. supplementary Information

> SI'l. MATRIX INVERSION COMPUTATIONS

s To evaluate the observed data likelihood, we must compute branch-deflated precisions P} =
4 (Pi_ + ti@-E(Si)* fori=1,...,2N — 2. We demonstrate below that this matrix exists and
5 is well-defined under the definition of our pseudo-inverse. Using the permutation matrix C;

6 from Section 2.1.1, we decompose the diffusion variance 3 and node precision P; such that

Egbs E;)l Egm
>=0C; — X oy CZ and
_ _ E;nis

P, — Cdiag [ooI, P, 01] Ct,
7 fore=1,...,2N — 2. We use this decomposition to identify that:

N _ Egbs 291 ] -
el (diag [OOI,PZ-,OID vdiag |6 0 T Lo | ¢
_ Ellat
R | = xy t @
— ¢, | diag [OI,PZ- ,OOI}—i—dlag t; o1 | ¢
_ Ellat
~ C; (diag [T, ocI)” C!
= C, diag [T_l, OI} C,
s where
L I > B> 5
T = diag [OI,PZ- }thi - o . 2)
B N AR



o The matrix T is the sum of a positive-definite matrix and positive-semidefinite matrix and

10 1s therefore invertible.

u SI2. HERITABILITY STATISTIC

12 We compute the expectation of the empirical variance E[S?(Y)] under the MBD model with

13 residual variance as follows:

E[S*(Y)] =E S (Y-Y) (Y- Y)]

1 2
= NE YtY — NYtJNY + thJNJNY]

1 The multivariate normal distribution of vec [Y] implies Cov (Yii,Yj) = X Yi; + Fkl Lii—j)

15 where 1y;—j; is an indicator function. Using this information in SI Equation 3,

N

1

E[S*(Y)] = v > (TaZ +T 7' +E[Y]E[Y,]")
=1
1 N N

N2 > D (0= +T iy +E[YE[Y,])

1 o 1 1 “

—1 —1
:Ntr[T]E—i—l—‘ <N21t TlN)E_NF

F o SEVIEY] - 15 3 S EVIEY)

i=1 i=1 j=1

16 Note that E[Y;] = Yoy_1 for i = 1... N, which implies

%ZE[Yi it—NLZZE[Yi]E[YﬂtZO- (5)
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SI Table 1: Likelihood calculation speed comparison between BEAST and PCMBaseCpp.
Each data set was run 10 times for 1,000 likelihood evaluations each. We report the median
likelihood evaluations per second and speed-up over the 10 runs.

Likelihood evaluations/sec

Data set N P Speed-up
BEAST PCMBaseCpp

Prokaryotes 705 7 240 40 6.0x

HIV 1536 3 490 67 7.2%

Mammals 3649 8 60 12 5.1x

As such, our expression for the expected empirical variance reduces to the following:

E[S*(Y)] = %r—l - (%tr (Y] — $1§VT1N) 3. (6)

S1'3. COMPARISON WITH PCMBaseCpp

As our algorithm for efficiently computing the likelihood with incomplete trait measurements
relies on a similar strategy as that presented by Mitov et al. (2020), we compare the likelihood
computation speed of our BEAST (Suchard et al., 2018) implementation against and the
PCMBaseCpp implementation. We record the time it takes to evaluate the likelihood 1,000
times using the data and trees from all three examples we discuss in the text, and repeat
this ten times for each example. We report the median likelihoods per second in SI Table 1.
We also perform the same comparisons with simulated trees and data sets, and report these
results in SI Table 2.

Note that while we do show consistently faster likelihood evaluations than PCMBase,
we do not believe that our implementation is necessarily “better” than that of Mitov et al.
(2020). The primary difficulty in comparing the speed of the two software packages is that
we implement our software in different languages (BEAST in Java and PCMBase in R and
C++), and the specific Java and C++ compilers used could influence their speed. It is

difficult to determine the exact sources of the differences in speed without testing both
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SI Table 2: Likelihood calculation speed comparison between BEAST and PCMBaseCpp
on simulated data. For each N, P combination, data was simulated 10 times under random
conditions and run for 1,000 likelihood evaluations each. We report the median likelihood
evaluations per second and speed-up over the 10 runs.

Likelihood evaluations/sec

N P Speed-up
BEAST PCMBaseCpp
100 2 3300 1300 2.6%
100 10 690 180 3.8%
100 20 220 26 8.3%
1,000 2 780 170 4.5%
1,000 10 100 13 7.9%
1,000 20 25 2.8 8.8 %
10,000 2 82 16 5.1x
10,000 10 11 1.7 6.4 x
10,000 20 2.5 0.29 8.7x

implementations on a wide range of computer architectures and compilers.

Nevertheless, the PCMBase / PCMFit packages and BEAST are fundamentally different
in that PCMFit relies on maximum likelihood estimation (MLE) while BEAST performs
Bayesian inference. The MLE framework is certainly appropriate when the phylogenetic
tree is known with a high degree of certainty, but poses problems when the phylogenetic tree
is unknown and must be jointly inferred with the trait evolutionary process. Specifically,
MLE will likely produce biased results and has difficulty constructing confidence intervals
that take into account the uncertainty of the tree. From the Bayesian perspective, however,
we can simply integrate out the tree via Markov Chain Monte Carlo, that results in posterior

estimates of the trait evolution parameters that accurately reflect the uncertainty of the tree.

SI 4. SIMULATION STUDY

The setup of our simulation study is described in Section 6. SI Figures 1, 2, and 3 present

the results of our simulation study. In general, results indicate that our inference machinery



46

47

48

49

50

51

52

53

54

is sufficiently well-powered to accurately and precisely recapture the parameters used to
simulate the data. All parameters of interest achieve low posterior mean squared error
(MSE) when all available taxa are included. Additionally, there is no apparent bias in
our parameter estimation with the notable exception of the diagonal heritabilities. Note
that despite the fact that there is some bias in the heritability estimates, they also achieve
low logMSE and are indeed close to their “true” values. We believed the induced prior
on the diagonal heritabilities may be responsible for this bias, but have not fully explored
this phenomenon. Regardless, these results suggest that (conditioning on the model being

appropriate) our results accurately reflect biological reality.
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SI Figure 1: Mammals simulation study. Posterior log mean squared-error and bias of the
parameters of interest over ten simulated replicates. The boxes extend from the 25" to the
75" posterior percentiles with the middle bar representing the median. The lines extend

from the 2.5 through the 97.5" percentiles, with outliers depicted as dots. The sparsity
depicted by different colors represents different percentages of randomly removed data.
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SI Figure 2: Prokaryote simulation study results. See SI Figure 1 for description.
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SI Figure 3: HIV-1 simulation study results. See SI Figure 1 for description.
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