
A. Tenti-model

In this part of the Supplementary Material the mathematical the mathematical back-
ground of the Tenti model is provided, which was used to calculate the simulated
spectra for spontaneous and coherent RBS. The account given here is largely based
on the original work of Boley et al. [19] and subsequent descriptions by Pan [33] and
by Gu [27]. In the Tenti models non-degenerate eigenvectors or moments written as
linearized approximations of the WCU equation are derived. In the Tenti-S7 model
there are seven of such components including a traceless pressure tensor, while in
Tenti-S6 there are only six, and the traceless pressure tensor is omitted. These com-
ponents, written as deviations from equilibrium hi(r,v, t) and involving the Maxwell
distribution function φM (v), are the following:
(1) the deviation of the total number density:

n0ν(r, t) = n0

∑
i

xi

∫
φM (v)hid

3v , (21)

(2) the macroscopic flow velocity, or the momentum:

v0u(r, t) =
∑
i

xi

∫
vφMhid

3v , (22)

(3) the deviation of the translational temperature:

T0τtr(r, t) =
1

kBctr

∑
i

xi

∫
(
1

2
mv2 − 3

2
kBT0)vφMhid

3v , (23)

(4) the deviation of the internal temperature

T0τint(r, t) =
1

kBcint

∑
i

xi

∫
(Ei − 〈E〉)φMhid3v , (24)

where T0 is the equilibrium temperature, ctr and cint are the translational and internal
specific heat capacities, and 〈E〉 =

∑
i xiEi stands for the mean energy of all internal

states,
(5) the translational flux:

n0kBT0v0qtr = n0

∑
i

xi

∫
(
1

2
mv2 − 5

2
kBT0)vφMhid

3v , (25)

(6) the internal heat flux

n0kBT0v0qint = n0

∑
i

xi

∫
(Ei − 〈E〉)vφMhid3v . (26)

Insertion of the linearized distribution function f(r,v, t) as given in Eq. (7) into
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the full WCU, presented in Eq. (6), yields:(
∂

∂t
+ v · ∇

)
hi = n0

∑
jgl

xj

∫
|v−v1|σglij [hg(v

′) +hl(v
′
1)−hi(v)−hj(v1)]dΩφMd

3v1 .

(27)
Using Dirac notations, Eq. (27) can be written in simplified form:

(
∂

∂t
+ v · ∇)|h〉 = n0J |h〉 , (28)

with the column vector |h〉 = [h1, h2, ...hn]T and the Hermitian conjugate 〈h| =
[h∗1, h

∗
2, ...h

∗
n]. J is a N × N matrix, and each element of this matrix is an integral

operator. J can be separated into a term for elastic collisions J ′ with g = i and
l = j and a term representing inelastic collisions J ′′ with g 6= i and l 6= j, that is,
J = J ′ + J ′′.

The eigenvectors and eigenvalues for the elastic collision operator J ′ have been
studied by Wang Chang et al. [60]:

J ′|Ψs0〉 = (2k/m)1/2λs|Ψs0〉
J ′|Ψsn〉 = (2k/m)1/2µs|Ψsn〉 (1 ≤ n ≤ N − 1) , (29)

where λs, µs are the eigenvalues. The eigenvectors Ψsn of J ′ are orthogonal to one
another, as 〈Ψsn|Ψs′n′〉 = δss′ , and they span the entire Hilbert space. The eigenvectors
Ψsn are given by:

|Ψsn〉 =


ΦrlmPn(ε1)
ΦrlmPn(ε2)

.

.

.

 , (30)

where εi = Ei/(kBT0) is the dimensionless energy, and Pn(εi) is a polynomial of the
internal energy given by:

P0(εi) = 1, P1(εi) =
εi − 〈ε〉√
〈(ε− 〈ε〉)2〉

and in general

Pn(εi) = Kn

[
εiPn−1 −

n−1∑
m=0

〈εPn−1Pm〉Pm(εi)

]
, 1 < n < N ,

with Kn chosen to normalize 〈P 2
n〉 = 1. Φrlm is the eigenfunction of the collision

operator for an atomic gas with a Maxwell force law, or a molecular gas with only one
internal energy state, which can be further expressed as:

Φrlm =

√
2π3/2r!

