Supplement to “Smoothing Spline
Semiparametric Density Models”

Jiahui Yu Jian Shi Anna Liu Yuedong Wang*

In this document, we provide technical proofs of some results in the main paper, a theory
for local existence and uniqueness of the penalized likelihood estimators for our proposed
semiparametric density models, and two additional simulation results. The verification of
inner product (-,-), is in Section S.1. The proof of Proposition 2 for the verification of
Assumptions 4 and 5 when Ly = Dgn(fy, ho) is in Section S.2. The intermediate results
Lemma 1 and Theorem 3 for the convergence 7 — 7y are proved in Sections S.3 and S.4.
Section S.5 shows local existence and uniqueness of the penalized likelihood estimators.

Section S.6 presents two additional simulation results.

S.1 Verification of inner product (-, -)Q

We now turn to the discussion of the validity of (3.2). For any p; x 1 and ps x 1 vectors
of functions in H, say G; = [G}]}, and Gy = [G5]72,, we use the vector form of the inner
product (G, Gs)y to denote a p; X p, matrix in which the (4, j)th entry is (G%, G3)4. For
any g € H, let F*g = 3" Vir[Lfg, Ling]. For any fixed A > 0, since
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for some positive constant C', F* is a bounded linear functional on H. By the Riesz rep-
resentation theorem, there exists a F* € H such that for any g € H, Frg = (F* g)u.
Let F = [F’ﬂzzl. We define V., (Lig, Ling), Vi (LinF, Lipg), and J(F,g) to be p x 1

vectors whose kth entries are Vi - (Lfg, Ling), Via (LinF", Ling), and J(F*, g), respectively.

Therefore,
> Vim(Lig: Ling) = Y Vie(LinF, Ling) + M (F, g) = (F, g)n.
=1 =1

We also define the p x p matrix Qp = > Vi (Lig — LipF, Lig — L1 ,F), whose (i, j)th
entry is S Vi (Lig — LinF", Ly — LipF7).

Lemma S.1. Under Assumption 2, Qp is positive definite and the eigenvalues of Qp are

greater than cs (see Assumption 2(ii)).

Proof. Fix a non-zero vector ¢ € RP and write ¢, = {/ ||||,2. We have
"¢ =Y ¢"Viey(Lip — LinF, Lig — LipF)C
=1

= [I¢]I7 Z Vi LioGe — Lin(&"F), Lol — Lin(G" F))
=1
> C5 ||C||122 )

where the last inequality holds by Assumption 2(ii) because |[{i|l. = 1 and 'F € H.
Therefore, £ is positive definite.
Let § be any eigenvalue of Qp, and let 5 € RP be a unit eigenvector associated with 6.

By definition, we have Qp(s = (5. We have
0 =C5"0C =G QrCs = Y Vi [LuoCs — Lin(G"F), Ligle — Lin(GTF)] > c5.
1=1

]

Theorem S.1. Suppose Assumption 2 holds. Then (-,-)o given by (3.2) is a well-defined
inner product on Q, and Q is complete with respect to the norm ||-||o induced by this inner

product. Hence, Q is a Hilbert space.



Proof. 1t is easy to check that (3.2) satisfies symmetry, linearity and positive semi-definiteness

for an inner product. If (¢,g) =0, ((¢,9),(¢,9))o = 0 is obvious. We will now show that
(€ 9),(¢,9))o = 0 implies (¢, g) = 0. We see that

NE

((€,9),.9)0=> Virn(Lie€ + Ling, Lig€ + Ling) + AJ(g,9)

=1

C"Via(Lig — LipF,Lig — L F)C

[
WE

=1

m

- ZCT Viro (LinF LipF) — 2V 7y (Lig, LinF)] €
=1

+ 20" Vin(Lio. Ling) + (9. 9)n

=1

=("QpC+ (("F+9."F + g)u + MJ(C"F,('F),

(S.1)

and every term in (S.1) is non-negative. If (({,¢), (¢, g)) = 0, the first term in (S.1) implies
¢ = 0 by Lemma S.1. This further implies that

(C"F + ¢9,"F + g)n = (9, 9)n = 0.

Therefore, g = 0 because (-, )3 is an inner product on H. Hence, (-,-)g is a well-defined
inner product on Q.

Next, we want to show that Q is complete with respect to the norm [|-[| . Let {({s, 9:) }52; C
Q be a Cauchy sequence. For any ¢ > 0, there exist a positive integer M such that for all

1,7 > M, we have

1(Cir 90) = (€5 99)lIg = ZVzm [Lio(Ci =€) + Lun(gi = 95)] + AJ(gi — g;) < €.

This implies that

D VirolLio(Ci = €5) + Lin(gi — 99)] = 16 = il D Vi [Luo(Gi = €5)* + Lun(gi — 95)7] < e,
= =1

where (Cl_cj)* = (Cl_<J>/ 1 — CJHl% and (g;— ) (9i— g])/ 1¢: — Cj”ﬂ' By Assumption
2(i1), Y00 Viro [ Lio(€i — €5)* + Lin(g: — g;)*] > c¢s for some positive constant cs as defined

n (3.1) Therefore,
€
I6i— ¢l < <, 5.2)
Cs
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and {¢;}52, is a Cauchy sequence in R? under the Euclidean norm, which therefore converges
to some limit (., € RP.

To find a limit for the sequence {g;}3°, in H, we consider
2 2
1€ = Cillge + g = g5l — 21166 = Cillgo [l9: — 95115,

<1 = Gillgr + llgi = gill5, = 2D Vi [Luo(Ci = €5), Lun(gi — g5)]

<NI¢ = Gillze + g = g5ll5, + 2D Vim[Leo(Ci =€), Lun(gi — 95)] (5.3)

=1

ZV“O [Lio(Ci — Cj) + Lin(gi — g5)] + A (9i — g;)

=1
1Gi95) = (€5 95)llg < €

where the first inequality follows from the Cauchy-Schwarz inequality, and the second in-

equality follows from the triangle inequality. For a > 0,b > 0, we have (1/4)a+b—a'/?p'/? =
[(1/2)a'/? — bY/2)2 > 0, and it follows that 2a'/2b'/2 < (1/2)a + 2b. For a = ||g; — g;|, and
b= (i — QH%I,, (S.3) becomes

1¢i — Cj”?@p + |lgi — 9j||3.¢ <e+2 ||Cz - Cj”RP llgi — ngH (5.4)

<e+y ng 93ll5 + 21165 = ¢l -
Since ||||g, is equivalent to ||| on RP, ||{; — QH%p < Ce for some positive constant C' by
(S.2). Therefore, after rearranging (S.4), we get ||g; — gj||,H (2+ C)e. Hence, {g;:}2, is a
Cauchy sequence in ‘H under the norm ||-||,,. By Assumption 2(i), this sequence converges
to some limit g, € H.
Lastly, we show that (i, gi) converges to ((oo;goo) in [||lg- By the Cauchy-Schwarz

inequality and triangle inequality, as ¢ — oo, we have

||(CZ; gi) - (Coo: goo)HQQ

=116 = Coollfer + ll9i = goolly; + 2> Viro[Lio(Ci = Coo)s Lun(gi — 9]

=1

2 2
< ch - (OOHIRP + ng - gOOH?—[ +2 HC% - COOHRP ng - gOOHH — 0.

