analyzed in
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various places, including Buja et al. (1989), Breiman (1995), Lin & Zhang (2006) and Xue

(2009). The data set is available in the R package MASS. The diabetes data set is famously

used as a motivating example of Least Angle Regression (LARS; Efron et al. 2004) and it

is contained in the R package lars.

The Boston housing data set contains the median value of 506 owner-occupied homes in

the Boston area, together with several variables that might be associated with the median

value. Using the standard notation for the variables in this data set, we assume a model

of the following form:

medv = β0 + f1(crim) + f2(indus) + f3(nox) + f4(rm) + f5(age) + f6(dis)

+f7(tax) + f8(ptratio) + f9(b) + f10(lstat) + ε,

where ε ∼ N(0, σ2In). We also modeled the diabetes data set using each of the procedures

that were applied to the housing data set. The diabetes data set consists of 19 variables

measured on 403 patients, but we only considered continuous covariates and ignored missing

samples by following the data pre-processing step suggested in Huang et al. (2012). The

resulting data set contained 9 continuous variables and 366 samples. The response variable

is Glycosolated hemoglobin (G.hem). The model applied to these data can be expressed

as follows:

G.hem = β0 + f1(age) + f2(bmi) + f3(map) + f4(tc) + f5(ldl)

+f6(tch) + f7(ltg) + f8(glu) + f9(hdl) + ε.

To compare the procedure based on the fHS priors to existing shrinkage and penalized

likelihood methods, we considered the partially linear model that decomposes each compo-

nent function fj as a sum of linear and nonlinear parts as fj(Xj) = Xjβ1j + Φjβ2j, where

β1j ∈ R and β2j ∈ Rkn for j = 1, . . . , p.

Huang et al. (2012) proposed a partially linear model with a group sparse penalty on

β2j’s. They considered the Minimax Concave Penalty (MCP; Zhang 2010) that can be

expressed as λ1

∫ ‖β2j‖n,2
0

{1− x/(λ0λ1)}+dx, where λ0 is the tuning parameter that controls

the concavity of the penalty and λ1 is the penalty parameter. We note that the group

LASSO (Yuan & Lin 2006) is a special case of this class of penalties when λ0 = ∞. The

4



group LASSO was also included in our comparisons. For the real data analysis, we set

λ0 = 1.1 (Huang et al. 2012) and choose λ1 by AIC and BIC. We used the HS prior in (16)

on the spline coefficient β2j for j = 1, . . . , p. For the fHS priors, we imposed the prior in

(14) for the additive model in (13). We defined Q0j as the projection matrix of {1, Xj} for

j = 1, . . . , p.

For both data sets, each component function was modeled by B-spline bases, and 50

test data points were randomly selected to estimate the out-of-sample prediction error.

For Bayesian methods, we generated 30, 000 posterior samples using the MCMC algorithm

described in Section E in the supplementary material. Only the last 20, 000 samples were

used in the analysis. We used multiple hyperparameters for the fHS prior, setting b =

exp(−kn log n/10), exp(−kn log n/4), and exp(−kn log n/2), as in the previous simulation

studies. For the penalized likelihood methods, AIC and BIC were used to choose tuning

parameters. We also considered the least square estimator of the linear model and the

standard B-spline estimator. Two hundred independent simulations of each procedure

were used to generate Table 2 and Table 3. In these tables, “MSPE” refers to the average

of the out-of-sample prediction errors and “LS” indicates the average number of linear

components.

Table 2 summarizes the result for the Boston housing data set. For the considered

hyperparameters, the procedure based on the fHS prior shows comparable or better perfor-

mance than the other procedures. We note that the HS prior achieves a smaller prediction

error than the fHS prior when kn = 11. However, the variation of the prediction errors from

different choice of kn is much larger than for the fHS procedure. Also, the use of the HS

prior does not provide model selection procedure, while the fHS prior contains a natural

measure of model selection, as discussed in Section 3.2.

For the diabetes data, Table 3 shows that for all considered hyperparameters, the pro-

cedure based on the fHS prior attained smallest prediction errors. In this specific example,

we note that AIC and BIC penalties were too strong, which led to all penalized likelihood

procedures selecting only linear component functions.