(r + l + 1/2)!
S

(r)
l+1/2(c2)clYlm(ĉ) , (31)
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where S
(m)
n (x) is the Sonine polynomial and Ylm(θ, ψ) is the spherical harmonic for the

direction angles θ, ψ of the dimensionless velocity c. It is clear in the above equations
that s can be written as (rlm), so Φsn is rewritten as Φrlmn.

Using the eigenvectors of J ′, the elastic collision operator can be diagonalized by
inserting the completeness identity. Following the method of Gross and Jackson [61],
all of the eigenvalues except for a particular set are set equal to a common constant,
namely:

J ′|h〉 =
∑
r

J ′r|Ψr〉〈Ψr|h〉

≈
∑
r<R

J ′r|Ψr〉〈Ψr|h〉+ J ′R
∑
r≥R
|Ψr〉〈Ψr|h〉

=
∑
r<R

(J ′r − J ′R)|Ψr〉〈Ψr|h〉+ J ′R|h〉 , (32)

where Ψr means Ψrlmn, J ′r is the eigenvalue of Ψr and the common constant J ′R is the
eigenvalue for all Ψr with r ≥ R. In the above equation the completeness condition∑

r |Ψr〉〈Ψr| = 1 is used.
Tenti et al. [20] have chosen six non-degenerate eigenvectors with clear physical

meanings: Ψ000,0 the fraction of particles in different internal states, Ψ01m,0 the mo-
mentum, Ψ100,0 the translational energy, Ψ11m,0 the translational heat flux, and Ψ000,1

the internal energy, Ψ01m,1 the internal heat flux which are linked to Eqs. (21)− (26).
The corresponding eigenvalues are J ′000, J ′010, J ′100, J ′110, J ′001, J ′011, denoting in J ′rln
with

J ′rln =
1

2l + 1

∑
m

J ′rlm,n .

The other eigenvectors are degenerated and are assumed to have the same eigenvalue
J ′020. Hence, the resulting elastic collision model is represented by:

(J ′h)i = −J ′020

[
νi + 2c · u+ (c2 − 3

2
)τtr

]
+ (−J ′020 + J ′110)

4

5
(c2 − 5

2
)c · qtr

+ (−J ′020 + J ′011)
εi − 〈ε〉
cint

2c · qint + J ′020hi .

(33)

For the inelastic operator J ′′, Boley et al. [19] used the model developed by Hanson
and Morse [62] which inserts the completeness identity twice into J ′′|h〉 as:

J ′′|h〉 =
∑
sn

|Ψsn〉〈Ψsn|
∑
s′n′

J ′′|Ψs′n′〉〈Ψs′n′ |h〉

and puts 〈Ψsn|J ′′|Ψs′n′〉 = C × δss′δnn′ , with C a constant beyond a certain range of
s, n. Following the same notations and language for the elastic operator, the inelastic
operator J ′′|h〉 can be expressed as:

J ′′|h〉 =
∑

rlmn,r′n′

(J ′′rlnr′l′n′ − J ′′020δrr′δnn′)|Ψrlmn〉〈Ψr′lmn′ |h〉+ J ′′020h , (34)
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where

J ′′rlnr′l′n′ =
1

2l + 1

∑
m

〈Ψrlmn|J ′′|Ψr′l′mn′〉

and J ′′rln = J ′′rlnrln for simplicity. Then the inelastic collision model is

(J ′′h)i = −J ′′020

[
ν + 2c · u+

(
c2 − 3

2
+ εi − 〈ε〉

)
ctrτtr + cintτint

ctr + cint

]
+

(
J ′′100 −

cint

ctr + cint
J ′′020

)[
c2 − 3

2
− 3

2cint
(εi − 〈ε〉)

]
(τtr − τint)

+ (−J ′′020 + J ′′011)
εi − 〈ε〉
cint

2c · qint

− J ′′110
011

2
√

2√
5cint

[
(εi − 〈ε〉)c · qtr + c(c2 − 5

2
) · qint

]
+ (J ′′110 − J ′′020)

4

5
c(c2 − 5

2
) · qtr + J ′′020hi .