Therefore, we conclude that Q is a Hilbert space with respect to the inner product (-, -)g. O
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S.2 Proof of Proposition 2

Proof. Denote by .Z(RP, L3(X)) the space of bounded linear operators from R? to L3(X)
op» ad denote by Sp g, (R), Sh,n, (1) the balls of radius
R in R?” and H centered at 6y and hg, respectively. Since Dgn : U — Z(RP, Li(X)) is

equipped with the operator norm |||

continuous, given any € > 0, there exist Ry, Ry > 0 such that for any 7 € Spg,(R1) X

Sh,ho(R2)(: 'Nbo X Nh0>7 we have HD077<7-1) - Den(TO)Hop
1

¢ € R? with [|{]|2 = 1, V5 [Den(m1)¢ — Den(m0)¢] < €, and

< €. This implies that for any

1

Ve [Den(0)¢] — € < Vé [Den(71)¢] < Vr% [Dgn(70)¢] + €. (S.5)

Let m = infy¢) =1 Vi [Den(70)¢]. Since Dyn(7o) has zero null space and its domain R?
is of finite dimension, we have m > 0. For 0 < € < m, let v/C; = 1 —¢/m > 0 and
VO3 =14¢/m > 0. Then (S.5) implies

C1V[Den(10)€) < Vi [Dan(11)€¢] < CoVi, [Dan(10)C].

Note that for any nonzero ¢ € R?, one can write Vy, [Dgn(7;)¢] = 1€ Vo [Pon(1;)(C/ [I¢]],2)]
for j = 0,1, part (¢) holds by the above inequality.
For any 71,75 € Spg,(R1) X Shpy(Ra),

1Don(71) = Don(72)l,, < [|1Dan(71) = Don(70)ll,, + |1Dan(72) = Don(7o)ll,, < 2e.

1
Let v/Cy = 2¢/m. Since for any ¢ € R?, V2 [Dgn(10)¢] > m ||€||,2, we have

1 1
Vi [Den(m1)¢ — Don(72)¢] < 2¢|C]l,2 < v/ CaVirs [Don(mo)S]-
Note that as ¢ — 07, 2C; — 27 and C; — 0T. Thus, we can choose 0 < € < m such that

0 < Cy < 2C) and (i7) holds. O

S.3 Proof of Lemma 1

We now give detailed calculations and a proof of Lemma 1. Let G*g = V[ Dgxn(70), Dun(70)9]
1

1
for any g € H. Since |GFg| < Vi2[Don(70)]V2 [Drn(70)g) < C'|lgll;, for some positive



constant C', G* is a bounded linear functional on H. By the Riesz representation theorem,

there exists G* € H such that for any g € H,

G*g = Vo [Dern(7o), Din(7o)g] = Vi [Din(10) G*, Din(70)g) + AJ(G*, g).

Let G = [G*]},_,. Define V;,[Dgn(7o), Dpn(70)gl, Vr,[Dan(70)G, Dpn(mo)gl, and J(G, g) to be

p % 1 vectors whose kth entries are V;,[Dgen(70), Dun(70)9g], Vi [Dan(70)G*, Dirn(7o)g], and

J(G*, g), respectively. Therefore,

Vro[Den(70), Din(70)g) = Vo [Dun(70)G, Diun(10)g] + AJ(G, g).

The Fourier expansion of G* with respect to the eigensystem discussed in the appendix

following Assumptions 7 and 8 is G¥ = Y V. [Dun(70)G*, Din(70)do,]do..- A simple calcu-

lation shows that

Voo [Drn(70) G*, Din(70) d0,0] = (1 + Apow) ™ Vi [Darn(70), Dan(70) do.u],

and hence,

1
Gk - Z 1+ )\pO,V V;'O [ng?’](To), Dhn(TO)QSO,I/]CbO,V-

v

Recall from Section A.4.1 that

~ 7l/n - )\ Vh v
0 — 00 = Q;1 {an - Z ﬁ 7 14+ )\[2)(; = VFO[D077(7_0)7 Dhn(70)¢0,u]} )

where

Vo [Don(70), Di(10) 0.2 ‘

Q= Vi [Don(mo)] — Z 1+ Ao

14

The (7, j)th entry of this p x p matrix 2, can be written as

Q7 = Vo [Dym(), Dosn(70)] = Vi [Doin(70), Dai(70) G

=V [DW?(TO) - DhU(To)Gi, Dem(TO) - DhW(TO)Gj] + AJ(Gia Gj)-

Let Q@ =V, ,[Dgn(70) — Dpn(m0)G| and Xy = AJ(G) be the matrices such that
O =V, [Dgin(10) — Dan(10)G*, Dein(10) — Dinp(70)G7],

and X% = AJ(G7,G7). Thus, @y = Q + .

(S.6)

(S.7)

We now prove some properties of  and ¥y, which will be used to establish the bound

for E[(6 — 00)T(0 — 6,)).



Lemma S.2. ¥, — 0 as A — 0.

Proof. By (S.7), we get that the (7, j)th entry of ¥ is

Z a, Z 1_:\+(;/)Vro [Dgin(ﬂ)), Dhn(70)¢0,u]v:ro [DGjn(TO)v Dhn(70)¢0:”]' (88)

We have >, a) <3, |a}| <3, b, where

D b= Ve[ Don(70), Dan(70) b0, ]V, [Dos(70), Dun(70)bo.u |

1
2

< {Z ‘/T% [Dgz‘?](To), Dh77<7—0>¢0,11] } {Z V;% [Dejn(7—0>7 Dhn<7—0>¢0,u] }

1
Since V:2(+) is a norm on L*(X) & {1}, by the definition of {¢g,},en, it follows that
1
{Dyn(70)Poy tven is an orthonormal basis on L*(X) & {1} with respect to V:2(-). Since
Dgin(x;19) € L*(X) & {1}, for any i = 1,...,p, we have

7-0 Dg 77 7'0 Z V D@z Dh77<7_0)¢0 1/] 0.

Hence, {V,,[Dsin(70), Din(70)$0,]}ven is square summable and ) b, < co. By the domi-
nated convergence theorem, as A — 0, AJ(G',G¥) = > a) — 0, because a;, — 0 for any
fixed v € N.

[

Lemma S.3. Under Assumption 2, Q is positive definite. Let cs and Cy be constants defined

in Assumptions 2 and 4 respectively, and let 6 be any eigenvalue of Q. Then 6 > Cics = Cs.
Proof. The proof is similar to the one for Lemma S.1. m

Note that by Lemma S.3, the eigenvalues of  have a uniform lower bound independent

of A. Then as A — 0, we have

E[(@-00)"(0 - 00)] = E[e](@+3)) ]
- Bfai0a,] < 7 Efaja.] =57 ) B (@,)],

=1



where

— _l/n - )\ l/h v
=y, — ; a2 T )\/;;)(’)’V 2V [Den (7o), Dutp(70) o],

and a, is the ith entry of a,,.
Before we proceed to derive the bound for E [(a?)?], we also need the following lemma,

whose proof is given by Lemma 5.2 in Gu and Qiu (1993).

Lemma S.4. Under Assumption 8, as A — 0,

APo.y 1 1 1 1 1
S M o), S —on ), S —oph.
14 <1+Ap07l/)2 ( )’ 1 <1+/\IO07V)2 ( )’ 14 ]‘+Ap07y ( )

We now ready to establish the upper bound for E [(a!,)?]. We have

2
. vn = Mol
B [(a)’] = [ ZB - H”/j’o . VTO[DM(TOLDm(m)%,y]]

2
<2E[(a,)°] +2E (Z B T )\Ppooy - Vro[Dem(To),DhU(To)%,y])

Note that E[(a!)?] = O(n™'), and by square summability of {V,,[Dg:n(70), Dpn(70) 0., }ren
(See proof of Lemma S.2) and {hg, },en, the dominated convergence theorem, the Cauchy-

22
v,n

2 2
/BV,TL - )\p J/h N2
(Z T g0, VelDon(r), D)o,

Schwarz inequality, E(82,) = n~!, and Lemma S.4, we have

(Z 1f;\n Voo [Doin(7 )aDhn(To)ﬁbo,y])

E(5),)

XV: 5 2pos)? On=—A7r).

