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A Sparse inverse covariance

In Section 3.1 (Figure 2) we provided a numerical example wherein the offline debiasing

does not admit an asymptotically normal distribution. As we see from the heat map

in Figure 4b, the precision matrix Ω has ∼ 20% non-negligible entries per row. The

goal of this section is to show that when Ω is sufficiently sparse, the offline debiased

estimator has an asymptotically normal distribution and can be used for valid inference

on model parameters.

The idea is to show that the decorrelating matrix M is sufficiently close to the

precision matrix Ω. Since Ω is deterministic, this helps with controlling the statistical

dependence between M and ε. Formally, starting from the decomposition (4) we write

θ̂off = θ0 + (I −MΣ̂)(θ̂L − θ0) +
1

n
MXTε

= θ0 + (I −MΣ̂)(θ̂L − θ0) +
1

n
(M − Ω)XTε+

1

n
ΩXTε , (47)

where we recall that Σ̂ is the empirical covariance of all the covariate vectors (episodes
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E0, . . . , EK−1). Therefore, we can write

√
n(θ̂off − θ0) = ∆1 + ∆2 +

1√
n

ΩXTε ,

∆1 =
√
n(I −MΣ̂)(θ̂L − θ0) ,

∆2 =
1√
n

(M − Ω)XTε .

(48)

The term ΩXTε/
√
n is gaussian with O(1) variance at each coordinate. For bias term

∆1, we show that ∆1 = O(s0(log p)/
√
n) by controlling |I −MΣ̂|. To bound the bias

term ∆2 we write

‖∆2‖∞ ≤
1√
n
‖M − Ω‖1‖XTε‖∞ , (49)

where ‖M − Ω‖1 denotes the `1 − `1 norm of M − Ω (the maximum `1 norm of its

columns). By using [2, Proposition 3.2], we have ‖XTε‖∞/
√
n = OP (

√
log(dp)).

Therefore, to bound ∆2 we need to control ‖M − Ω‖1. We provide such bound in

our next lemma, under the sparsity assumption on the rows of Ω.

Define

sΩ ≡ max
i∈[dp]

∣∣∣j ∈ [dp] : Ωi,j 6= 0
∣∣∣ ,

the maximum sparsity of rows of Ω. In addition, let the (offline) decorrelating vectors

ma be defined as follows, for a ∈ [dp]:

ma ∈ arg min
m∈Rdp

1

2
mTΣ̂m− 〈m, ea〉+ µ‖m‖1 . (50)

Lemma A.1. Consider the decorrelating vectors ma, a ∈ [dp], given by optimiza-

tion (50) with µ = 2τ
√

log(dp)
n

. Then, for some proper constant c > 0 and the sample

size condition n ≥ 32α(ω2∨1)sΩ log(dp), the following happens with probability at least

1− exp(−c log(dp2))− exp(−cn(1 ∧ ω−2)):

max
i∈[dp]
‖ma − Ωea‖1 ≤

192τ

α
sΩ

√
log(dp)

n
,

where αand ω are defined in Proposition F.4.
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The proof of Lemma A.1 is deferred to Section G.2.

By employing this lemma, if Ω is sufficiently sparse, that is sΩ = o(
√
n/ log(dp)),

then the bias term ‖∆2‖∞ also vanishes asymptotically and the (offline) debiased es-

timator θ̂off admits an unbiased normal distribution. We formalize such distributional

characterization in the next theorem.

Theorem A.2. Consider the VAR(d) model (5) for time series and let θ̂off be the

(offline) debiased estimator (3), with the decorrelating matrix M = (m1, . . . ,mdp)
T ∈

Rdp×dp constructed as in (50), with µ = 2τ
√

log(dp)/n. Also, let λ = λ0

√
log(dp)/n

be the regularization parameter in the Lasso estimator θ̂L, with τ, λ0 large enough con-

stants.

Suppose that s0 = o(
√
n/ log(dp)) and sΩ = o(

√
n/ log(dp)), then the following holds

true for any fixed sequence of integers a(n) ∈ [dp]: For all x ∈ R, we have

lim
n→∞

sup
‖θ0‖0≤s0

∣∣∣∣P
{√

n(θ̂off
a − θ0,a)√
Vn,a

≤ x

}
− Φ(x)

∣∣∣∣ = 0 , (51)

where Vn,a ≡ σ2(MΣ̂MT)a,a.