(35)

Therefore, the entire collision operator can be denoted as J (6) with J (6) = J ′+J ′′,
where (6) stands for the 6 moments, and the model is referred to as the Tenti-S6
model. As a result, the linearized WCU equation (28) is written as:

(
∂

∂t
+ v · ∇)|h〉 = n0J

(6)|h〉 . (36)

By taking the Fourier-transform and multiplying both sides by I(ω, y, cz) =
1/(ω/kv0 − i · n0J020/kv0 − cz), the kinetic equation for |h〉 in the frequency domain
is obtained as:

qv0

in0
|h〉 = I(ω, y, cz){−J ′020|ν〉 − J ′′020|Ψ000,0〉 − J020

√
2uz|Ψ010,0〉

+
[
J100

√
3/2τint + (J020 − J100)

√
3/2τtr

]
|Ψ100,0〉

+

[
−J100

3

2
√
cint

(τtr − τint)− J ′′020

√
cintτint

]
|Ψ000,1〉

+

[
(−J020 + J011)

√
2/cintqint,z − J110

011

2√
5
qtr,z

]
|Ψ010,1〉

+

[
−(J110 − J020)

2√
5
qtr,z + J110

011

√
2/cintqint,z

]
|Ψ110,0〉+

1

kn0
|Ψ000,0〉} ,

(37)

where the density perturbation |ν〉 = [ν1, ν2, ...]
T and z the direction of the acoustic

wave. Note that ν, uz, qtr,z, τtr, τint, qint,z are in frequency domain, e.g. ν is short for
ν(k, ω).

Taking the inner product of this equation by sandwiching with |Ψ000,0〉 = [1, 1, ...]T ,
the first of the six equations of the gas-dynamic parameters is obtained - the mass
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equation:

kv0

in0
〈Ψ000,0|h〉 = −J ′020〈Ψ000,0|I|ν〉 − J ′′020〈Ψ000,0|I|Ψ000,0〉 − J020

√
2uz〈Ψ000,0|I|Ψ010,0〉

+
[
J100

√
3/2τint + (J020 − J100)

√
3/2τtr

]
〈Ψ000,0|I|Ψ100,0〉

+

[
−J100

3

2
√
cint

(τtr − τint)− J ′′020

√
cintτint

]
〈Ψ000,0|I|Ψ000,1〉

+

[
(−J020 + J011)

√
2/cintqint,z − J110

011

2√
5
qtr,z

]
〈Ψ000,0|I|Ψ010,1〉

+

[
−(J110 − J020)

2√
5
qtr,z + J110

011

√
2/cintqint,z

]
〈Ψ000,0|I|Ψ110,0〉

+
1

kn0
〈Ψ000,0|I|Ψ000,0〉 .

(38)
Some of the inner products has already been calculated as: 〈Φ000,0|h〉 = ν,

〈Φ000,0|ν〉 = νI00
00 , 〈Φ000,0|Φ000,1〉 = 0, 〈Φ000,0|Φ010,1〉 = 0 which are detailed in Pan

[33]. Defining the symbol Irlr′l′ :

Irlr′l′ = 〈Φrl0,0|I|Φr′l′0,0〉 , (39)

which can be expressed in terms of the plasma dispersion function, the first linear
equation can be written as:

(−J020I
00
00 −

k v0

i n0
)ν̄ +−J020I

00
01

√
2uz + (J020 − J100)I00

10 (2/
√

5)qtr,z

+ (J020 − J100)I00
10

√
ctrτtr + J001

100 I
00
10

√
cintτint + J110

011 I
00
11

√
2/cintqint,z = − 1

kn0
I00

00 .