<C

Therefore, we conclude that as A — 0, E [(a)2] = O(n=*A~+), which implies that
E{V,[Don(70)(@ — 80)]} < cE [0~ 00)" (6~ 05)| = O(n~"A~7).
This concludes the proof for the first bound in Lemma 1.
Now for the second bound in Lemma 1, we see that

Va Do)~ ho)) = 3 (h — o) AT ho) = >k (b - hos)

v

8



Plugging in the formula of &, given in Section A.4.1, we get

T 2 o Bl/,n - )‘pO,Vh'O,V i 7'() [Dg’l](To) Dh77(7'0)¢0 I/]

v

< Cl(In) + ()],

where

71/n - )\ yh v 2
(]h)zz(ﬁyurﬁyo’ > ’
UBEDY {(0 6 )TvTo[Df’”(lT(ﬁ A?JZTZ(TO)% AT

v

Since E(B,,,) =0, E(82,) = 1, and }°, py°h3,, < oo for € € [0,1], by Lemma S.4, we have

v,n

1 1 (Apo,, )t 11
El(I - )\1—‘1—60 \MOv) 1+60h2 — 1)\ p )\l—l-eo )
)= Z<1+Apo R D s v A T L

If a,b are p dimensional vectors, then a’b is 1 x 1, which implies that a’b = b’a and

(a”b)? = b"aa”b. Using this fact and the bound for E[(§ — 64)7 (8 — 6,)], we have

E[(I1)] = Z {E[(0-00)(8— 60y
’ Z mvm [Doin(70), Dnn(70) @0,u] Ve [Dosn(70), Dun(70)do,. ] }
<CZ [e 0y)1 (0 — 90)]
<oy {Bl@-ap]) {e[@ w2} = om ),

Therefore, E{V,,[Dun(10)(h — ho)]} = O(n"*A~+ 4+ A1*)_ Similar analysis shows that

B[~ ho)| = E [Z Ao (o - ho,,,)2

Hence, the second bound in Lemma 1 is established.

— O(n~"A\77 4 Aoy,




S.4 Proof of Theorem 3

By Assumption 4, Lemma 1 implies that

E{ Vi Lo(8 —00)]} = O(n'x~%),
E {vm [Li(h — ho)] + N (h — ho)} = O(n~I\"T 4 AlFe0),

By the Cauchy-Schwarz inequality and completing the square, we have

Vio[Lo(8 — 60) + Ly,(h — ho)]
= Vi [Lo(0 — 60)] + Vi [Ln(h — ho)] + 2V7,[Le(6 — o), Lh(ﬁ — ho)]
(0 — 00)] + Vi [Lun(h — ho)] + 2vm [Lo(0 — 8,)]V:2 [Lh(h ho)]

Voo [L
1 1 ~ 2
V2
0

[Lo(o 00)] + Vi [Ln(h — ho)]

/\

Op(n~"A77 + ALF0),

Together with AJ(h — ho) = O,(n"'A™+ + A1*)_ we have the desired result.

S.5 Local existence and uniqueness

we establish a theory for local existence and uniqueness of the semiparametric estimator of
the penalized likelihood given by (2.1) for the case when m = 1. The proof for the case when
m > 1 can be carried out in a similar manner. We follow a framework that was often used
to study nonparametric models (Cox, 1988; Cox and O’Sullivan, 1990; O’Sullivan, 1990; Ke
and Wang, 2004). Note that we have the same assumptions as given in Section 3 and the
Appendix for the proof of consistency in the main text, with the exception of assuming the
existence of (é, ﬁ) in N, X Nj,. For convenience, we drop the subscript [ = 1. Recall the
penalized likelihood

A 1 & A
— - - _ . n(z;0,h) Z
La2(0,h) = L£,(0,h) + QJ(h) o El n(Xi; 0, h) +10g/X€ dx + QJ(h),

where £,(0, h) is the negative log likelihood of the density function

exp{n(z; 0, h)}
[y exp{n(x;0,h)}dx’

10

J(:6,h) =



J(h) is the roughness penalty term, which is assumed to be a quadratic functional, and A
is the smoothing parameter. We consider 7 = (0,h) € Q = R? x H and a known function
n:Q — L2(X), where H is a real reproducing kernel Hilbert space (RKHS), Q = R? x H,
Li(X) = L2 (X) & {1}, L2 (X) is the space of functions with finite second moments with
respect to the measure given by the true density, and 79 = (0, ho) is the true parameter.
Denote the kth order partial Fréchet derivative operators by D¥ = Dy, ...D,,, where

aj...ag

a; € {0,h} for i =1,... k. The penalized likelihood estimator

@.h)= argmin  £,.(0,h)
(e,h)e/\/’ngNhO

satisfies

A A

DgL,1(0,h) =0

A A

Dp£,.(0,h) = 0.
We also have £,(8,h) = E[£,.(0,h)], and it is easy to verify that the true parameter

7o = (09, ho) is the solution for

DyLo(6,h) =0

DypLy(0,h) = 0.
Note that by Assumption 3, 7p is the unique solution for the above system in Ny, X Nj,.
Lastly, throughout this document, we use (-, *)g, , (*, )5, as defined in the main text to be

the inner products on R” and H, respectively, and [|[|g,, |||l denote the corresponding

induced norms. Recall that (-, ), | is the inner product given by (-,-),, when A = 1.

S.5.1 Linearization

In the next four sections, we extend the linearization technique used to approximate the
systematic and stochastic components of the estimation error as in Cox and O’Sullivan
(1990); O’Sullivan (1990) to our semiparametric setting by using the bivariate Taylor series
expansions for nonlinear operators. We first state the following proposition, whose proof is

provided in Ke and Wang (2004).

Proposition S.1. Let f: D(f) C X XY — Z, where X, Y and Z are Banach spaces. If

f" exists at (x,y), then the partial Fréchet derivatives foy, fuy, fye and fy, exist at (z,y).
11



For any h,ae X, k,beY,

[ (x,y)(h, k)(a,0) = feu(w,y)ha + fay(T,y)ka + fyo(z,y)hb + fyy (2, y)kb.

By the above theorem and the Taylor formula given in Chapter 1 Section 4 in Ambrosetti

and Prodi (1995), we can write the first order Taylor series expansion of f(z,y) as

where R is the remainder, given by
1
R = / (1 =) f"(z + th,y + tk)(h, k) (h, k)dt
0

1
:/ (1 —t) [feu(z + th,y + th)hh + fu,(x + th,y + tk)kh
0

+ fyu(z +th,y +tk)hk + fy,(x +th,y + th)kk] dt.

S.5.2 Linear expansions

Since DgL, (0, h) is a bounded linear functional on R?, by the Riesz representation theorem,

there exists Zg(0, h) € RP such that for any a € RP,
DgL,(0,h)a = (Zy(6,h),a), .

Similarly, we can denote the Riesz representer of D,£,(0,h) in H by Z,(8,h). For conve-

nience, we use

Zg(0,h) = DeL1(0,h) and  Z,(0,h) = DpLA(6, h)
to represent either the functionals or their Riesz representers in RP and H, respectively. For
any 0y +a € Ny, and hg + g € N, the first order Taylor series expansions of Z,, Zg at the
true parameter (6, hy) are
Zn(0o +a, ho + g) = Z(00, ho) + Do Z1, (00, ho)a + Dy Zy,(00, ho)g + Ru(0o, ho)ag,
Zp(0o +a, ho + g) = Zp(6o, ho) + Do Zg (8o, ho)a + Dy Zg(60, ho)g + Re (6o, ho)ag,

12



where

1
Ry,(8,h)ag = / (1 —t) [DggZn(0 + ta, h + tg)aa + DjgZ;,(0 + ta, h + tg)ag
0
+ DpZn(0 + ta, h + tg)ga + D;, Z,(0 + ta, h + tg)gg] dt,
1
Rg(0,h)ag = / (1 —1t) [DggZo(0 + ta,h + tg)aa + D3y Zg(0 + ta, h + tg)ag
0

+ Dg, Zg(0 + ta, h + tg)ga + D;, Zo(0 + ta, h + tg)gg] dt.
For Z,(0,h), u,v € H, a € RP, we have

Zn(0, h)u = —piry [Dan(8, h)u] + 11z [Dan(8, h)u] + AJ (h, u),
Dy Zy (8, hyuv = — { fiy [ D8, h)uv] — pir [Dfyyn (6, h)uv] }
+ V,[Dpn(8, h)v, Dpn(8, h)u] + AJ (v, u),
Do Z(6, h)ua = — {11z, [Dgy1(8, h)ua] — pir[Dgyn(8, h)ual §
+ V:[Den(0, h)a, Dyn (0, h)u].