5



kn = 5 kn = 8 kn = 11 kn = 35

MSPE LS MSPE LS MSPE LS MSPE LS

Linear 24.995(1.00)

B-spline 14.250(0.70) 24.185(1.20) 177.673(22.93) 632.141(171.25)

HS 16.166(0.81) 13.999(0.59) 13.956(0.56) 13.780(2.32)

fHS1 13.934(0.62) 1.57 13.940(0.73) 2.85 14.425(0.98) 2.34 13.609(0.73) 4.74

fHS2 13.898(0.62) 1.67 13.980(0.72) 2.83 14.101(0.78) 2.13 14.804(1.01) 4.92

fHS3 13.832(0.59) 1.72 14.229(0.95) 2.91 13.989(0.76) 2.13 13.780(0.76) 4.90

GMCP (AIC) 14.000(0.58) 4.23 16.523(2.00) 3.12 15.674(1.27) 2.07 94.407(23.35) 2.50

GMCP (BIC) 15.288(0.685) 5.88 17.497(1.37) 6.81 19.536(1.79) 8.10 24.069(1.00) 10.00

GL (AIC) 14.287(0.65) 3.81 14.403(0.70) 3.94 14.523(0.69) 3.25 16.714(0.92) 5.40

GL (BIC) 15.220(0.75) 6.09 16.515(0.81) 6.15 17.130(0.81) 6.81 24.069(1.00) 10.00

Table 2: Boston data set. fHS1, fHS2, and fHS3 are the procedures based on the fHS prior

with b = exp(−kn log n/10), exp(−kn log n/4), and exp(−kn log n/2), respectively. GMCP

and GL are the penalized likelihood procedure based on the group MCP penalty and the

group LASSO penalty, respectively. The smallest MSPE is noted in bold for each kn.

D Proofs of Theorems

We first provide some lemmas that will be used to prove the main results.

Lemma D.1. For arbitrary positive sequences un and wn,(
1− un

un + wn

)un+wn

≥ exp

{
−un +

u2
n

2(un + wn)

}
. (1)

Proof. By Talyor’s theorem, there exists q∗n ∈ (0, un/(un + wn)) such that(
1− un

un + wn

)un+wn

= exp

{
(un + wn) log

(
1− un

un + wn

)}
= exp

{
(un + wn)

(
− un
un + wn

+
1

(1− q∗n)2

u2
n

2(un + wn)2

)}
≥ exp

{
−un +

u2
n

2(un + wn)

}
.
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kn = 5 kn = 8 kn = 11 kn = 35

MSPE LS MSPE LS MSPE LS MSPE LS

Linear 3147.478(54.9)

B-spline 3445.47(66.9) 3750.42(91.6) 5432.97(758.3) 21777.20(1176.8)

HS 3154.97(55.7) 3132.83(56.3) 3154.06(56.3) 4399.06(161.1)

fHS1 3149.68(56.5) 5.37 3125.68(55.6) 7.11 3054.99(54.1) 7.17 4418.07(207.2) 8.98

fHS2 3145.99(56.3) 5.64 3119.21(55.9) 7.09 3065.60(54.9) 7.18 4388.90(161.5) 8.98

fHS3 3146.30(56.3) 5.57 3120.05(55.4) 7.08 3070.96(57.7) 7.17 4399.06(161.5) 8.98

GMCP (AIC) 3147.48(54.9) 9.00 3147.48(54.9) 9.00 3147.48(54.9) 9.00 3147.48(54.9) 9.00

GMCP (BIC) 3147.48(54.9) 9.00 3147.48(54.9) 9.00 3147.48(54.9) 9.00 3147.48(54.9) 9.00

GL (AIC) 3147.48(54.9) 9.00 3147.48(54.9) 9.00 3147.48(54.9) 9.00 3147.48(54.9) 9.00

GL (BIC) 3147.48(54.9) 9.00 3147.48(54.9) 9.00 3147.48(54.9) 9.00 3147.48(54.9) 9.00

Table 3: Diabetes data set. The description of this table is the same as Table 3.

Lemma D.2. Suppose W follows a non-central chi-square distribution with mn degrees of

freedom and non-centrality parameter λn ≥ 0, i.e, W ∼ χ2
mn(λn). Also, let wn → 0 and

tn →∞ as n→∞ and assume that mn ≺ tn. Then,

P (W ≤ λnwn) ≤ c1λ
−1
n exp{−λn(1− wn)2/8}, (2)

and

P (W > λn + tn) ≤ c2

(
tn

2mn

)mn/2
exp {mn/2− tn/2}+ c3λ

1/2
n t−1

n exp

{
− t2n

32λn

}
, (3)

where c1, c2, and c3 are some positive constants.

