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1 Proofs16

1.1 Proof of Proposition 117

Proof of Proposition 1. We seek to compute the probability mass function (pmf) of the

random partition Πn = {C1, . . . , CK} obtained from Model ESC[n](Pµ). We denote this

pmf by Pr(Πn|En) to make explicit the conditioning on En in Step 1 of Model ESC[n](Pµ).

Thus,

Pr(Πn|En) =

∫
Pr(Πn|µ, En)Pr(dµ|En) .

By Bayes’ theorem, we find that

Pr(dµ|En) =
Pµ(dµ)Pr(En|µ)

Pr(En)
,

where given the construction in Step 1 of Model ESC[n](Pµ), we observe that

Pr(En|µ) =
n∑
k=1

∑
(s1,...,sk)∈{1,n}k

I

(
k∑
j=1

sj = n

)
k∏
j=1

µsj

and Pr(En) =
∫

Pr(En|µ)Pµ(dµ). Now, consider Pr(Πn|µ, En). Summing over all possible

cluster assignments z = (z1, . . . , zn), we find that

Pr(Πn|µ, En) =
K∑

z1,...,zn=1

Pr(Πn|z,µ, En)Pr(z|µ, En).

The term Pr(Πn|z,µ, En) equals 1 for all K! cluster assignments z, leading to the partition

Πn and 0 otherwise. The term Pr(z|µ, En) equals

Pr(z|µ, En) =Pr(z|S1, . . . , SK)Pr(S1, . . . , SK |µ, En)

=

∏K
j=1 Sj!

n!

∏K
j=1 µSj

Pr(En|µ)
,
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where Sj =
∑n

i=1 I(zi = j) denote the size of the j-th cluster. It follows that18

Pr(Πn|µ, En) =
K!
∏K

j=1 Sj!µSj

n!Pr(En|µ)
(1.1)

and19

Pr(Πn|En) =

∫
Pr(Πn|µ, En)Pr(En|µ)

Pr(En)
Pµ(dµ) =

1

n!Pr(En)

∫
K!

K∏
j=1

|Sj|!µSj
Pµ(dµ) .

(1.2)

The thesis follows from the definition of EPPF.20

1.2 Proof of Proposition 2 and Corollary 121

Proof of Proposition 2 and Corollary 1. The expression for the conditional EPPF p(n)(·;µ)

follows directly from Equation (1.1). The expression for the prediction rule follows from

Bayes theorem and

Pr(zi, z−i|µ, En)

Pr(z−i|µ, En)
∝ k!

k∏
j=1

sj!µsj .

22

1.3 Proof of Theorems 1, 2 and 323

In this section, we prove Theorems 1, 2 and 3. The first essential ingredient for our proofs24

is the Renewal Theorem from the literature on Renewal processes.25

Theorem 1.1 (Renewal Theorem). Assume µ1 > 0 and
∑

s=1 sµs ≤ ∞. Then

Pr(En)→ 1∑
s=1 sµs

as n→∞.
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We refer to Barbu & Limnios (2009, Thm.2.6) for a proof of the Renewal Theorem.26

The second ingredient is the following technical Lemma that we prove below.27

Lemma 1.1. Let X1, X2, . . . be a sequences of random variables and E1, E2, . . . be a se-28

quence of events, with En defined on the same probability space of Xn. If Xn
p→ c as n→∞29

for some c ∈ R and lim infn→∞ Pr(En) > 0, then Xn|En
p→ c.30

Proof. Fix ε > 0 and define the event An = {|Xn − c| > ε}. Since Xn
p→ c it follows that

limn→∞ Pr(An) = 0. Thus

lim sup
n→∞

Pr(An|En) = lim sup
n→∞

Pr(An ∩ En)

Pr(En)
≤ lim supn→∞ Pr(An)

lim infn→∞ Pr(En)
= 0 ,

where the last equality follows from limn→∞ Pr(An) = 0 and lim infn→∞ Pr(En) > 0. It31

follows that, for any ε > 0, limn→∞ Pr(|Xn−c| > ε|En) = 0, meaning that Xn|En
p→ c.32

Proof of Theorem 1. We use L(·) and L(·|·) to denote marginal and conditional distribu-

tions of random variables. By construction of Πn ∼ ESC[n](µ), we have

L(Kn) = L(Yn|En) and L(Sj) = L(Xj|En) n ≥ 1; j = 1, . . . , Kn (1.3)

where X1, X2, · · ·
iid∼ µ, Yn = max{k :