For Zy(8,h), a,b € R?, u € H, we have
20(07 h)a = —Hr [Den(av h’)a’] + MT[DGU(07 h>a’]7
Dh20(07 h>a‘u = {,u‘ro [D12u977<07 h)a'u] - Mr[DfZL(ﬂ?(aa h)a’u]} + V;[Den(07 h>a‘7 Dh77<07 h>u]7
DGZG(0> h)a'b = - {/"LTO [Dgﬂn(ov h’)a‘b] — Hr [Dg(ﬂ?(aa h)ab]} + V:r[Den(07 h)a" Dan(ov h)b]
For any u,v € H, a,b € R?, and 7 = (8, h) € Ny, X Nj,, define the operators Up(#, h) and
Un(6,h) on RP and H, respectively, such that
(u, Un(0, h)v) = V:[Dypn(8, h)u, Dyn(8, h)v],
(@,Ug(8, h)b),2 = V;[Den(6. h)a, Den(8, 1)b],
where (-, -} is the inner product on H as defined in Assumption 2 and (-, ), is the [* inner

product on RP. Note that these operators are well-defined by the Riesz representation

theorem applied to the linear functionals

v — V.[Dpn(8, h)u, Dpn(8, h)v], b — V.[Dgn(0, h)a, Den(8, h)b|,
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which are bounded in the corresponding norms on ‘H and R?, respectively. Similarly, we also

define Upg(8,h) : H — RP and Up(0, h) : R? — H by
(a,Ung(0, h)u);. = V;[Dgn(0, h)a, Dpn(0, h)u] = (u, Ugn(0, h)a) .

By Lemma S.2 in the supplement of Cheng and Shang (2015), there exists a bounded linear
operator Wy on H such that (u, Wyv) = A\J(u,v). Therefore,

Zp(0o +a,ho + g) = Zn(6o, ho) + Gr(Bo, ho)g + Usn (8o, ho)a + Ry, (60, ho)ag, (.9
Zp(00 +a, ho + g) = Zg(Bo, ho) + Up (8o, ho)a + Ung (0o, ho)g + Re(Bo, ho)ayg,
where G(0,h) = Uy(0,h) + Wy. We provide the presentations of the remainder terms
R,(0,h)ag and Ry(0, h)ag in Section S.5.3.

Suppose (0, hy) is a solution for Zg(0,h) = Z,(0,h) = 0. We define the systematic
error as (0 — @, hy — hg). Ignoring the remainder terms, we get an approximation to the
systematic error by setting the system of equations (S.9) to 0 and solving for 8y — 8y, and
hy — ho, i.e.,

Zn (80, ho) + Gn(Bo, ho) (ha — ho) + Usn(Bo, ho) (8 — 60) = 0,

Z(B0, ho) + Up(Bo, ho) (B — Bo) + Un(Bo, ho) (ha — ho) = 0.
By the Lax-Milgram theorem (Section 3.6 of Aubin (1979)) and Assumptions 2 and 4 in the
main text, for any (0, h) € Ny, X Ny,, the operators G, (0, 1), Ug(6, h) have bounded inverses

on H and RP, respectively. Let
th(G, h) = (Gh — Uthgthg)(a, h) TH — 7‘[,
Gog(o, h) = (Uo — UhoGglUgh)(o, h) : RP — RP,
Assuming both operators above have bounded inverses for any (8, h) € Np, x Np,, we get
ha — ho = =G, (80, ho) [Z1,(80, ho) — Upn (6o, ho)Uy (0, ho) Za (8o, ho)]
0, — 0, = —Glg (80, ho) [Zo(ao, ho) — Una (8o, ho) Gy, (80, ho) Z1, (8o, ho)} .

Next, we define the stochastic error as (8 — @y, h — hy). Similar to the definition of Z

and Z, we let

Zn (0, h) = Dogm)\(o, h) and Znh(0, h) = DhSM(O, h)
14



The approximation of the stochastic errors can be obtained by the linearizations of Z,4 and

Znn. For u,v € H and a,b € RP, we have

1
Zn0(07 h>a = _ﬁ Zzl Da,r](xzv 67 h)a’ + M [Don(07 h)a] )

1 n
DpZ,4(0, h)ab = - > Dgn(::6,h)ab + 11 [Dagn(8, h)ab] + V; [Den(8, h)a, Dan(8, h)b]

i=1

1 n

Dth0(07 h)au = _E Z DI21077<:UM 07 h>a‘u + pr [szLﬂn(oa h)au] + V; [D()??w, h)a'7 Dhn(oa h)'LL] )
=1
1

Zon (0, h)u = - > Dun(i; 0, h)u+ pi- [Dyn(8, h)u] + AT (),

=1
1

Deznh(aﬁ h)ua = _ﬁ Z Dghn(mu 07 h>ua’ + Hr [Dghn(ev h)ua’} + V:r [Dhn(07 h)u7 Don(aa h)a'] 5
i=1

1
Dth0(07 h)UU = _ﬁ Z Dihn('rla 07 h)UU + fr [D%Lhn(07 h)“”} + V: [Dhn(av h)u7 Dhn(07 h)”]
=1

+ A (v, u).
Thus, for any 65 +a € Np,, hy + g € Ny, the first order Taylor series expansions of 7, and

Znn at (0, hy) € N, X Np, can be written as

Zno0r+a,hy+ g) = Z9(0x, hy) + Ug(0x, ha)a + Ung(0x, hr)g + €g(0x, hy)ag + Rug (0, hy)ag,

ZanOx+a,hy + g) = Zopn(0x, hy) + GR(0x, ha)g + Usn (0, ha)a + (05, ha)ag + Run(0y, hy)ag,
(S.10)

where the error terms are given by
eg(0x, hy)ag = ega(0, ha)a + eqr (0, ha)g,
en(0x, ha)ag = eng(0x, ha)a + enn(0y, ha)g,

1 n
coo (8, h)a = —— > _ Dggn(X;20, h)a + 1 [Dign(6. h)al]

=1

1 n
eon(0.h)g = —— > Dign(Xi:8,h)g + iz [Dggn(0. h)g]

1 n
€h0(07 h)a’ - _ﬁ Z Dghn(qu 07 h)a’ + fr [‘Dghn(aa h)a} )

enn(0,h)g = —— ZD (X380, h)g + - [Diyn (8, h)g] -
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R, Ry are defined similarly to Ry, Rg by replacing 2, Zg with Z,,, Z,9, respectively.