Proof. W can be expressed as W =
∑mn

i=1{Zi + (λn/mn)1/2}2, where Zi
i.i.d∼ N(0, 1) for

i = 1, . . . ,m. Then, by the fact that P (Z > a) ≤ (2π)−1/2a−1 exp{−a2/2} for any a > 0,
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we can show that there exist some positive constants c1 such that

P (W ≤ λnwn) = P
{ mn∑
i=1

Z2
i + 2(λn/mn)1/2

mn∑
i=1

Zi + λn ≤ λnwn
}

≤ P
{
m−1/2
n

mn∑
i=1

Zi ≤ −λ1/2
n (1− wn)/2

}
= P

{
|Z1| ≥ λ1/2

n (1− wn)/2
}
/2

≤ c1λ
−1
n exp{−λn(1− wn)2/8},

since Z1 follows a standard normal distribution.

By using Chernoffs’s bound and the fact that P (Z > a) ≤ (2π)−1/2a−1 exp{−a2/2} for

any a > 0, one can show that

P (W > λn + tn) = P

{
mn∑
i=1

Z2
i + 2(λn/mn)1/2

mn∑
i=1

Zi > tn

}

≤ P

(
mn∑
i=1

Z2
i > tn/2

)
+ P

{
m−1/2
n

mn∑
i=1

Zi > λ−1/2
n tn/4

}

≤ c2

(
tn

2mn

)mn/2
exp {mn/2− tn/2}+ c3λ

1/2
n t−1

n exp

{
− t2n

32λn

}
,

where c2 and c3 are some positive constants.

Lemma D.3.

n
∥∥Q0Φβ −Q0Y

∥∥2

n,2
/σ2 | Y, ω ∼ χ2

d0
,

and

n
∥∥Q1Φβ − (1− ω)Q1Y

∥∥2

n,2
/{(1− ω)σ2} | Y, ω ∼ χ2

kn−d0 .

Proof. Recall that

β | Y, ω ∼ N(β̃ω, Σ̃ω),

where

β̃ω =

(
ΦTΦ +

ω

1− ω
ΦT(I−Q0)Φ

)−1

ΦTY, Σ̃ω = σ2

(
ΦTΦ +

ω

1− ω
ΦT(I−Q0)Φ

)−1

.
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As shown in the proof of Lemma 3.1, Φ
(
ΦTΦ + ω

1−ωΦT(I−Q0)Φ
)−1

ΦT = (1−ω)QΦ +ωQ0,

so

E [Q0Φβ | Y, ω] = Q0Y

Var [Q0Φβ | Y, ω] = σ2Q0,

which shows that n
∥∥Q0Φβ −Q0Y

∥∥2

n,2
/σ2 | Y, ω ∼ χ2

d0
.

Similarly,

E [Q1Φβ | Y, ω] = (1− ω)Q1Y

Var [Q1Φβ | Y, ω] = σ2(1− ω)Q1,

which proves that n
∥∥Q1Φβ − (1− ω)Q1Y

∥∥2

n,2
/{(1− ω)σ2} | Y, ω ∼ χ2

kn−d0 .

Proof of Lemma 3.1. As discussed in the paragraphs following Lemma 3.1 when L(Φ0) (
L(Φ), we can generate a new basis Φ̃ = [Φ0,Φ1] such that ΦT

0 Φ1 = 0 and L(Φ) = L(Φ̃),

which implies QΦ̃ = QΦ. Then,

Φ

(
ΦTΦ +

ω

1− ω
ΦT(I−Q0)Φ

)−1

ΦT

= Φ̃

(
Φ̃T Φ̃ +

ω

1− ω
Φ̃T(I−Q0)Φ̃

)−1

Φ̃T

= [Φ0,Φ1]

[
(ΦT

0 Φ0)−1 0

0 (1− ω)(ΦT
1 Φ1)−1

][
ΦT

0

ΦT
1

]
= (1− ω)QΦ̃ + ωQ0

= (1− ω)QΦ + ωQ0.

Proof of Lemma 3.2. From Polson & Scott (2012) it follows that∫ 1

0

ωAn−1(1− ω)Bn−1 exp{−Hnω}dω =
Γ(An)Γ(Bn)

Γ(An +Bn)
exp{−Hn}

∞∑
m=0

(An)(m)

(An +Bn)(m)

Hn
m

m!
,
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where (a)(m) = a(a+1) . . . (a+m−1). We shall show that
∑∞

m=0

{
(Bn)(m)

(An+Bn)(m)

Hnm

m!

}
≥ 1+QL

n .

By using Lemma D.1 and Stirling’s approximation, i.e., m! � mm+1/2 exp{−m}, it follows

that

∞∑
m=0

{
(Bn)(m)

(An +Bn)(m)

Hn
m

m!

}

= 1 +
Bn

An +Bn

{
Hn +

∞∑
m=1

[
(Bn + 1)(m)

(An +Bn + 1)(m)

Hn
m+1

(m+ 1)!