∑k
j=1Xj ≤ n} and33

En =

{
ω ∈ Ω : for some k ≥ 1 it holds

k∑
j=1

Xj = n

}
. (1.4)

Theorem 1.1 implies lim infn→∞ Pr(En) > 0. Also, the strong law of large numbers for34

renewal processes (see e.g. Barbu & Limnios 2009, Thm.2.3) implies that n−1Yn converges35

almost surely to (
∑∞

s=1 sµs)
−1, and thus, also in probability. Since n−1Yn

p→ (
∑∞

s=1 sµs)
−1

36

and lim infn→∞ Pr(En) > 0, it follows by Lemma 1.1 and Equation (1.3) that n−1Kn
p→37

(
∑∞

s=1 sµs)
−1, as desired.38
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Proof of Theorem 2. By construction of Πn ∼ ESC[n](µ) we have39

L(Ms,n) = L(Ls,n|En) n ≥ 1 , (1.5)

where Ls,n =
∑Yn

j=1 1(Xj = s), and Xj, Yn and En are defined as in the proof of Theorem40

1. Since 1(Xj = s) are independent and identically distributed Bernoulli random variables41

with mean µs and limn→∞ Yn = ∞ almost surely, the strong law of large numbers imply42

that43

lim
n→∞

Ls,n
Yn

= lim
n→∞

∑Yn
j=1 1(Xj = s)

Yn
= lim

n→∞

∑n
j=1 1(Xj = s)

n
= µs almost surely . (1.6)

Thus,

lim
n→∞

Ls,n
n

= lim
n→∞

Ls,n
Yn

Yn
n

= µs

(
∞∑
`=1

`µ`

)−1

almost surely ,

where we used the fact that limn→∞ n
−1Yn = (

∑∞
`=1 `µ`)

−1
almost surely by the strong law44

of large numbers for renewal processes (see e.g. Barbu & Limnios 2009, Thm.2.3Since almost45

sure convergence implies convergence in probability, we have n−1Ls,n
p→ µs(

∑∞
`=1 `µ`)

−1
,46

which implies n−1Ms,n
p→ µs(

∑∞
`=1 `µ`)

−1
by Equation (1.5) and Lemma 1.1, as desired.47

Consider now part (b). The size of cluster chosen uniformly at random from the clusters48

of Πn is a random variable SUn , where S1, . . . , SKn are the sizes of the clusters of Πn and49

Un is a random variable satisfying Un|Πn ∼ Uniform{1, . . . , Kn}. For any positive integer50

s, by the definition of Un, we have Pr(SUn = s|Πn) = K−1
n Ms,n and thus51

Pr(SUn = s) = E[Pr(SUn = s|Πn)] = E
[
Ms,n

Kn

]
. (1.7)

By construction of Πn ∼ ESC[n](µ), we have

L
(
Ms,n

Kn

)
= L

(
Ls,n
Yn

∣∣∣∣En) n ≥ 1 ,
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and by Equation (1.6) we have Y −1
n Ls,n

p→ µs. Thus Lemma 1.1 implies K−1
n Ms,n

p→ µs.52

Since K−1
n Ms,n ∈ [0, 1] it follows that E[K−1

n Ms,n] → µs and thus, by Equation (1.7),53

Pr(SUn = s)→ µs as desired.54

Proof of Theorem 3. Let Xj, Yn and En be defined as in the proof of Theorem 1. By55

construction of Πn ∼ ESC[n](µ), we have56

L(Mn) = L(Ln|En) n ≥ 1 (1.8)

where Ln = max{X1, . . . , XYn}. For any ε > 0 consider

Pr
(
n−1Ln > ε

)
= Pr

(
n−1 max{X1, . . . , XYn} > ε

)
≤ Pr

(
n−1 max{X1, . . . , Xn} > ε

)
= 1− Pr

(
∩nj=1{Xj ≤ nε}

)
= 1−

( dεne∑
j=1

µj

)n

,

where the inequality in the first row of the display follows from Yn ≥ n. Since 1 − xn ≤

n(1− x) for all x ∈ [0, 1] and n ≥ 1, we have

1−

( dεne∑
j=1

µj

)n

≤ n

(
1−

dεne∑
j=1

µj

)
= n

∞∑
j=bεnc+1

µj

= ε−1

∞∑
j=bεnc+1

εnµj ≤ ε−1

∞∑
j=bεnc+1

jµj → 0 as n→∞ ,

where the convergence limn→∞
∑∞

j=bεnc+1 jµj = 0 follows from
∑∞

j=1 jµj <∞ and limn→∞bεnc+57

1 =∞. Combining the last inequalities we obtain limn→∞ Pr(n−1Ln > ε)→ 0 or, in other58

words, n−1Ln
p→ 0 as n→∞. Thus, by Equation (1.8), Lemma 1.1, and lim infn→∞ Pr(En) >59