~

Recall that (0, fz) is the solution for Z,4(0,h) = Z,,(0,h) = 0. Dropping the error terms
and the remainder terms, we get an approximation to the stochastic error (é —0,, h — hy)

by setting the linearizations (S.10) to 0 and solving for 8,5 — @y and A,y — hy. We get

hox — ha = =G0, b)) [Zun (0, hy) — Uan(0x, ha)Uy (0, hp) Zg (6, hy)],
0,0 — 0\ = —Goy (0, h2)[Zno(0x, hy) — Ung(0x, ha) G, (0, hr) Zun (0, By

S.5.3 Remainder terms

To find the representation of R, and Ry given in Section S.5.2, we need to find the second

partial Fréchet derivatives of Zy(8,h) and Z(0, h). For u,v,w € H, a,b,c € R?, we have

D3}, 7,0, h)uvw
= — {ttry [Dipin(8, h)uvw] — iz [ Dy (8, h)uvw] §
+V: [D,thn(e, h)uv, Dyn(8, h)w] +V; [Dihn(a,h)vw, Dyn(6, h)u]
+V: [D}thn(e, h)uw, Dyn(0, h)v] + V. [Dpn(8, h)v, Dpn(8, h)u - Dpn(@, h)w]
— iz [Dan(0, h)u] V2 [Dyn (0, h)v, Din(6, h)w] — - [Dpn(8, h)w] V; [Dypn (8, h)v, Dyn(@, h)u]

D2, 7,0, h)uva = D2y Z, (0, h)uav = D?, Zo(8, h)auv
= —{tr, [DeDj,n(0, h)uva] — pi, [DeD3yn(6, h)uval }
+ V; [Dyn(8, h)uv, Dgn(0, h)a] + V; [Dg,n (0, h)va, Dyn(8, h)u]
+ V. [Dg,n(8, h)ua, Dyn(8, h)v] + V; [Dpn(8, h)u - Dyn(6, h)v, Den(8, h)al
— pr [Dpn(0, h)u] V2 [Dyn(8, h)v, Den(8, h)a] — pir [Dyn(8, h)v] V- [Den(8, h)a, Dyn(0, h)u] ,

DpoZ1 (60, h)uab = Dj, Zg(0, h)aub = Dj4Zg(8, h)abu
= —{1try [DggD1n(8, h)uab] — pi, [ Do Du1(8, h)uab] }
+ V; [Dgnn (8, h)ua, Dgn(6, h)b] + V; [Dggn(6, h)ab, Dyn(8, h)u]
+ V; [Dgun(0, h)ub, Dgn (8, h)a] + V; [Den(8, h)a, Dgn(8, h)b - Dyn(8, h)u]
— pr [Don(0, h)b] V- [Dn (8, h)a, Dpn(6. h)u] — - [Drn(0, h)u] Vi [Den (8, h)a, Den(8, h)b] .
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DijoZ(0, h)abe

= — {11, [Dipon(8. h)abe] — 11, [Digqn(6, h)abe] }

+V: [Dgon(av h)abu Den(av h)C} +Vr [D3077(67 h)bc7 Don(07 h>a’]

+ VT |:D920n(07 h)a’c7 D077(‘9; h)b} + VT [De'f](07 h>a’7 DBT](e’ h)b ’ D077(0; h)C]

— M [Dﬂn(0’ h)b] Vx [D077(07 h)aa D977(0> h)c] — Hr [DN?(‘9> h)c] Vx [DOU(Q’ h)a'> D077(07 h)b] )

By replacing the terms fir, [-(2)] with £ 3% -(2;) in each term above, we have the second

partial Fréchet derivatives of Z,4(0, h) and Z,,(0, h) for the remainder terms R, and R,;.

S.5.4 Bounds for the remainders

We see that the magnitude of the remainder terms Ry, Ry, R.9, R.n, €9, and e determine

how accurate (9 x—00, hy—hg) and (971 A—05, hox—hy) are as approximations of the systematic

error and the stochastic error, respectively. To obtain bounds of these terms, we first define

for A > 0, 1 = (01,h1), 72 = (02,h2) € Ng, X Ny, and unit elements u;,us € R? and

v,V € H,

Kj. = sup sup ||G;}%(T1)[D;2Lhzh(7'2)?)1ﬂ2 — U0h<T1)U0_1(Tl)D}QLhZQ(TQ)'Uﬂ)Q]HHJ ,

71,72 V1,V2

K} = sup sup HG,:,}(Tl)[Dthh(Tg)vlul - Uoh(Tl)Ue (11) D3, Zo (7o) v1u, HH .

T1,7T2 V1,U1

K,Z’ = sup sup HGg}}(Tl)[Dith(Tg)ulvl — Ugh(Tl)Ue_ (Tl)Dh9Z9(7'2 UV, HH L

71,72 U1,V1

Kﬁ = Sup sup HG;;}(Tl)[Dgth(TQ)“lUQ — UGh(Tl)Uo_l(Tl)DgGZQ(TQ)Ul’U,Q]||,H71 s

T1,72 U1,U2

K; = sup sup ||G;91(Tl)[Dl21hZG(T2>U1U2 — Uhg(Tl)G,jl(Tl)DihZh(Tg)vlw] HRP ,

T1,72 V1,02

Kg = Sup sup HG;ol (Tl)[DthG(TQ)U1u1 — Uho(Tl)Glzl(Tl)Dthh(TQ)Ulul] HRP ,

T1,T2 V1,81

Kg = Sup sup HGe;ol (Tl)[D,Qng(Tg)ulvl — Uho(Tl)Ggl(Tl)D;Qth(Tg)Ul’Ul] HRP s

71,72 U1,V1

Kg = sup sup HGo_ol(ﬁ)[DgoZg(Tg)uluQ — Uhg(Tl)G,jl(Tl)DgeZh(Tg)ulm]HRP )

T1,72 U1,U2
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For i =1,2,3,4, we also define K',, K', by replacing Zg, Z), with Z,g, Z,;, in K} and K},

respectively. In addition, we define

E,; = sup sup |Gy (01, hi)ens (61, h) u1||H L
61,h1 u1

El = sup sup ||th (01, h1)enn (604, hy) leH L
01,h1 v1 ’

E}; = sup sup |Gyt (01, ) Usn (81, hi)Uy ' (81, hyegp (81, 1) U1HH17

01 h1 ul

Erzz}z = Sup Sup ||G;:;«1(01, h1)Usn (01, hl)Uo_l(ola hi)eon (01, hl)U1||H71 )

01 h1 U1

E75 = sup sup || Ggg (01, h1)egp (81, by s ||,
61,h1 w1

E7g = sup sup || Ggg (01, h1)egn (01, hi)vy ||, -

61,h1 v1

Ejg = Sup sup |Gag (1, h1)Ung (81, h1)G;, ' (61, hi)ens (01, hi)us |, ,
1,h1 w1

B = :uiP sup || G (01, h1)Ung (81, h1) G, (81, h)enn (81, P Jvi ||, -
1,1 V1

Therefore, for any @ € R? and g € H, standard analysis yields the following bounds for the

remainder terms for the systematic error and the stochastic error,

|G (B0, ho) [Ri(Bo, ho)ag — Usn(B0, ho)Uyg ' (B0, ho)Re(Bo, ho)ag] HH L

1
< 5 (Kb gl + K Nallzn ) N9lls + (55 gl + K3 lallzs ) lallzs |

1G4 (B0 ho) [Re(80, ho)ag — Usa(Bo, ho) G (8, ho) Ri(Bo. ho)ag] ||,
< 5 [ (3 ol + 83 lallo) ol + (5 ol + 15 Nl )l
|Gr (85, ) {[en(B, ha) + Ran (65, h)] ag
—Upn (0, ha)Uy (6, hr) [e(0, hy) + Rug(8x, hy)] ag}HH 1
< 5 [0 gl + K2 Nl Mgl + (30 gl + 552 ) s

+ Enp llgllyes + Enn llallzs
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HGt;el (0x, ha) {[ea(0x, hx) + Rup(0x, ha)]ag
—Uno(0x, )Gy, (0, 2) [en(0x, ha) + R (0, hn)] ag ||,
1
s [(ng 1911301 + Kog lallge) 1911501 + (Ko 9]0 + Kg llal|z) Ha||Rp]

+ B ll9ll31 + Eng llallzs
where E}, = E}l + E? F%, = EY + E2 E!) = E* + E') and E?) = E* + E'2.