]}

≥ 1 +
Bn

An +Bn

{
Hn +

∞∑
m=1

[
(Bn +m)!

(An +Bn +m)!

Hn
m+1

(m+ 1)!

]}

≥ 1 +
Bn

An +Bn

{
Hn +D

∞∑
m=1

[(
Bn +m

An +Bn +m

)An+Bn+m+1/2

(Bn +m)−An

eAn
Hn

m+1

(m+ 1)!

]}

≥ 1 +
Bn

An +Bn

{
Hn +D

Tn∑
m=1

[(
Bn + 1

An +Bn + 1

)1/2

(Bn +m)−An

×
(

Bn +m

An +Bn +m

)An+Bn+m

eAn
Hn

m+1

(m+ 1)!

]}

≥ 1 +
Bn

An +Bn

{
Hn +D

(
Bn + 1

An +Bn + 1

)1/2

(Bn + Tn)−An

× exp

{
A2
n

2(An +Bn + Tn)

} Tn+1∑
m=2

Hn
m

m!

}
, (4)

where Tn = max{A2
n, 3 dHne]}, and D is some positive constant.

SinceHn < (Tn+2) exp{1}, by using the Stirling’s approximation, the term
∑Tn+1

m=2 Hn/m!
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in (4) can be expressed as follows:

Tn+1∑
m=2

Hm
n

m!
= exp{Hn} − 1−Hn −

∞∑
m=Tn+2

Hm
n

m!

� exp{Hn} − 1−Hn − (Tn + 2)−1/2

∞∑
m=Tn+2

(
exp{1}Hn

Tn + 2

)m
≤ exp{Hn} − 1−Hn − (Tn + 2)−1/2

Therefore, (4) can be bounded by

1 +
Bn

An +Bn

{
Hn +D

(
Bn + 1

An +Bn + 1

)1/2

(Bn + Tn)−An

×
(
exp{Hn} − 1−Hn − (Tn + 2)−1/2

)
+

}
≥ 1 +

BnHn

An +Bn

+
DBn

(An +Bn)3/2
(Bn + Tn)−An

(
exp{Hn} − 1−Hn − (Tn + 2)−1/2

)
+
,

where (·)+ denotes the positive hinge function (i.e., for any t ∈ R, (t)+ = t, if t > 0, and

(t)+ = 0, otherwise).

Also, since (Bn +m)!/(An +Bn +m)! < 1 for any positive integer m, it follows that

Hn +
∞∑
m=1

[
(Bn +m)!

(An +Bn +m)!

Hn
m+1

(m+ 1)!

]
≤ exp{Hn},

which completes the proof.

Proof of Theorem 3.3. Let β∗ denote the projection of the true F0 on the basis

{φj}1≤j≤kn , i.e.,

β∗ = argminβ∈Rkn
∥∥F0 − Φβ

∥∥
2,n
. (5)

We shall treat β∗ as the pseudo-true parameter and study the posterior concentration of

Φβ in the posterior around Φβ∗.
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To prove Theorem 3.3, it is sufficient to show that the posterior probability in the

equation E0

[
P
{∥∥Φβ − F0

∥∥
2,n

> Mn(f0)1/2 | Y
}]

converges in probability to zero. The

posterior probability in the expectation can be decomposed as follows:

P
[∥∥Φβ − F0

∥∥
n,2

> M1/2
n | Y

]
≤ P

[∥∥Φβ − Φβ∗
∥∥
n,2

> M1/2
n /2 | Y

]
+ 1

[∥∥Φβ∗ − F0

∥∥
n,2

> M1/2
n /2

]
,

where β∗ is defined in (5) and 1(·) is the indicator function. The second term on the right-

hand side of this expression is always zero when F0 ∈ L(Φ0), since we assume that the

column space of Φ0 is contained in the column space of Φ, and its expectation with respect

to the true density is asymptotically zero when F T
0 (I−Q0)F0 � n from (9). Therefore, we

focus on the first term on the right-hand side. Since Φβ = Q1Φβ +Q0Φβ, by Lemma 3.1.