0 (which follows from Theorem 1.1), we obtain n−1Mn
p→ 0 as n→∞, as desired.60
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2 Samplers for Posterior Inference61

In this section, we provide additional details regarding the samplers used for posterior62

inference. In the following derivations, we use the fact that, under the ESC[n](Pµ) model,63

the joint distribution of µ and Πn is64

Pr(dµ,Πn) =
Pµ(dµ)

Pr(En)

K!

n!

K∏
j=1

Sj!µSj
, (2.1)

which can be easily derived using Equation (9). It follows that the conditional distribution65

of µ given Πn satisfies66

Pr(dµ|Πn) ∝ Pµ(dµ)
K∏
j=1

Sj!µSj
. (2.2)

The precise mathematical interpretation of Equation (2.2) is that the Radon–Nikodym67

derivative between the distribution of µ conditional on Πn and the distribution Pµ is68

proportional to
∏K

j=1 Sj!µSj
. The key aspect of Equation (2.2) is that the conditional69

distribution of µ does not depend on the intractable term Pr(En|µ), which makes the70

updates of µ|Πn in the MCMC algorithms for posterior sampling straightforward.71

2.1 ESC-NB model72

Recall that, for the ESC-NB model, µ = µ(r, p) is a deterministic function of r and p73

specified by Equation (13).74

Derivation of Equation (14). Since r, p are conditionally independent of x given Πn we

have Pr(r, p|Πn,x) = Pr(r, p|Πn). Then, combining Equation (2.2) with Equation (13) and
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the prior specification r ∼ Gamma(ηr, sr), p ∼ Beta(up, vp), we obtain

Pr(r, p|Πn,x) = Pr(r, p|Πn) ∝

(
rηr−1e−

r
sr

Γ(ηr)s
ηr
r

)(
pup−1(1− p)vp−1

B(up, vp)

) K∏
j=1

Sj!µSj

∝ rηr−1e−
r
sr pup−1(1− p)vp−1

K∏
j=1

Sj!γ
Γ(Sj + r)pSj

Γ(r)Sj!

∝ rηr−1e−
r
sr pn+up−1(1− p)vp−1γK

K∏
j=1

Γ(Sj + r)

Γ(r)
,

which proves Equation (14).75

Derivation of Equation (15). Given the dependence structure of (r, p), Πn, and x, we have76

Pr(Πn|r, p,x) ∝ Pr(Πn|r, p)Pr(x|Πn) and thus77

Pr(zi = j|z−i,x, r, p) ∝ Pr(x|z−i, zi = j)× Pr(zi = j|z−i, r, p) . (2.3)

Corollary 1 implies

Pr(zi = j|z−i, r, p) ∝

 (Sj + 1)
µ(Sj+1)

µSj
if j = 1, . . . , K−i,

(K−i + 1)µ1 if j = K−i + 1 ,

where, by Equation (13), we have µ1 = γ r p and

µ(Sj+1)

µSj

=
γ

Γ(Sj+1+r)pSj+1

Γ(r)(Sj+1)!

γ
Γ(Sj+r)pSj

Γ(r)Sj !

= p
Γ(Sj + 1 + r)

Γ(Sj + r)

Sj!

(Sj + 1)!
= p

Sj + r

Sj + 1
.

Therefore

Pr(zi = j|z−i, r, p) ∝

 (Sj + 1)p
Sj+r

Sj+1
if j = 1, . . . , k−i,

(K−i + 1)γ r p if j = k−i + 1 ,

∝

 Sj + r if j = 1, . . . , K−i,

(K−i + 1)γr if j = K−i + 1 .