(S.14)

S.5.5 Proof of existence and uniqueness

A

We are now ready to show the local existence and uniqueness of (8, h,) and (8, h) in the

neighborhood Ny, x Np,. Let

da(N) = [|x = B,

(%) = [r— holl

re(\) = (Kj + K3)dn(\) + (K + Kg)da(N),

ra(A) = (K + Kg)dn(N) + (K + Kg)de (M),
See.(7) ={a €R”: |la — 01, <~} for 6, € R”,
Shn (V) ={u € H : |[g = hull3, <} for by € H,

Se(7) = Se0(7):

Sh(7) = Sro(7)

One can get the following theorem for the existence and uniqueness of (6, hy) via a contrac-

tion mapping argument.
Theorem S.2. If dg(\) — 0,dp(N) — 0,79(N) — 0,7,(A) — 0 as A — 0, there exists A\g > 0
such that for X € [0, Xo|, there are unique 85 € Spg,(2dg(X\)) and hy € Sppn,(2dn(N)) satisfying
Zo(o)\, h)\) =0, Zh(o)\, h)\) =0, and (0>\,h,\) S ./\[90 X Nho- In addz’tion, as A\ — 0,
105 — 0| + || Pr — h)\”H’l < A [rp(N)dp(A) +ro(N)de(N)] -
Proof. Let tgy = 2dg(N), tpn = 2d, (). Define
Fo(C9) =¢ — G9_01(007 ho) [Ze(eo + ¢, ho+ g) — Ung(6o, ho)G;, ' (B0, ho) Zi (80 + €, ho + 9)] )

(¢, 9) = g — Gy (B0, ho) [Zr(80 + ¢, ho + g) — Usn (8o, ho)Uy (80, ho) Za (B0 + ¢, ho + 9)] -
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Let F(¢,9) = (Fo(C, g), Fu(C, g)) be a function on Q = R? x H, and for any subset Q; C Q,
denote by F (Q1) the image of Q1 under F. The proof has three steps:

F(Sp(tex) x Su(tnr)) C Sa(ter) X Su(tna)-
2. F is a contraction map on Sp(tgy) X Sh(tnn).
3. Obtaining the bound for |0y — x||ge + [|Ax — hall7.1-

For step 1, by our assumption, we can choose \g small enough that Spg,(ter) C Na,,
Shoho(tha) C Npg, and r9(A) < 1/2 for all A € (0,)\o]. For every (0,h) € Q, we denote
10, h)ll g1 = 0llgs + 12ll51- For (¢, g) € Se(ter) x Sh(tna), we have

Hﬁ((,g)HQ,*l = 1B, D)o + 1 Fa(C. 9l -

For || F5(C, 9)|/gs, by the triangle inequality, we have

1F5(¢, 9)lge < ||¢ — Goag (B0, o) [Z6(B0 + ¢, ho + g)
—Uns(00. ho) Gy, ' (60, ho) Zn (B0 + ¢, ho + 9)] — (Ox — 00) || + ||02 — 0| s -

By the definition of 8y — 8, and Ggg(8, 1), the Taylor series expansions of Zg(8y + ¢, ho + g)
and Z,(60 + ¢, ho + g), and the remainder bound (S.12), we get

1€ — Gag (80, ho) [Zo(8o + . ho + g)
—Uno (8o, ho) G, (B0, ho) Zu(B0 + €. ho + 9)] — (Bx — 60)][ s
= |I¢ — Ggg (B0, ho) {[Zs (B + ¢, ho + g) — Zg(Bo, ho)]
—Uno (80, ho) G, (80, ho) [Z1n (00 + €. ho + g) — Z1(00, ho)] } |
= |I¢ — Ggg (B0, ho) {[Us (B0, ho)¢ + Re(Bo, ho)Cy]
—Uns(00, ho) G, ' (B0, ho) [Usn (8o, 7o) + Ri(0, 7o)l } ||z
= [|¢ — Ggg (B0, ko) { [Us (B0, ho) — Una (8o, ho) Gy, (B0, ho)Usn (8o, ho)] ¢
+ [Re (B0, ho) — Une (8o, ho) Gy, (B0, ho) Ri (B0, ho)] €9} ||
= ||Geg (B0, ho) [Re (8o, ho)Cg — Una(B0. ho) G, ' (B0, ho) R (B, 7o) 9] || o

1

1
< 5 (K3 gl + 53 1120 ) 19l + 5 (55 N9l + 56 1€ ) 1€ -
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Similarly, by the definition of hy — hg and G, (8, h), the Taylor series expansions of Zg(#y +
¢, ho+g) and Z, (09 + ¢, ho + g), and the remainder bound (S.11), we also have

1E0(C; 9)llas < || — Grn (B0, ho) [Z1(B0 + €, ho + g)
—Usn (00, ho)Uy (80, ho) Ze(B + ¢, ho + g)] — (A — ho)HH,1
+ ”]_7”\ - ho”?—m )

and

|9 = Gon (B0, ho) [Z1(60 + ¢, ho + g)
—Usn (00, ho)Uy (80, ho) Zo (8o + ¢, ho + g)] — (hr — ho)HH,l

= HGﬁﬁ(oo, ho) [Rn(80, ho)Cg — Uan (8o, ho)Uy * (80, ho) Re (8o, ho)C g H’Hl

1

1
< 5 (Kt 19l + 52 1€k ) Ngllpes + 5 (5 Il + 25 1€z ) s

Since tgy = 2 HéA —00||Rp, thy = 2 HB)\ — hOHHJ’ rn(A) < 1/2, and re(\) < 1/2, for (¢, g) €
Sg(to)\) X Sh(th)\), we have

1

|Fc.a)|| <5 [0+ K3) gl + (E + K3) IClizo] gl

1
5 |5+ 563) gl + (B + K3) 1o | 1€ s
1105 =00l + 172 = ol
< S [(Kg + Kg) tax + (K7 + K§) tox] thx

1 1 1
+ 5 [(K}% + Kg) th)\ + (Kﬁ + Kg) tg)\} t0)\ —+ §t0)‘ + éth)\
1

1
= Th()\)th)\ + Te()\)to)\ + 5150)\ + §th)\

_ (Th()\) + %) tha + <7“o(/\) + %) tox

< tha + toa-
Now for step 2, by Taylor expansion, we get that for {1,2 € Sp(ter), g1, 92 € Sh(tnr),
Zp(Bo + G2, ho + g2) = Zo(00 + €1, ho + g1)
+ /01 DoZg (60 + 1+ t(C2 — C1), ho + g1 + t(g2 — g1)] (€2 — C1)

+ DpZy (0o + ¢ +t(C2—C1), ho + g1 +t(g2 — g1)] (92 — g1) dt.
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Applying Taylor expansion again to the terms inside the integral and letting ¢* = {1 +¢({2 —

€1), 9" = g1 +t(g2 — ¢1), we have
Zp(00 + G2, ho + g2) — Zg(00 + €1, ho + g1)
= Up(8o, ho)(C2 — 1) + Ung(0o, ho) (g2 — g1)
+ /01 /01 [DgaZo(Bo + t'C* ho + t'g*)¢* + DigZo (0o + t'C*, ho + t'g*)g"] (C2 — ¢1) dt'dt
+ /01 /01 [DgnZo(00 + t'C* ho +t'g")C* + D Zo(0o + t'C* ho +t'g")g"] (92 — g1) dt'dt.