We refer to Section G.3 for the proof of Theorem A.2.

Numerical example. Consider a VAR(d) model with parameters p = 25, d =

3, T = 70, and Gaussian noise terms with covariance matrix Σζ satisfying Σζ(i, j) =

ρ|i−j| for ρ = 0.1. Let Ai matrices have entries generated independently from b ·

Bern(q) ·Unif({+1,−1}) formula with parameters b = 0.15, q = 0.05. Figure 7a shows

the magnitudes of the entries of the precision matrix Ω = E(xix
T
i )−1; as we see Ω

is sparse. Figures 7b, 7c, and 7d demonstrate normality of the rescaled residuals of

the offline debiased estimator built by decorrelating matrix M with rows coming from

optimization described in (50).

After this paper was posted, we learned of simultaneous work (an updated version of

[1]) that also studies the performance of the (offline) debiased estimator for time series

with sparse precision matrix. We would like to highlight some of the differences between

our discussion in Section A and that paper: 1) [1] considers decorrelating matrix M
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Figure 7: A Simple example of a VAR(d) process with parameters p = 25, d = 3, T = 70, and noise

term covariance matrix Σζ s.t Σζ(i, j) = ρ|i−j| with ρ = 0.1. Ai matrices have independent elements

coming from b · Bern(q).Unif({+1,−1}) formula with b = 0.15, q = 0.05. Normality of rescaled

residuals (figures 7b, 7c, and 7d) validates the successful performance of offline debiasing estimator

under sparsity of precision matrix Ω ( figure 7a) as we discussed in theorem A.2.
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constructed by an optimization of form (14), using the entire sample covariance Σ̂(K),

while we work with the Lagrangian equivalent (50). 2) [1] considers VAR(1) model,

while we work with VAR(d) models. 3) [1] assumes a stronger notion of sparsity, viz.

the sparsity of the entire precision matrix as well as the transition matrix to scale as

o(
√
n/ log p). Our results only require the row-wise sparsity of the precision matrix to

scale as o(
√
n/ log p), cf. Theorem A.2.

We would like to also discuss the related work [42] which studies the problem of

statistical inference on the coefficients of autoregressive models. This work follows the

same idea of debiasing, but uses an offline debiasing, in our terminology. Specifically,

they adopt the framework of [29] and propose a high dimensional test statistic based

on score function, called the decorrelated score function. It shows that under proper

sparsity assumptions on the model coefficients and the precision matrix, their bias-

corrected estimator achieves asymptotical Gaussianity. The work [42] considers the

simultaneous (group) inference on a fixed number of coefficients and in the univariate

case (testing an individual coefficient) their sparsity assumption becomes equivalent to

the assumptions of Theorem A.2 on s0 and sΩ. However, the decorrelated score matrix

in [42] is constructed by Lasso or Dantzig selector which is different from our proposal

in (50). Let us reiterate that the method of (50) is an offline debiasing approach and

hence, as discussed in Section 3.1 (Figure 2), may in general fail in providing valid

statistical tests for time series. Apart from this point, in order to further delineate the

differences of online debiasing with offline bias-correction methods, such as [42] , we

consider a set of numerical examples with sufficiently sparse precision matrix, where the

test of [42] is also guaranteed to have valid statistical performance. We use the software

package of [42] for an implementation of their method, and consider configurations that

are inspired by the package built-in example. We consider VAR(1) model where time-

series samples are generated from Xt = AXt + εt, with εt ∼ Unif[0, 1]. The generative

matrix A is of form A = diag(A0, A0, . . . , A0) with A0 a symmetric 2× 2 matrix:

A0 =

q2 q1

q1 q2

 . (52)
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Each configuration is determined by the number of samples T , the primary generative

matrix coefficients q1, q2, and the matrix dimension p. For each configuration, we test

all coordinates of A and report the two measures true positive rate (TPR) and false

positive rate (FPR), along with the running time of the algorithms. Note that the

[42] method outputs two test statistics U,R, which are constructed in almost similar

ways (except the last step) and so has the same running time. Table 1 demonstrates

the statistical performance of our online debiasing and the bias-correction method of

[42]. The reported values are averaged out over 10 independent experiments, and the

running times are in seconds.