78
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2.2 ESC-D model79

Derivation of Equation (17). While in the ESC-NB model µ is a deterministic function of r

and p, for the ESC-D model we have µ|r, p ∼ Dir(α,µ(0)), where µ(0) = µ(0)(r, p) is defined

in Equation (16). Thus, integrating out µ in Equation (2.1) and using r ∼ Gamma(ηr, sr)

and p ∼ Beta(up, vp), we obtain

P (r, p,Πn) =
1

P (En)

(
rηr−1e−

r
sr

Γ(ηr)s
ηr
r

)(
pup−1(1− p)vp−1

B(up, vp)

)
Eµ∼Dir(α,µ(0))

[
K!

n!

K∏
j=1

Sj!µSj

]
.

(2.4)

Using Ms,n =
∑K

j=1 1(Sj = s) and standard expressions for the moments of the Dirichlet

distribution we obtain

Eµ∼Dir(α,µ(0))

[
K!

n!

K∏
j=1

Sj!µSj

]
=
K!

n!

(
Mn∏
s=1

s!Ms,n

)
Eµ∼Dir(α,µ(0))

[
Mn∏
s=1

µMs,n
s

]

=
K!

n!

(
Mn∏
s=1

s!Ms,n

)
Γ(α)

Γ(K + α)

Mn∏
s=1

Γ(Ms,n + αµ
(0)
s )

Γ(αµ
(0)
s )

=
K!

n!

Γ(α)

Γ(K + α)

Mn∏
s=1

s!Ms,nΓ(Ms,n + αµ
(0)
s )

Γ(αµ
(0)
s )

. (2.5)

Combining Equations (2.4) and (2.5) we obtain that the joint distribution of r, p and Πn

under the ESC-D model satisfies

P (r, p,Πn) ∝ rηr−1e−
r
sr pup−1(1− p)vp−1K!

Γ(K + α)

Mn∏
s=1

s!Ms,nΓ(Ms,n + αµ
(0)
s )

Γ(αµ
(0)
s )

. (2.6)

The expression in Equation (17) follows from Equation (2.6) and the fact that Pr(r, p|Πn,x) =80

Pr(r, p|Πn) because r and p are conditionally independent of x given Πn.81
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3 Importance Sampler for ESC models82

In this section we describe an importance sampler that can be used to generate weighted83

samples from random partitions Πn ∼ ESC[n](Pµ). The propose algorithm is not a fully84

standard importance sampler and thus we prove its validity in Theorem 3.1. In the context85

of Bayesian inferences, this algorithm can be used to generate samples from a ESC[n](Pµ)86

prior distribution for random partition. Unlike the rejection sampler described in the main87

document, we expect the importance sampler described here to be efficient even when88

Eµ∼Pµ [(
∑

s=1 sµs)
−1] becomes small.89

Algorithm 1. (Importance Sampler for ESC models)90

1. Sample µ ∼ Pµ and S1, . . . , SR|µ
iid∼ µ until the first value R such that

∑R
j=1 Sj ≥ n.91

2. For k = 1, . . . , R define Dk = n−
∑k−1

j=1 Sj and W =
∑R

k=1 µDk
.92

3. Sample K from {1, . . . , R} with probability Pr(K = k) = µDk
/W , and define the93

cluster allocation variables (z1, . . . , zn) as a uniformly at random permutation of the94

vector95

(1, . . . , 1︸ ︷︷ ︸
S1 times

, 2, . . . , 2︸ ︷︷ ︸
S2 times

, . . . . . . , K − 1, . . . , K − 1︸ ︷︷ ︸
SK−1 times

, K, . . . ,K︸ ︷︷ ︸
DK times

). (3.1)

4. Output the resulting partition Πn as a weighted sample from the model ESC[n](Pµ)96

with importance weight Pr(En)−1W .97

Intuitively, given each vector of cluster sizes (S1, . . . , Sk−1), Algorithm 1 considers the98

probability µDk
of sampling Sk = Dk and weights the resulting vector of cluster sizes99

(S1, . . . , Sk−1, Dk) accordingly. The following theorem shows that the algorithm is valid, in100
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the sense that it returns weighted samples from the distribution ESC[n](Pµ) that produce101

unbiased and consistent Monte Carlo estimators like standard Importance Sampling does.102

Theorem 3.1. For every real-valued function h defined over the space of partitions of [n]103

we have104

E(Πn,W )∼Alg1[Pr(En)−1W h(Πn)] = EΠn∼ESC[n](Pµ)[h(Πn)] , (3.2)

where the notation (Πn,W ) ∼ Alg1 means that Πn is a partition produced by Algorithm105

1 with associated importance weight Pr(En)−1W . Also, given a sequence (Π
(t)
n ,W (t))∞t=1

iid∼106

Alg1, we have107 ∑T
t=1W

(t) h(Π
(t)
n )∑T

t=1W
(t)

a.s.→ EΠn∼ESC[n](Pµ)[h(Πn)] as T →∞ . (3.3)

Proof. By Proposition 1, or equivalently by (1.2), we have

EΠn∼ESC[n](Pµ)[h(Πn)] =
1

n!Pr(En)

∑
Πn

h(Πn)

∫
K!