Note that for 0 S t S 1, C* = Cl + t((g — Cl) c Sg(to)\), g* = g1 +t(g2 — 91) € Sh(th)\) by

convexity of Sg(tgy) and Sy (tpy). Since

Fo(C1,01) — Fo(C2,92) = (€1 — C2) — Gy (B0, ho) {[Z6(80 + 1, ho + 1) — Zo(B0 + €2, ho + g2)]
—Ug (6o, ho)Gﬁl(ao, ho) [Zn(00 + €1, ho + g1) — Zi(00 + 2, ho + 92)]} ;

similar algebraic manipulations as in the proof of step 1 show that

1Fo(C191) = FolCar 92)llzn < (K5 19" g + 55 1€ 1w ) G2 = Gl

+ (K1 o + 55 119"l ) 92 = 91l -
Similarly for Fj,, we get

150G 91) = PG 9l < (K319 g + K2 1€ s ) 162 = Gl

+ (B2 1C s + B 197l ) 92 = 91

Therefore,

|Ftcio0) - Fia0)
< (Kilz + K{%) Hg*HHl g2 — gl”?—[,l + (K?z + Kg) 1€ e llg2 — 91“%,1
+ (K5 + K) 1197 31 1€2 = Callge + (K5 + Kg) €7 |pp 162 — Callps
= 2[(Kp, + Kg)dn(N) + (K7 + K3)do(N)] llg2 — 911l
+2 (K} 4 Kg)dn(A) + (K + Kg)da(M)] (162 — G llge

Q,x1

= 2r(M) llg2 = g1llan + 2r0(A) (162 = Callo

< Cillgz = g1llyn + Co i€z = Gillge
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where 0 < C; < 1,0 < (Cy < 1, so F = (Fg, F) is a contraction map on Sp(tgn) X Sh(tpa)-
By the contraction mapping theorem (Theorem 9.23 in Rudin (1976)), there exists a unique
(€, 92) € Salter) X Sh(tna) such that F(Cy, 1) = (Cr, 92). Let 8y = 85 + (o, by = ho + ga.
Then 0, € Spg,(ter), hx € Shn,(ter), and (6, hy) are the unique solutions to Zg(0y, hy) = 0,
Zn(0y, hy) = 0.

For step 3, note that

(0 — 05, ha — hy) = (6x — 6o, hy — ho) — (8x — 00, hy — hy)

—

= F(0,0) — F(Cx, gv).

Thus,
163 =61, + [ = By, = | Flcr.00 = FO.0)|
< 2rn(A) lgallzs + 2re(A) IKA]go
< 4[rn(A)dr(A) + ro(A)da(N)] -
This completes the proof of Theorem S.2. [

Next, we consider the existence of (6, h) € Ny, X Np,. Define

nO)\

167x = 65l -

rao(N) = Elg + Eny + (Kpg + K ) dun(N) + (Kng + Koy g (M),

(M)

() = uhm A
(M)
(M)

Tan(A) = Eng + Eby 4 (Kpg + Koy ) dun(N) + (K2g + K2 ) dna ().

We get the following existence theorem for (é, h) e Nay X Ny,

Theorem S.3. Suppose )\, is a sequence such that for all n sufficiently large, 0y, € Np,,
hy, € Niy, and

dno( M) 5 0, don(An) 2 0,

roo(An) 2 0, Fon(An) = 0.
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Then, with probability tending to unity as n — oo, there is a unique root (é, fL) of an(é, iL) =

0, Znn(8,h) =0 in Sgg, (2dno(An)) X Shpy, 2dnn(An)) C Noy X Ny In addition, asn — oo

and N\, — 0,
Hé - 9n)\n H]RP + Hil - Bn)\n H?—L 1 S 4rn0()\n>dn9<)\n) + 4rnh()\n)dnh()\n)

Proof. For convenience, we drop the subscript on A, and let t,9x = 2d,9(\), tuny = 2d,n(N).

Let

Fro(C.9) =€ — Gag (01, 1) [Zup (05 + ¢, Tox + g)

—Unp (05, h\) Gy, (0, ho) Zon (05 + ¢, by + 9)]
Fon(C:9) = 9 — G (0x 1) [Zon(0x + ¢, ha + 9)

—Upn(0x, ha)Uy ' (05, h\) Zg (01 + &, ha + 9)] -

The proof proceeds in three steps, similar to the proof of Theorem S.2, with additional terms
introduced in approximating DgZ,9 and D,Z,, by Dg¢Zy and D7}, respectively. Take n
large enough so that Sgg, (tnex) C Nags Shny (tnnr) C Niy and r9(XN) < %, Tnn(A) < %

First, we show that ﬁn(C, 9) = (Fre(C, 9), Fnn(€, g)) maps Sp(tner) X Sp(tnny) to itself, ie.,
F, (Sp(tngx) X Sh(tan)) C So(tngn) X Sh(tan). By definition, for (¢, g) € Sp(tngr) X Sh(tnnr),

|

For F,g, by the triangle inequality, we get

we have

Fu6.9)|,, = 1509l + 1Fn(C. 9l

1Fw0(C. 9)llge < || — Gog (0x, ha) [Zna(0x + ¢, ha + 9)
—Ung(0x, )G, (05, ha) Zun (01 + €, hr + 9)]
—(0n = 03) [y + (1602 — 01,

Using the definition of 8,y — @y, Gga(8, ), the Taylor expansions of Z,s(8 + ¢, hy + g)
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and Z,,(0) + ¢, hy + g), and the remainder bound (S.14), we get

1€ — Gog (05, ha) [Znp (01 + ¢, hn + 9)
—Ung(0x, h) G (03, 10) Zon (05 + €, ha + g) | — (Bnx — 05) ||,
= [[¢ — Gog (6. 12) {[Z16(6x +C. Fix +9) — Zy9(62, 2]
—Uno(0x, 1) Gy, (0, 1)) [Zan (05 + €, hx + 9) — Zun(0x, )]} ||,
= [|C — Gog (05, 1) [Up (8, ha) — (Ung (05, ha) Gy, (0, ha)Ung (05, h)] €
— G (01, 11) [ea (0, 72) + Rug (61, 1)) g
+Gog (05, 1) Ung(0x, 7n) G, (O3, 1) [en(Ox, ha) + Run(Bx, 1)1 €9 |,
= ||Gao (63 12) {lea(Bx. hx) + Rup(85, 1)1 Cg
—Ung(0x, ha) G5, (0, hx) [en(0x, ha) + Run(0x, 7)1 €9} | o
< Eng l9ll301 + Eng €120 + % <K7119 g1l + Krg HCHRP) 1911201

1
+ 5 (B2 Nl + K 1€z ) 1l

Similarly, we have

1Ean (€, 9)laa < Nlg — Gron (B, BA) [Z1(0x + €, hx + g)
— Upn(0x, ha)Uy ' (0, ha) Zo (01 + ¢, ha + 9)]

= (hux = W) a1 + |[onn — h>\||9{,1 ;

and

lg — Gy (05, ha) [Z0(0x + ¢, ha + 9)
—Ugn(0x, ha) Uy ' (0, 1) Zo(0x + ¢, ha + 9)] — (hoa — ha) |21

1
< Eppll9lls1 + Enn €1l + 5 (B 191l 1 + Kon [€11z0) 191

1

+ 5 (Ko 19111+ Koan 1€ wo) 1€ 1o -
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Thus, for ({,g) € Se(tnen) X Su(tunr),

1 1
< |(Blo 4 Bl + 503+ K ol + 500% + K2 €Tk | ol
_l’_

1 1
(B BB+ (0% + K3 lalhes + 5Kl + K2 €l | 11

2
+ Hé”/\ - 0>\||Rp + ”B”/\ - h>‘”7—[,l

1 1
< Tun(AN)tnna + 700(AN)tngx + étne)\ + §tnh)\

_ [rnh@) + %] Fans + {rng()\) + %] t01

< lphx + thga.