The first interesting observation is about the statistical power, where it can be

observed that both online debiasing and [42] have comparable performance. Note that

on the one hand, the approach of [42] uses the Lasso or Dantzig selector to construct

decorrelated score and hence searches over the space of sparse matrices. However,

the online debiasing searches over the larger space of approximately sparse matrices

(cf. optimization (14)). This factor plays in favor of online debiasing to potentially

have higher power. On the other hand, the online debiasing framework uses samples

gradually and the decorrelating matrices M (`) are constructed from subsets of samples.

This factor plays in favor of offline debiasing methods that use the entire samples in

constructing the decorrelated score matrix. The interplay between these two factors

leads the two methods to have comparative statistical power.

The other interesting observation is about the running time of the two methods,

where it can be observed that online debiasing enjoys a significantly lower running time.

In fact, the online debiasing method with T samples, has log T number of episodes,

and for each one a dp× dp debiasing matrix is constructed by solving dp optimization

problems– because of row by row construction of each matrix. A delicate point we

would like to make is that in online debiasing, at each round, we focus on one row–

say i– of the generative matrices A(1), . . . , A(d) (stacked together as in equation (11)),

and construct the decorrelating matrices M (`). However, these decorrelating matrices

only depend on the covariate matrix (X in (11)) and so do not change across different

6



Configuration Online Debiasing U test R test

(p, T, q1, q2) TPR FPR Time TPR FPR Time TPR FPR Time

(6, 400, 1/15, 1/15) 0.35 0.046 12.52 0.325 0.067 241.90 0.325 0.067 241.90

(6, 600, 1/15, 1/15) 0.375 0.07 14.53 0.36 0.05 376.27 0.358 0.05 376.27

(6, 1000, 1/15, 1/15) 0.65 0.062 16.54 0.63 0.064 660.32 0.63 0.064 660.32

(8, 300, 1/2, 1/4) 0.993 0.02 5.63 1 0.037 348.71 1 0.031 348.71

(8, 300, 1/4, 1/8) 0.762 0.025 17.60 0.793 0.031 335 0.793 0.031 335

(8, 300, 1/8, 1/16) 0.35 0.035 5.62 0.493 0.043 361.49 0.493 0.043 361.49

Table 1: Overall performance of online debiasing (test (43)) and the U-test and R-test pro-

posed by [42] for testing the entries of the generative matrix A for a VAR(1) model. We

consider A = diag(A0, . . . , A0) with A0 given by (52). For each configuration, we report the

true positive rate (TPR), false positive rate (FPR) and the running time for each test. The

reported numbers are averaged out over10 independent realizations of each configuration.

The running times are in seconds.

rounds. That said, one needs to compute them once for all rows i ∈ [p]. The approach

of [42], on the other hand, constructs a separate score vector for each entry of the

generative matrices A(1), . . . , A(d) which is computationally much more demanding.

B Estimating noise variance for VAR model

Define Ṽn,a ≡ 1
n

∑K−1
`=1

∑
t∈E`
〈m`

a, xt〉2. Note that Vn,a = σ2Ṽn,a and calculating Ṽn,a

does not require the knowledge of σ2. We define

za ≡
√

n

Ṽn,a
θ̂on
a .

Using the distributional characterization of the online debiased estimator θ̂on, and by

a very similar argument in Theorem 3.8, we know that for a /∈ supp(θ0), θ0,a = 0 and

so za is asymptotically zero mean Gaussian of variance σ2. This suggests to use the

following MAD (median absolute deviation) to estimate σ2.
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We let |z| be the vector of absolute values of z, i.e., |z| = (|z1|, |z2|, . . . , |zdp|). Denote

by |z|(a) its a-th smallest entry, i.e., |z|(1) ≤ |z|(2) ≤ . . . ≤ |z|dp. We then estimate σ

using the MAD estimator

σ̂ =
|z|(dp/2)

Φ−1(3/4)
. (53)

A similar variance estimator has been proposed by [27] in the context of approximate

message passing and in [20] for (offline) debiased estimator. The main idea here is

that the MAD estimator is robust to outliers and hence including entries za with

a ∈ supp(θ0) have negligible asymptotic contribution to the estimate σ̂, given that

s0 = o(p).