K∏
j=1

|Sj|!µSj
Pµ(dµ) , (3.4)

where the sum over Πn runs over all partitions of [n]. We now consider the expectation

E(Πn,W )∼Alg1[Pr(En)−1W h(Πn)] and show that it is equal to the same expression. To sim-

plify the proof we consider an equivalent formulation of Algorithm 1, where we simulate

µ ∼ Pµ and S1, . . . , Sn|µ
iid∼ µ in Step 1; we set W =

∑n
k=1 µDk

with µDk
= 0 when Dk ≤ 0

in Step 2; we sample K from {1, . . . , n} with probability Pr(K = k) = µDk
/W in Step 3

and leave the rest of the algorithm unchanged. The latter is an equivalent formulation of

Algorithm 1 that is computationally less efficient because it generates additional variables

SR+1, . . . , Sn that are not necessary in practice, but is slightly simpler to analyse because

it avoids the use of the auxiliary variable R. In order to keep the notation light, we denote

S = (S1, . . . , Sn) and z = (z1, . . . , zn) and we denote random variables (e.g. S, K and z)

11



and their possible realizations with the same symbols. We have

E(Πn,W )∼Alg1[W h(Πn)]

=

∫ ∑
S∈{1,2,... }n

Pr(S|µ)
n∑

K=1

Pr(K|S,µ)
∑
z

Pr(z|K,S)Wh(Πn(z))Pµ(dµ)

=

∫ ∑
S∈{1,2,... }n

(
n∏
j=1

µSj

)
n∑

K=1

µDK∑n
k=1 µDk

∑
z

(∏K−1
j=1 Sj!

)
DK !

n!

(
n∑
k=1

µDk

)
h(Πn(z))Pµ(dµ)

=
1

n!

∫ ∑
S∈{1,2,... }n

n∑
K=1

(
n∏
j=1

µSj

)
µDK

(
K−1∏
j=1

Sj!

)
DK !

∑
z

h(Πn(z))Pµ(dµ) , (3.5)

where the sum over z runs over all the vectors that can be obtained as a permutation of

the vector in (3.1). Reorganizing the sum and exploiting the fact that z and Πn depend

only on (S1, . . . , SK−1) and K, we can integrate out (SK , . . . , Sn) and write (3.5) as

1

n!

n∑
K=1

∑
(S1,...,SK−1)∈{1,2,... }K−1

∑
z

h(Πn(z))

∫ (K−1∏
j=1

µSj
Sj!

)
µDK

DK !Pµ(dµ) .

Re-writing the sums above in terms of the resulting partition Πn, and exploiting the fact

that each partition Πn can be obtained through K! different cluster assignments z, we have

E(Πn,W )∼Alg1[W h(Πn)] =
1

n!

∑
Πn

h(Πn)K!

(
K−1∏
j=1

|Sj|!µSj

)
µDK

DK ! , (3.6)

where the sum over Πn runs over all partitions of [n] and the cluster sizes of Πn are denoted108

as (S1, . . . , SK−1, DK) for coherence with the notation of Algorithm 1. Comparing (3.4)109

and (3.6) we obtain (3.2).110

The almost sure convergence in (3.3) follows by applying the strong law of large numbers

to both numerator and denominator in the fraction on the left-hand side, and then noting

that by (3.2) we have

E(Πn,W )∼Alg1[W h(Πn)]

E(Πn,W )∼Alg1[W ]
=

Pr(En)EΠn∼ESC[n](Pµ)[h(Πn)]

Pr(En)
= EΠn∼ESC[n](Pµ)[h(Πn)] .