Therefore, we have shown that ﬁn(SQ(tno)\) X Sh(tnna)) C So(tner) X Sn(tann)-

Next, we show that ﬁn is a contraction map. By similar calculations as in the proof for

Theorem S.2, after applying Taylor expansion twice, for {1,(s € Sp(tnar), 91,92 € Sn(tunr),

we get
1 Fro(C1,91) — Fro(C2, 92)|lpe < (E2g + Klgtuny + Kngtngr) 161 — Callps
+ (Erlw + Kgotnw\ + Kiotnhk) ||91 - 92”7-[71 )
| Fan(€1, 91) — Fun(Co, 92)“%,1 < (Ezh + K2 tany + Kihtno/\) 161 — C2llge
+ (Erlzh + Kr%htnwx + K?’llhtnh)\) g1 — 92||7-[71 .
Thus,

ﬁn((1,91) - ﬁn(<2,g2)

Q,x1
< [B2p+ ELy + (Ko + K2 tana + (Kng + Ko )taen] 161 — C2llps

+ (B + B + (Kpg + K tana + (Kig + K23 )twen] lgr — 92l301

< 2rng(A) (161 = Callge + 2rmn (M) llgr — g2llgg -

Since 7,0 (A) < 3, ran(A) < 3, we have shown that F(C,g) is a contraction map on Sp(ng,) X

Sh(tnna). By the contraction mapping theorem, there exists a unique (¢, gnx) € So(tngr, @) X
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Si(tan, @) such that F,(Cax,gnr) = (Currgnr). Let @ = 05 + Cax € Spp, (2dus())) and
h = hy + gnx € Shn,(2dpn(N)). Then (é, ﬁ) is the unique root of Zno(é, ﬁ) = 0 and

Znn(0,h) = 0.
To get the upper bound, we observe that

(Bar — 0, hn — h) = (Bx — O, T — hy) — (6 — 05, 1o — hy)

= ﬁn<0, O) - ﬁn(CnAvgn)\)‘

Therefore,

Hén/\ - 0n/\HRp + th)\ - hn}‘”?—[,l = ‘ ﬁn((n)\agn)\) - ﬁn(ovo)H

9,1
< 2rmp (M) [[€nallge + 27nn(A) [|gnall, 2

< 4 [rne(N)dng(N) + 7 (N dpn (V)] -

S.6 Additional simulations
S.6.1 Additive case: Near Gumbel distribution

In this section, we consider simulations from the density function given by (4.2) in the main
text with ag(x; p,0) = —[(x — p) /o] —exp {(x — p)/o}, which can be viewed as the logistic
transformation of a truncated Gumbel distribution with ¢ = 0.5 and ¢ = 0.2. We will
consider the additive model (2.4) with a(x;u,0) = —[(x — pu)/o] — exp{(z — p)/o} and
h € WZ[0,1] ©{1}. Note that « is nonlinear in @ = (u, o). Therefore, the method developed
for linear additive models as in Yang (2009) does not apply. We compare our proposed
method with the kernel, cubic spline and HG’s method, where the starting parametric density
fo in the HG’s approach is a truncated Gumbel distribution. We use the profile likelihood
approach as described in Section 2.2 to compute estimates of § = (u, o) and h.

We consider three choices of a for (4.2), a = 0.25,1,4, and three sample sizes n =
100, 200, 500. For each simulation setting, we generate 100 simulated data sets. Table 1
shows that our semiparametric method has smaller KL, distances when the true density is

close to the truncated Gumbel (i.e. @ = 0.25 and 1). When the true density is far away from
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the truncated Gumbel (a = 4), the cubic spline has smaller KL distances. Compared to the
other semiparametric approach (HG) given by Hjort and Glad (1995), our semiparametric
approach (SEMI) performs better for each simulation setting.

Table 1: Additive Case with ag(z;p,0) = —[(x — p)/o] — exp{(z —u)/o}, p = 0.5 and

o = 0.2 (Kullback-Leibler distances of different methods. Numbers inside parentheses of
KLs are bias and variances.)

a  Method KL KL KL
n = 100 n = 200 n = 500

Kernel  3.50(0.41, 3.09 2.60(0.36, 2.23) | 1.72(0.21, 1.51
0.25 HG 3.20(1.12, 2.08 1.89(0.68, 1.21) | 1.09(0.49, 0.61
Cubic 2.12(0.59, 1.53 1.32(0.42, 0.90) | 0.63(0.19, 0.44
SEMI 1.58(0.16, 1.42 0.65(0.01, 0.63) | 0.45(0.04, 0.41
Kernel  4.32(0.47, 3.85 3.22(0.49, 2.73 2.36(0.31, 2.04)
1 HG 3.07(1.00, 2.07 2.04(1.02, 1.02 1.18(0.61, 0.58)
Cubic 2.17(0.69, 1.48 1.21(0.52, 0.69 0.64(0.21, 0.43)
SEMI 1.28(0.11, 1.17) | 0.64(0.06, 0.58) | 0.44(0.05, 0.40)
Kernel 11.47(1.86, 9.61) | 9.67(1.88, 7.80) | 7.68(1.53, 6.15)
4 HG 7.83(5.85, 1.98) | 5.27(4.08, 1.19) | 3.51(3.04, 0.46)
Cubic  2.00(0.65, 1.35 1.08(0.37, 0.71) | 0.52(0.19, 0.33)
SEMI 2.33(0.58, 1.75 1.31(0.32, 0.98) | 0.65(0.13, 0.53)

S.6.2 Two-sample density estimation with Gumbel distribution

When f(z; p, o) in Section 4.2.2 is given by the density fo(x; i, o) of the Gumbel distribution,

i.e.

1 T — T —
fc(x;u,U)Z—exp{— b exp [— M”
o o o
for x € R. Simulation results are given in Table 2. As discussed in Section 4.2.2 in the
main text, our semiparametric method provides better density estimation than the method

in Potgieter and Lombard (2012) (CHAR) and the separate thin-spline estimates (TP). All

methods improved as the sample size increases.
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Table 2: Two-sample density estimation with simulations from logistic distribution
(Kullback-Leibler distances and mean squared errors of different methods. Numbers in-
side parentheses of KLs are bias and variances. Numbers inside parentheses of MSEs are
squared biases and variances.)

ny [ ng [Method|  Overall KL KL MSE(2) MSE(o)

SEMI | 5.36(0.92, 4.44) [2.56(0.49, 2.07)|3.58(0.00, 3.58)[2.34(0.00, 2.34

100] CHAR [13.39(10.06, 3.33)|6.86(3.53, 3.33)|2.24(0.00, 2.24)(1.95(0.00, 1.95
100 TP | 5.81(1.95, 3.86)

SEMI 4 27(0.79, 3.48) [2.56(0.41, 2.15)[2.31(0.01, 2.30)[1.41(0.00, 1.41

200] CHAR | 11.07(8. 82 2.25) 6.26(4.02, 2.24)|1.58(0.00, 1.58)|1.34(0.00, 1.34
TP | 4.95(1.61, 3.34)

SEMI 3 84(0 2 97) 1.60(0.41, 1.19)[2.63(0.11, 2.52)[1.29(0.07, 1.22

100| CHAR 67(8.8 84) 4.69(2.86, 1.83)(1.52(0.04, 1.48)(0.97(0.03, 0.94
200 TP 4 58 1. 57 3 01)

SEMI | 3.21 0 85, 2.36) [1.46(0.32, 1.14)[1.78(0.00, 1.78)]0.86(0.00, 0.86

200 CHAR | 8.34(6.82, 1.52 4.07%2.55, 1.52) 1.65§0.00, 1.653 0.74E0.01, 0.733
TP 3.60(1. 16 2.44
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