the first term can be decomposed as

P
[∥∥Φβ − Φβ∗

∥∥
n,2

> M1/2
n /2 | Y

]
= Eω|Y

[
P
(∥∥Φβ − Φβ∗

∥∥
n,2

> M1/2
n /2 | Y, ω

)]
≤ Eω|Y

[
P
(∥∥Φβ − Φβ̃ω

∥∥
n,2

> M1/2
n /4 | Y, ω

)]
+Eω|Y

[
P
(∥∥Φβ̃ω − Φβ∗

∥∥
n,2

> M1/2
n /4 | Y, ω

)]
≤ Eω|Y

[
P
(∥∥Q1Φβ − (1− ω)Q1Y

∥∥
n,2

> M1/2
n /8 | Y, ω

)]
+Eω|Y

[
P
(∥∥Q1Φβ∗ − (1− ω)Q1Y

∥∥
n,2

> M1/2
n /8 | Y, ω

)]
+Eω|Y

[
P
(∥∥Q0Φβ −Q0Y

∥∥
n,2

> M1/2
n /8 | Y, ω

)]
+1
[∥∥Q0Φβ∗ −Q0Y

∥∥
n,2

> M1/2
n /8

]
,

where Φβ̃ω = (1− ω)QΦY + ωQ0Y = (1− ω)Q1Y + Q0Y .

We denote

W1 = P
(∥∥Q1Φβ − (1− ω)Q1Y

∥∥
n,2

> M1/2
n /8 | Y, ω

)
,

W2 = P
(∥∥Q1Φβ∗ − (1− ω)Q1Y

∥∥
n,2

> M1/2
n /8 | Y, ω

)
,

W3 = P
(∥∥Q0Φβ −Q0Y

∥∥
n,2

> M1/2
n /8 | Y, ω

)
.
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The indicator function in the fourth term converges to zero in probability, since
∥∥Q0Y −

Q0Φβ∗
∥∥2

2,n
achieves the parametric optimal rate. To complete the proof we show that the

expectations of W1, W2, and W3 with respect to the marginal posterior distribution of ω

converge to zero in probability.

First consider W3. Since n
∥∥Q0Φβ − Q0Y

∥∥2

2,n
/σ2 | Y, ω ∼ χ2

d0
by Lemma D.3, by using

Lemma D.2 it follows that

Eω|Y [W3] = Eω|Y

[
P
{∥∥Q0Φβ −Q0Y

∥∥
2,n

> M1/2
n /8 | Y, ω

}]
≤ C

(
nMn

64σd0

)d0/2
exp{−nMn/(128σ2)},

for some constant C.

The last quantity converges to zero as n tends to ∞, which implies that Eω|Y [W3] =

op(1). Now we obtain the bounds on W1. By Lemma D.3 n
∥∥Q1Φβ− (1−ω)Q1Y

∥∥2

2,n
/{(1−

ω)σ2} | Y ∼ χ2
kn−d0 . By using Lemma D.2, it follows that

W1 ≤
[

nMn

64σ2(kn − d0)
(1− ω)−1

] kn−d0
2

exp

{
kn − d0

2
− nMn

128σ2
(1− ω)−1

}
×1
[
nMn

64σ2
(1− ω)−1 > kn − d0

]
+ 1

[
nMn

64σ2
(1− ω)−1 ≤ kn − d0

]
.

We denote the two terms in this expression as W1,1 and W1,2.

By using Lemma 3.2 and defining ω̂ = (kn − d0)/{nMn/(64σ2) + kn − d0}, it follows
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that

Eω|Y [W1,1]

=
1

m(Y )

[
nMn exp{1}

64σ2(kn − d0)

] kn−d0
2
∫ 1

mn

ωa+
kn−d0

2
−1(1− ω)b−

kn−d0
2
−1

× exp

{
− nMn

128σ2
(1− ω)−1 −Hnω

}
dω

≤ 1

m(Y )

[
nMn exp{1}

64σ2(kn − d0)

] kn−d0
2
∫ 1

mn

ωa−1(1− ω)b−1 exp {−Hnω} dω

×ω̂
kn−d0

2 (1− ω̂)−
kn−d0

2 exp

{
− nMn

128σ2
(1− ω̂)−1

}
=

1

m(Y )
exp

{
− nMn

128σ2

}∫ 1

mn

ωa−1(1− ω)b−1 exp {−Hnω} dω, (6)

where mn = max[0, 1− nMn/{16σ2(kn − d0)}].
Also,

Eω|Y [W1,2] = Pω|Y

[
ω < 1− nMn

64σ2(kn − d0)

]
=

1

m(Y )

∫ 1− nMn
64σ2(kn−d0)

0

ωa+(kn−d0)/2−1(1− ω)b−1 exp{−Hnω}dω

≤ 1

m(Y )

(
nMn

64σ2(kn − d0)

)b−1 ∫ 1

0

ωa+(kn−d0)/2−1 exp{−Hnω}dω

≤
(

nMn

64σ2(kn − d0)

)b−1
Γ(a+ b+ (kn − d0)/2)

Γ(a+ (kn − d0)/2)Γ(b)
H−1
n 1

(
1− nMn

64σ2(kn − d0)
≥ 0

)
× exp{Hn}

[
1 +

bHn

a+ b+ (kn − d0)/2
+D

b(b+ Tn)−a−(kn−d0)/2

(a+ b+ (kn − d0)/2)3/2

×
(
exp{Hn} − 1−Hn − (Tn + 2)−1/2

)
+

]−1

,

(7)

where Tn = max{(a+ (kn − d0)/2)2, 3 dHne} and D is some constant.
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We now consider two cases: (i) when F0 ∈ L(Φ0) and (ii) when F T
0 (I−Q0)F0 � n.