C Robustness to the episode growth rate

We follow the guideline in Section 3.1 to choose the batch sizes where the length of

episodes grow exponentially; namely r` = β`, for a constant β > 1, and ` ≥ 1. As

it was proved in Theorem 3.4, for any constant β > 1, the online debiased estima-

tor is asymptotically unbiased assuming s0 log(dp)/
√
n = o(1), and results in valid

statistical inference (controlling type I error in the context of hypothesis testing and

producing confidence intervals with the target coverage). In this section, we investigate

the robustness of these outputs (p-values and confidence intervals) with respect to the

choice of tuning parameter β. To this end, we consider the VAR(1) time-series data

setup (5) with problem dimension p = 20, and the noise covariance Σζ(i, j) = 0.1|i−j|.

The entries of the time series generative matrix A are chosen i.i.d. from a Bernoulli

distribution with success probability 0.01, and then multiplied by a number chosen

uniformly from the set {−2,+2}, i.e., Aij ∼ Bern(0.01) · Unif({−2,+2}). Fixing the

matrix A, we generate T = 200 samples X1:200 and run the online debiasing with the

tuning parameter β picked from a grid of equidistant 11 elements over the interval

[2, 4], i.e., β ∈ {2, 2.2, 2.4, ..., 3.8, 4}. We compute the average length of confidence

intervals and p-values across 100 experiments (independent realizations of X1:200). For

each coordinate, we will end up with 11 × 2 numbers. Plots 8a and 8b respectively
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Figure 8: Boxplots of p-values and CI lengths for 3 zero and 3 nonzero coordinates of au-

toregressive matrix A, for 11 choices of episode growth rate β ∈ {2, 2.2, ..., 3.8, 4}. It can be

seen that the variation in each box is small. This implies the robustness of online debiasing

framework with respect to the choice of episode growth rate β.

zero1 zero 2 zero 3 nonzero1 nonzero 2 nonzero 3

CV of p-value 0.0406 0.0248 0.0319 0.928 0.545 0.610

CV of CI length 0.0741 0.0366 0.107 0.047 0.036 0.049

Table 2: Coefficient of variation (CV) for the p-values and the confidence interval lengths for

the six selected entries of the A matrix.

denote the boxplots for the average length of 80%-confidence intervals and the average

p-values corresponding to the six selected entries of A, three of which are truly zero and

the other three are nonzero. As we see the outputs of the online debiasing approach is

relatively robust against the choice of the episode growth rate β.

Recalling the coefficient of variation (CV) as a measure of variability, defined as

the ratio of the standard deviation to the mean, in Table 2 we give the coefficient of

variation for the p-values and length of 80%-confidence intervals for the six coordinates

across the 11 choices of β. The small CVs indicate the robustness of p-values and

confidence intervals to the specific choice of β.
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D Implementation and extensions

D.1 Iterative schemes to implement online debiasing

The online debiased estimator (15) involves the decorrelating matrices M (`), whose

rows (m`
a)a∈[dp] are constructed by the optimization (14). For the sake of computational

efficiently, it is useful to work with a Lagrangian equivalent version of this optimization.

Consider the following optimization

minimize‖m‖1≤L
1

2
mTΣ̂(`)m− 〈m, ea〉+ µ`‖m‖1 , (54)

with µ` and L taking the same values as in Optimization (14).

The next result, from [17, Chapter 5] is on the connection between the solutions of

the unconstrained problem (54) and (14). For the reader’s convenience, the proof is

also given in Appendix G.1.

Lemma D.1. A solution of optimization (54) is also a solution of the optimization

problem (14). Also, if problem (14) is feasible then problem (54) has bounded solution.

Using the above lemma, we can instead work with the Lagrangian version (54) for

constructing the decorrelating vector m`
a.

Here, we propose to solve optimization problem (54) using iterative method. Note

the objective function evolves slightly at each episode and hence we expect the solutions

m`
a and m`+1

a to be close to each other. An appealing property of iterative methods

is that we can leverage this observation by setting m`
a as the initialization for the

iterations that compute m`+1
a , yielding shorter convergence time. In the sequel we

discuss two of such iterative schemes.