12



111

Note that the normalized importance weight Pr(En)−1W involves the constant Pr(En)112

that is typically not available in closed form. However, this is not a problem because the self-113

normalized importance sampling estimator defined in (3.3) is not sensitive to multiplicative114

constants in the importance weights. Thus, one can directly useW as an importance weight,115

ignoring the unknown constant Pr(En).116

4 Likelihood Derivation for Entity Resolution117

In this section, we provide the derivation of the likelihood that is used in our ER task.118

Recall that the observed data x consist of n records (xi)
n
i=1 and each record xi contains L119

fields (xi`)
L
`=1. Each field ` is associated to two hyperparameters: a distortion probability120

β` ∈ (0, 1) and a density vector θ` = (θ`d)
D`
d=1 ∈ [0, 1]D` , where D` denotes the number of121

categories for field ` and
∑D`

d=1 θ`d = 1. As mentioned in Section 4, we assume that clusters122

are conditionally independent given the partition Πn and the hyperparameters β = (β`)
L
`=1123

and θ = (θ`)
L
`=1, resulting in124

P (x|Πn,β,θ) =
K∏
j=1

L∏
`=1

P (xj`|β`,θ`) , (4.1)

where xj` = {xi` : i ∈ Cj}. For each Cj ∈ Πn, the distribution of xj`|β`,θ` is given by

yj` ∼ θ` (4.2)

xi`|yj`
iid∼ β`θ` + (1− β`)δyj` i ∈ Cj , (4.3)

where yj` represent the correct l-th feature of the entity associated to cluster Cj, and β`

is the probability of distortion in feature `. Integrating out yj` from Equations (4.2) and
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(4.3) it follows

P (xj`|β`,θ`) =

D∑̀
d=1

P (yj` = d|θ`)
∏
i∈Cj

P (xi`|β`, yj` = d)

=

D∑̀
d=1

θ`d
∏
i∈Cj

(β`θ`xn`
+ (1− β`)1(xi` = d))

=

∏
i∈Cj

β`θ`xi`

 D∑̀
d=1

θ`d
∏
i∈Cj

(β`θ`xi` + (1− β`)1(xi` = d))

β`θ`xi`
(4.4)

To proceed we denote by x
(j)
1` , . . . , x

(j)

m(j)`
the collection of unique values in xj` and by

q
(j)
1` , . . . , q

(j)

m(j)`
the corresponding frequencies, meaning that for each i ∈ {1, . . . ,m(j)} the

value x
(j)
i` appears exactly q

(j)
i` times in xj`. Then from Equation (4.4) we have

P (xj`|β`,θ`) =

∏
i∈Cj

β`θ`xi`

f(xj`, β`,θ`) , (4.5)

where

f(xj`, β`,θ`) = 1−
m(j)∑
i=1

θ
`x

(j)
i`

+
m(j)∑
i=1

θ
`x

(j)
i`

(
β`θ`x(j)i`

+ (1− β`)
β`θ`x(j)i`

)q
(j)
i`

. (4.6)

Combining Equations (4.5) and (4.1), we obtain the desired likelihood function125

P (x|Πn,β,θ) =

(
L∏
`=1

n∏
i=1

β`θ`xi`

)
K∏
j=1

L∏
`=1

f(xj`, β`,θ`) . (4.7)
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5 Implementation details of MCMC algorithms126

In this section, we provide more details on the MCMC algorithms used to approximate127

posterior quantities of interest in Section 5 of the paper. Posterior computation is performed128

using the samplers described in Sections 3.3.1-3.3.2 of the paper. The results are based129

on MCMC runs of 2× 107 iterations, thinning every 1, 000 iterations1 and then discarding130

the first 5000 out of 20000 resulting samples as burn-in. In all cases standard convergence131

diagnostics and plotting of traceplots did not highlight significant mixing issues. In the132

real data experiments of Section 5.3, four MCMC runs for each dataset were performed to133

reduce Monte Carlo error, see more details below. MCMC runtimes were roughly 1 hour134

per run for Section 5.1, 20 hours per run for Section 5.3.1 and 50 hours per run for Section135

5.3.1. The algorithms were implemented in R and a desktop computer with 32GB of RAM136

and an i9 Intel processor was used to perform the simulations.137

When implementing the chaperones algorithm of Miller et al. (2015, Appendix B), we138

used a non-uniform probability of selecting chaperones i, j ∈ {1, . . . , n}, assigning higher139

probability to pairs of records whose values agree on a large number of randomly selected140

fields 2. This approach greatly improves convergence of the algorithm and respects the141

assumptions that the probability of selecting any pair of records is strictly greater than142

zero and is independent of the current partition, which are necessary to ensure the validity143