Case (i) F0 ∈ L(Φ0): Recall that in this case Mn = ζnn
−1 for any arbitrary diverging

sequence ζn. First, we show that Eω|Y [W1]
p→ 0 by proving that Eω|Y [W1,1]

p→ 0 and

Eω|Y [W1,2]
p→ 0.

Applying Lemma 3.2, it follows that (6) is bounded above by

Eω|Y [W1,1] ≤
C exp {−nMn/(128σ2)}

(
1 + b

a+b
exp{Hn}

)
1 + δn + un

Db
a+b

(exp{Hn} − 1−Hn − (Tn + 2)−1/2)+

≤ C exp

{
− nMn

128σ2

}(
1 +

b

a+ b
exp{Hn}

)
, (8)

where δn = bHn/(a+ b+ (kn − d0)/2) and un = (a+ b)(b+ Tn)−an−(kn−d0)/2/(a+ b+ (kn −
d0)/2)3/2 with Tn = max{(a+ (kn − d0)/2)2, 3 dHne}, and C and D are some constants.

Since 2Hn ∼ χ2
kn−d0 , by Lemma D.2 and defining qn = k

−1/2
n (log kn)1/2(− log b)1/2, it

follows that

P [Hn > knqn/2] ≤ exp{−cknqn}, (9)

for some constant c. Hence, by the condition that kn log kn ≺ − log b, it is clear that

b exp{Hn} = op(1), which shows that Eω|Y [W1,1] = op(1).

Similarly, since Γ(b)−1 � b, (7) is bounded by

C ′b exp{Hn}
(

nMn

64σ2(kn − d0)

)b−1

,

for some constant C ′. By (9), b exp{Hn} = op(1), which implies Eω|Y [W1,2] = op(1).

We next show that Eω|Y [W2] converges in probability to zero. Applying Lemma 3.2, it
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follows that

Eω|Y [W2] = Eω|Y
[
P
[∥∥(1− ω)Q1Y −Q1Φβ∗

∥∥
n,2

> M1/2
n /8 | Y, ω

]]
= Pω|Y

[
ω < 1−

(
nMn

64σ2Hn

)1/2
]

=
1

m(Y )

∫ 1−
(

nMn
128σ2Hn

)1/2
0

ωa+(kn−d0)/2−1(1− ω)b−1 exp{−Hnω}dω

≤ 1

{
1−

(
nMn

128σ2Hn

)1/2

≥ 0

}
1

m(Y )

(
nMn

64σ2Hn

)(b−1)/2

×
∫ 1

0

ωa+(kn−d0)/2−1 exp{−Hnω}dω

≤ 1

{
1−

(
nMn

128σ2Hn

)1/2

≥ 0

}
Γ(a+ b+ (kn − d0)/2)

Γ(b)Γ(a+ (kn − d0)/2)

(
nMn

128σ2Hn

)(b−1)/2

× exp{Hn}
{

1 + δn + un
Db

a+ b

(
exp{Hn} − 1−Hn − (Tn + 2)−1/2

)
+

}−1

≤ Cb

(
nMn

128σ2

)(b−1)/2

H1/2
n exp{Hn},

where C is some constant, and δn and un are defined following (8).

From (9), it follows that b{nMn/(128σ2)}(b−1)/2H
1/2
n exp{Hn} is bounded by

b{nMn/(128σ2)}(b−1)/2(knqn/2)1/2 exp{knqn/2} with probability greater than 1−exp{−cknqn}
from which it follows that Eω|Y [W2] = op(1).

Case (ii) F T
0 (I−Q0)F0 � n:

Recall that in this case Mn = ζnn
−2α/(1+2α) log n for any arbitrary diverging sequence

ζn, and δn and un are defined following (8). From (6) it follows that

Eω|Y [W1,1] ≤ 1

m(Y )
exp

{
− nMn

128σ2

}∫ 1

mn

ωa−1(1− ω)b−1 exp {−Hnω} dω

≤ C exp

{
− nMn

128σ2

}
1 + b

a+b
exp{Hn}

1 + δn + un
Db
a+b

(exp{Hn} − 1−Hn − (Tn + 2)−1/2)+

,
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for some constant C.