D.1.1 Coordinate descent algorithms

In this method, at each iteration we update one of the coordinates of m, say mj, while

fixing the other coordinates. We write the objective function of (54) by separating mj
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from the other coordinates:

1

2
Σ̂

(`)
j,jm

2
j +

∑
r,s 6=j

Σ̂(`)
r,s mrms −ma + µ`‖m∼j‖1 + µ`|mj| , (55)

where Σ̂
(`)
j,∼j denotes the jth row (column) of Σ̂(`) with Σ̂

(`)
j,j removed. Likewise, m∼j

represents the restriction of m to coordinates other than j. Minimizing (55) with

respect to mj gives

mj +
1

Σ̂
(`)
j,j

(
Σ̂

(`)
j,∼jm∼j − I(a = j) + µ` sign(mj)

)
= 0 .

It is easy to verify that the solution of the above is given by

mj =
1

Σ̂
(`)
j,j

η
(
− Σ̂

(`)
j,∼jm∼j + I(a = j);µ`

)
, (56)

with η(·; ·) : R× R+ → R denoting the soft-thresholding function defined as

η(z, µ) =


z − µ if z > µ ,

0 if − µ ≤ z ≤ µ ,

z + µ otherwise .

(57)

For a vector u, η(u;µ) is perceived entry-wise.

This brings us to the following update rule to compute m`
a ∈ Rdp (solution of (54)).

Th notation ΠL, in line 5 below, denotes the Euclidean projection onto the `1 ball of

radius L and can be computed in O(dp) times using the procedure of [9].

1: (initialization): m(0)← m
(`−1)
a

2: for iteration h = 1, . . . , H do

3: for j = 1, 2, . . . , dp do

4: mj(h)← 1

Σ̂
(`)
j,j

η
(
− Σ̂

(`)
j,∼jm∼j(h− 1) + I(a = j);µ`

)
5: m(h)← ΠL(m(h))

6: return m`
a ← m(H)

In our experiments we implemented the same coordinate descent iterations ex-

plained above to solve for the decorrelating vectors m`
a.
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D.1.2 Gradient descent algorithms

Letting L(m) = (1/2)mTΣ̂(`)m−〈m, ea〉, we can write the objective of (54) as L(m) +

µ`‖m‖1. Projected gradient descent, applied to this constrained objective, results in a

sequence of iterates m(h), with h = 0, 1, 2, . . . the iteration number, as follows:

m(h+ 1) = arg min
‖m‖1≤L

{
L(m(h)) + 〈∇L(m(h)),m−m(h)〉

+
η

2
‖m−m(h)‖2

2 + µ`‖m‖1

}
. (58)

In words, the next iterate m(h+ 1) is obtained by constrained minimization of a first

order approximation to L(m), combined with a smoothing term that keeps the next

iterate close to the current one. Since the objective function is convex (Σ̂(`) � 0),

iterates (58) are guaranteed to converge to the global minimum of (54).

Plugging for L(m) and dropping the constant term L(m(h)), update (58) reads as

m(h+ 1) = arg min
‖m‖1≤L

{
〈Σ̂(`)m(h)− ea,m−m(h)〉+

η

2
‖m−m(h)‖2

2 + µ`‖m‖1

}
= arg min

‖m‖1≤L

{η
2

(
m−m(h) +

1

η
(Σ̂(`)m(h)− ea)

)2

+ µ`‖m‖1

}
. (59)

To compute the update (59), we first solve the unconstrained problem which has a

closed form solution given by η
(
m(h)− 1

η
(Σ̂(`)m(h)− ea); µ`η

)
, with η the soft thresh-

olding function given by (57). The solution is then projected onto the ball of radius

L.

In the following box, we summarize the projected gradient descent update rule for

constructing the decorrelating vectors m`
a.

1: (initialization): m(0)← m
(`−1)
a

2: for iteration h = 1, . . . , H do

3: m(h)← η
(
m(h)− 1

η
(Σ̂(`)m(h)− ea); µ`η

)
4: m(h)← ΠL(m(h))

5: return m`
a ← m(H)

12



E Numerical experiments

In this section, we evaluate the performance of online debiasing framework on synthetic

data. In the interest of reproducibility, an R implementation of our algorithm is publicly

available6.