1More precisely, we perform 2×104 MCMC iterations, and within each iteration perform one update of

the global parameters and 1000 updates of the partition given the global parameters using the chaperones

algorithm.
2The latter is done by first sampling a random number Nf of fields between 0 and L, then picking

Nf fields uniformly at random and then pick the chaperones i, j ∈ {1, . . . , n} uniformly at random among

those that agree on those Nf fields. Other strategies could be used to favor pairs of chaperones that agree

on various fields and we claim no optimality of this specific implementation.
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of the chaperones algorithm (see Miller et al. 2015, Appendix B). We expect the use of the144

chaperones algorithm with non-uniform proposals to be particularly beneficial in contexts145

with very small clusters, while for cases of larger clusters we expect the latter algorithm to146

behave similarly to standard split and merge schemes (Jain & Neal 2004).147

Figures 1 and 2 show the traceplots for K, FNR and FDR for the four chains used for the148

SDS and SIPP data sets, respectively. No issues of convergence are observed in either case.149

However, the mixing of the chains for the SDS is slower compared to the SIPP data. Table150

1 displays the estimated MCMC standard errors for the estimation of the average posterior151

FNR and FDR using the four chains and discarding the first 5,000 iterations of each run as152

a burn-in. The MCMC standard errors were computed using the function summary.mcmc153

from the R package CODA (Plummer et al. 2006). The estimated standard errors are154

all between 0.01% and 0.04%, indicating that the FNR and FDR estimates presented in155

Section 5.3 of the main document are reliable up to one decimal place (in percentage),156

which is the level of precision reported in Tables 2 and 3 of the main document.157

SDS SIPP

Model FNR SE FDR SE FNR SE FDR SE

DP 0.03 0.04 0.02 0.01

PY 0.02 0.04 0.02 0.01

ESCNB 0.02 0.04 0.01 0.02

ESCD 0.02 0.02 0.01 0.01

Table 1: Time-series MCMC error (in percentages) for the posterior expected values of FNR and

FDR for SDS and SIPP data sets.
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Figure 1: SDS dataset.Trace plots of number of clusters (K), false negative rate (FNR) and

false discovery rate (FDR) for four chains of 20,000 iterations of DP, PY, ESC-NB and ESC-D

models for SDS data set of K = 5, 500.
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Figure 2: SIPP dataset.Trace plots of number of clusters (K), false negative rate (FNR) and

false discovery rate (FDR) for four chains of 20,000 iterations of DP, PY, ESC-NB and ESC-D

models for SIPP data set of K = 1, 000.
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6 Additional results for the simulation study158
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Figure 3: Posterior distribution of the number of clusters of each size (black boxplots based on

20k MCMC samples from the posterior after thinning) versus number of clusters of each size in

the true data-generating partition (red dots) for β = 0.01. Each column corresponds to a different

prior for the partition, and each row to a different data generating partition.
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Figure 4: Posterior distribution of the number of clusters of each size (black boxplots based on

20k MCMC samples from the posterior after thinning) versus number of clusters of each size in

the true data-generating partition (red dots) for β = 0.10. Each column corresponds to a different

prior for the partition, and each row to a different data generating partition.

20



References159

Barbu, V. S. & Limnios, N. (2009), Semi-Markov chains and hidden semi-Markov models160

toward applications: their use in reliability and DNA analysis, Vol. 191, Springer Science161

& Business Media.162

Jain, S. & Neal, R. M. (2004), ‘A split-merge markov chain monte carlo procedure for163

the dirichlet process mixture model’, Journal of computational and Graphical Statistics164

13(1), 158–182.165

Miller, J., Betancourt, B., Zaidi, A., Wallach, H. & Steorts, R. (2015), ‘The Microclustering166

Problem: When the Cluster Sizes Don’t Grow with the Number of Data Points’, NIPS167

Bayesian Nonparametrics: The Next Generation Workshop Series .168

Plummer, M., Best, N., Cowles, K. & Vines, K. (2006), ‘Coda: Convergence diagnosis and169

output analysis for mcmc’, R News 6(1), 7–11.170

21


	Proofs
	Proof of Proposition 1
	Proof of Proposition 2 and Corollary 1
	Proof of Theorems 1, 2 and 3

	Samplers for Posterior Inference
	ESC-NB model
	ESC-D model

	Importance Sampler for ESC models
	Likelihood Derivation for Entity Resolution
	Implementation details of MCMC algorithms
	Additional results for the simulation study