By Lemma D.2, for any sequence wn → 0, Hn is larger than wnF
T
0 Q1F0/σ

2 with

probability greater than 1 − exp{−cF T
0 Q1F0(1 − wn)2/σ2} for some constant c. Since

F T
0 (I−Q0)F0 � n implies F T

0 Q1F0 � n, the last line in the above display can be expressed

as

C ′ exp

{
− nMn

128σ2
(kn − d0)3/2(b+ Tn)(kn−d0)/2

}
+ op(1),

where Tn = max{(a+ (kn − d0)/2)2, 3Hn} and C ′ is some positive constant. Therefore, to

show Eω|Y [W1,1]
p→ 0, it is sufficient to prove that T

(kn−d0)/2
n exp{−nMn/(128σ2)} = op(1).

For any ε > 0,

P

[
T (kn−d0)/2
n exp

{
− nMn

128σ2

}
> ε

]
≤ P

[
(3Hn)(kn−d0)/2 exp

{
− nMn

128σ2

}
> ε

]
+ P

[
3Hn < (a+ (kn − d0)/2)2

]
≤ P [logHn > ζn log n] + P

[
3Hn < (a+ (kn − d0)/2)2

]
.

Since ζn → ∞ as n tends to ∞, from (3) in Lemma D.2, it follows that the first term in

the above display can be bounded above by exp{−c′(nζn−F T
0 Q1F0/σ

2)} for some constant

c′. Similarly, from (2) in Lemma D.2, the second term is bounded by exp{−c′′F T
0 Q1F0/σ

2}
with some constant c′′, which proves that Eω|Y [W1,1]

p→ 0.

Since nMn � kn, the indicator function 1(1− nMn/(64σ2(kn − d0)) ≥ 0) in (7) is zero

when n is large enough, which results in Eω|Y [W1,2]
p→ 0.

The marginal posterior mean of W2 can be decomposed as

Eω|Y [W2] ≤ Pω|Y

[∥∥(1− ω)Q1Y −Q1Y
∥∥
n,2

>
1

16
M1/2

n

]
+1

[∥∥Q1Y −Q1Φβ∗
∥∥
n,2

>
1

16
M1/2

n

]
.

Results provided by Zhou et al. (1998) (see equation (9) on page 10) show that the
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second term in the previous expression is op(1). The first term can be expressed as

Pω|Y

[
ω >

(
nMn

256σ2Hn

)1/2
]

=
1

m(Y )

∫ 1

(
nMn

256σ2Hn

)1/2 ωa+(kn−d0)/2−1(1− ω)b−1 exp{−Hnω}dω

≤ 1

m(Y )
exp

{
−H1/2

n

(
nMn/(256σ2)

)1/2
}∫ 1

0

ωa+(kn−d0)/2−1(1− ω)b−1dω

≤
[
un exp{−Hn}

Db

a+ b

(
exp{Hn} − 1−Hn − (Tn + 2)−1/2

)
+

]−1

× exp
{
−H1/2

n

(
nMn/(256σ2)

)1/2
}
,

for some positive constant D. Since Hn/n = Op(1) and − log b ≺ n1/2k
1/2
n , the above quan-

tity converges in probability to zero, which completes the proof.

Proof of Theorem 3.4. We shall prove the result by separating two cases that are

F0 ∈ L(Φ0) and F T
0 (I−Q0)F0 � 0.

Case (i) F0 ∈ (Φ0): We use the formulation in (7). By plugging Mn = 64σ2(kn−d0)S0,n/n

in (7), it follows that

P (ω < 1− S0,n | Y ) ≤ Cb exp{Hn}
(
b1−ε0/kn

)b−1
,

for some constant C > 0. Since knb
ε0 exp{Hn} = op(1) by (9), P (ω < 1−S0,n | Y ) = op(1).

Case (ii) F T
0 (I−Q0)F0 � 0: By following the formulation in (8), it follows that

P (ω > S1,n | Y ) =
1

m(Y )

∫ 1

S1,n

ωa+(kn−d0)/2−1(1− ω)b exp{−Hnω}dω

≤
[
un exp{−Hn}

Db

a+ b

(
exp{Hn} − 1−Hn − (Tn + 2)−1/2

)
+

]−1

exp {−HnS1,n}

≤ Cb−1 exp{−HnS1,n},

for some constant C > 0. SinceHn/n = D0+op(1) for some constantD0 > 0, b−1 exp{−HnS1,n} =

op(1), which completes the proof.
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E Computation Strategy: Slice Sampling

In model (1), the conditional posterior distribution of τ based on the fHS prior can be

expressed as

π(τ | Y, β) ∝ (τ 2)−(kn−d0)/2+b−1/2(1 + τ 2)−a−b exp{−βTΦT(I−Q0)Φβ/(2σ2)}.