(40)

Similarly, one can work out the other five equations, by taking the inner product of
|Ψ010,0〉, |Ψ100,0〉, ... with Eq. (37). The full result can be written as a matrix equation
in the form of AX = B, with:

A = n0

kv0



−J020I
00
00 − k v0

i n0
−J020I

00
01 (J020 − J110)I00

11

−J020I
01
00 −J020I

01
01 − k v0

i n0
(J020 − J110)I01

11

−J020I
11
00 −J020I

11
01 (J020 − J110)I11

11 + k v0
i n0

−J020I
10
00 −J020I

10
01 (J020 − J110)I10

11

0 0 −J110
011 I

00
01

0 0 −J110
011 I

01
01

(J020 − J100)I00
10 J001

100 I
00
10 J110

011 I
00
11

(J020 − J100)I01
10 J001

100 I
01
10 J110

011 I
01
11

(J020 − J100)I11
10 J001

100 I
11
10 J110

011 I
11
11

(J020 − J110)I10
10 + k v0

i n0
J001

100 I
10
10 J110

011 I
10
11

−J001
100 I

00
00 (J001 − J020)I00

00 − k v0
i n0

(J011 − J020)I00
01

−J001
100 I

01
00 (J001 − J020)I01

00 (J011 − J020)I01
01 − k v0

i n0
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X =



ν(k, ω)√
2uz(k, ω)

(2/
√

5)qtr,z(k, ω)√
ctrτtr(k, ω)√
cintτint(k, ω)√

2/cintqint,z(k, ω)

 and B = − 1
q2v0


I00

00

I01
00

I11
00

I10
00

0
0

 . (41)

The matrix elements of J in Matrix A can be expressed in terms of the transport
coefficients: i.e. the shear viscosity ηs, the bulk viscosity ηb and thermal conductivity
κ:

ηs =
kBT

J020

ηb = −2

3

(
cint

ctr + cint

)2 kBT

J100

κ = −
k2
BT

m

5
2J011 + cintJ110 + (10cint)

1/2J110
011

J011J110 − (J110
011 )2

.

(42)

Together with the identities:

J020 = −kv0y

n0

J110 = −2kBT

3ηs
− 5γ2

intkBT

9ηb

J110
011 = −

√
5/8cintγ

2
intkBT

ηb

J011 = − 2γintkBT

3(ctr + cint)ηb

2ηb/5ηs(ctr + cint)
2 + cint(1 + cint/3) + γ2

intmκ/6kBηb

−1 + 4mκ/15kBηs + 2γ2
intmκ/9kBηb

J100 =

√
2cint

3
J001

100 =

√
2cint

3
J100

001 =
2cint

3
J001 .

(43)

all the elements of J in Eq. (41), can be expressed in terms of these three transport
coefficients, the atomic mass m of the particles, the internal specific heat capacity per
molecule cint, and γint = cint/(ctr + cint).

The fluctuation characteristics of the gas are contained in the structure factor:

S(k, ω) =

∫ +∞

−∞
e−iωtdt

∫
G(r, t) eik·rdr , (44)

where the structure factor S(k, ω) is the space-time Fourier-transform of G(r, t), which
equals the classic time-dependent density Van Hove’s correlation function [63].

Boley et al. [19] identified the density correlation function as G(r, t) = n0ν(r, t).
Then based on Eq. (44), the RB-scattering profile which is proportional to S(k, ω) can
be written as:

I(k, ω) ∝ S(k, ω) = n0ν(k, ω) , (45)
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where ν(k, ω) is the Fourier transform of ν(r, t). That is, the RB-scattering profile is
proportional to the real part of the first element of the vector X with X = A−1B.

In the literature there exist a number of codes to numerically compute the Rayleigh-
Brillouin spectrum from the Tenti models, e.g. in the PhD Thesis of Pan [33]. Recently
a Mathlab-code was developed for calculation of RBS profiles [35], which is made avail-
able in the Supplementary Material. These codes produce an RB-scattering spectrum
based on inputs for λi, θ, p, T , ηs, m, cint, κ and ηb, where the possibility is included
to determine a value of a parameter by fitting to an experimental spectrum.
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