Consider the VAR(d) time series model (5). In the first setting, we let p = 20,

d = 3, T = 50 and construct the covariance matrix of noise terms Σζ by putting 1

on its diagonal and ρ = 0.3 on its off-diagonal. To make it closer to the practice,

instead of considering sparse coefficient matrices, we work with approximately sparse

matrices. Specifically, the entries of A(i) are generated independently from a Bernoulli

distribution with success probability q = 0.1, multiplied by b · Unif({+1,−1}) with

b = 0.1, and then added to a Gaussian matrix with mean 0 and standard error 1/p. In

formula, each entry is generated independently from

b · Bern(q) · Unif({+1,−1}) +N (0, 1/p2) .

We used r0 = 6 (length of first episode E0) and β = 1.3 for lengths of other episodes

E` ∼ β`. For each i ∈ [p] we do the following. Let θ0 = (A
(1)
i , A

(2)
i , . . . , A

(d)
i )T ∈ Rdp

encode the ith rows of the matrices A(`) and compute the noise component of θ̂on as

Wn ≡
1√
n

K−1∑
`=0

M (`)
(∑
t∈E`

xtεt

)
, (60)

the rescaled residual Tn ∈ Rdp with Tn,a =
√

n
Vn,a

(θ̂on
a −θ0,a), and Vn,a given by Equation

(23) and σ = 1. Left and right plots of Figure 9 denote the QQ-plot, PP-plot and

histogram of noise terms Wn and rescaled residuals Tn of all coordinates (across all

i ∈ [p] and a ∈ [dp]) stacked together, respectively.

True and False Positive Rates. Consider the linear time-series model (5) with

A(i) matrices having entries drawn independently from the distribution b · Bern(q) ·

Unif({+1,−1}) and noise terms be gaussian with covariance matrix Σζ . In this ex-

ample, we evaluate the performance of our proposed online debiasing method for con-

structing confidence intervals and hypothesis testing as discussed in Section 5. We

6The link address is removed from the current blinded version of the manuscript
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(f) PP plot of Residuals Tn

Figure 9: A simple example of an online debiased Var(3) process with dimension p = 20 and T = 50

sample data points. Plots 9a, 9c, 9e demonstrate respectively the histogram, QQ-plot, and PP plot

of noise values of all dp2 = 1200 entries of Ai matrices in linear time series model (5). Plots 9b, 9d,

9f are histogram, QQ-plot, and PP-plot of rescaled residuals of all coordinates as well. Alignment

of data points in these plots with their corresponding standard normal (0, 1) line corroborates our

theoretical results on the asymptotic normal behavior of noise terms and rescaled residuals discussed

in corollary 3.7 and proposition 3.8, respectively.
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consider four metrics: True Positive Rate (TPR), False Positive Rate (FPR), Average

length of confidence intervals (Avg CI length), and coverage rate of confidence inter-

vals. Tables 3 and 4 summarize the results for various configurations of the Var(d)

processes and significance level α = 0.05. Table 3 corresponds to the cases where noise

covariance has the structure Σζ(i, j) = 0.1|i−j| and Table 4 corresponds to the case

of Σζ(i, j) = 0.1I(i 6=j). The reported measures for each configuration (each row of the

table) are average over 20 different realizations of the VAR(d) model.

Table 3: Evaluation of the online debiasing approach for statistical inference on the coefficients of

a VAR(d) model under different configurations. Here the noise terms ζi are gaussian with covariance

matrix Σζ(i, j) = 0.1|i−j|. The results are reported in terms of four metrics: FPR (False Positive

Rate), TPR (True Positive Rate), Coverage rate and Average length of confidence intervals (Avg CI

length) at significance level α = 0.05

p T q b FPR TPR Avg CI length Coverage rate

d = 1

40 30 0.01 2 0.0276 1 3.56 0.9725

35 30 0.01 2 0.0354 0.9166 3.7090 0.9648

60 55 0.01 0.9 0.0314 0.7058 2.5933 0.9686

d = 2

55 100 0.01 0.8 0.0424 0.8000 1.9822 0.9572

40 75 0.01 0.9 0.0343 0.9166 2.5166 0.9656

50 95 0.01 0.7 0.0368 0.6182 2.4694 0.963

d = 3

45 130 0.005 0.9 0.0370 0.6858 2.070 0.9632

40 110 0.01 0.7 0.0374 0.6512 2.1481 0.9623

50 145 0.005 0.85 0.0369 0.6327 2.2028 0.9631
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Table 4: Evaluation of the online debiasing approach for statistical inference on the coefficients of

a VAR(d) model under different configurations. Here the noise terms ζi are gaussian with covariance

matrix Σζ(i, j) = 0.1I(i 6=j). The results are reported in terms of four metrics: FPR (False Positive