By reparameterizing η = 1/τ 2, the resulting conditional posterior distribution of η can be

expressed as

π(η | Y, β) ∝ ηa+(kn−d0)/2−1 exp{−βTΦT(I−Q0)Φβ/(2σ2)} 1

(1 + η)a+b
.

As in Polson et al. (2014), a slice sampling method (Neal 2003) can be used to sample

η from its conditional posterior distribution. The resulting MCMC algorithm is described

in Algorithm 1.

Algorithm 1 MCMC algorithm for simple nonparametric regression models

Choose an initial value β(0) and τ (0).

For l in 0 : (L− 1)

Sample β(l+1) from N(β̃ω(l) , σ2Σ̃ω(l)), where β̃ω and Σ̃ω are defined in (7).

(Slice sampling step) Set η = 1/τ 2(l) and t = (η + 1)−a−b.

Sample u ∼ Unif(0, t) and set t∗ = u−(a+b)−1 − 1.

Sample η∗ ∼ truncated Gamma(a+ (kn − d0)/2, β(l+1)TΦT(I−Q0)Φβ(l+1)/(2σ2)) on (0, t∗),

Update τ (l+1) by η∗−1/2.

End.

In the additive model in (13) with a product of the fHS priors, the conditional posterior

distribution of βj given ωj and the other coefficients β(−j), for j = 1, . . . , p, can be expressed

as

βj | ωj, β(−j), Y ∼ N
(
β̃j,ω, σ

2Σ̃j,ω

)
,
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where

β̃j,ω = Σ̃j,ωΦT

j rj, Σ̃j,ω = (1− ωj)
(
ΦT

j Φj

)−1
, rj = Y −

∑
l 6=j

Φlβl. (10)

It follows that sampling Algorithm 1 can be extended to additive regression models to

obtain Algorithm 2 below.

Algorithm 2 MCMC algorithm for additive regression models

Choose an initial value β
(0)
j and τ

(0)
j for j = 1, · · · , p.

For l in 0 : (L− 1)

For j in 1 : p

Sample β
(l+1)
j from N(β̃j,ω(l) , σ2Σ̃j,ω(l)), where β̃j,ω and Σ̃j,ω are defined in (10).

End.

For j in 1 : p

(Slice sampling step)

Set η = 1/τ
2(l)
j and t = (η + 1)−a−b.

Sample u ∼ Unif(0, t) and set t∗ = u−(a+b)−1 − 1.

Sample η∗ ∼ truncated Gamma(a+ kn/2, β
(l+1)T
j ΦT

j Φjβ
(l+1)
j /(2σ2)) on (0, t∗),

Update τ
(l+1)
j by η∗−1/2.

End.

End.

The computational complexity of Algorithm 2 for each iteration is O(pk3
n) + O(npkn).

The term O(pk3
n) arises from updating the p blocks of β, each of length kn. The joint

update of β without separating into blocks is also available, but it requires the inversion

of a pkn × pkn matrix. Even though this joint update may improve the convergence of

the MCMC chain, its computational burden for each iteration will significantly increase to

O(p3k3
n). While Bhattacharya et al. (2016) proposed a procedure reducing this complexity

to O(n2pkn) by avoiding the matrix inversion step, we stick to the block-wise update pro-
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Figure 1: Trace plots. The first and the second row are cases when kn = 11 and kn = 35,

respectively. Scenario 1, 2, and 3 are illustrated in the left, middle, and right column,

respectively.

cedure in Algorithm 2, and its empirical performance was promising in various simulation

and real data analysis.

F Trace Plots for Simulation Scenarios

In this section, we examine some trace plots of simulated data sets considered in Section 4

in the main article.

We examine the mixing behavior of the fHS procedure in the additive model context.

We selected six component functions, three of which were null while the other three non-

null. Each sub-plot of Figure 1 shows the trace plots of the empirical L2 norms of these

21



six functions, with the different functions color-coded. The different columns correspond

to the three simulation scenarios, while the top and bottom rows correspond to kn = 11

and 35 respectively. The mixing in all the cases seems reasonable from examination of the

trace plots, and no obvious difference is potted between kn = 11 and kn = 35.
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