Rate), TPR (True Positive Rate), Coverage rate and Average length of confidence intervals (Avg CI

length) at significance level α = 0.05

p T q b FPR TPR Avg CI length Coverage rate

d = 1

40 30 0.01 2 0.0402 1 3.5835 0.96

40 35 0.02 1.2 0.0414 0.8125 2.6081 0.9575

50 40 0.015 0.9 0.0365 0.7435 2.0404 0.9632

d = 2

35 65 0.01 0.9 0.0420 0.8077 2.4386 0.9580

45 85 0.01 0.9 0.0336 0.7298 2.5358 0.9655

50 70 0.01 0.95 0.0220 0.8333 2.4504 0.9775

d = 3

40 115 0.01 0.9 0.0395 0.7906 1.6978 0.9598

45 130 0.005 0.95 0.0359 0.7714 2.1548 0.9641

50 145 0.005 0.85 0.0371 0.5918 2.1303 0.9624

E.1 Real data experiments: a marketing application

Retailers often offer sales of various categories of products and for an effective man-

agement of the business, they need to understand the cross-category effect of products

on each other, e.g., how the price, promotion or sale of category A will effect the sales

of category B after some time.

We used data of sales, prices and promotions of Chicago-area grocery store chain

Dominick’s that is publicly available at https://research.chicagobooth.edu/kilts/

marketing-databases/dominicks. The same data set has been used in [12] where a

sparse VAR model is fit to data and also in [39] where a VARX model is employed

to estimate the demand effects (VARX models incorporate the effect of unmodeled

exogenous variables (X) into the VAR). In this experiment, we use the proposed online

debiasing approach to provide p-values for the category effects.
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We consider 11 categories of products7 over 71 weeks, so for each week t, we have

information xt ∈ R33 for sales, prices and promotions of the 11 categories. For thorough

explanation on calculating sales, prices and promotions, we refer to [33] and [12]. We

posit VAR(2) model as the generating process for covariates xi and then apply our

proposed online debiasing method to calculate two-sided p-values for the null hypothesis

of form H0 : θ0,a = 0 with θ0,a an entry in the VAR model, as discussed earlier in

Section 5 (See Eq. (42)). By running the Benjamini–Yekutieli procedure [4] (with log

factor correction to account for dependence among p-values), we obtain the following

statistically significant cross category associations at level 0.05: sales of canned tuna on

sales of front-end-candies after one week with p-val= 5.8e-05, and price of crackers on

sales of canned tuna after one week with p-val= 5.5e-04. In [12], sparse VAR models

are used to construct networks of interlinked product categories, but they are not

accompanied by statistical measures such as p-values. Our online debiasing method

here provides p-values for individual possible cross-category associations.

In the rest of this section we report the p-values obtained by the online debiasing for

the cross-category effects. Figures 10, 11, 12 provide the p-values corresponding to the

effect of price, sale, and promotions of different categories on the other categories, after

one week (d = 1) and two weeks (d = 2). The darker cells indicate smaller p-values

and hence higher statistical significance.

7Bottled Juices, Cereals, Cheeses, Cookies, Crackers, Canned Soup, Front-end-Candies, Frozen

Juices, Soft Drinks, Snack Crackers and Canned Tuna
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(a) 1-Week effect of sales of x−axis categories on sales of y−axis categories

0.24

0.51

0.44

0.18

0.17

0.96

0.59

0.97

0.78

0.16

0.35

0.01

0.56

0.05

0.64

0.44

0.43

0.02

0.75

0.13

0.84

0.96

0.39

0.34

0.39

0.28

0.49

0.85

0.16

0.6

0.99

0.88

0.15

0.97

0.42

0.86

0.22

0.96

0.01

0.1

0.88

0.37

0.81

0.85

0.25

0.47

0.43

0.97

0.11

0.17

0.15

0.94

0.61

0.5

0

0.54

0.78

0.46

0.91

0.32

0.07

0.15

0.95

0.14

0.4

0.01

0.03

0.74

0.3

0.43

0.01

0.34

0.02

0.98

0.48

0.93

0.02

0.71

0.67

0.58

0.7

0.09

0.44

0.69

0.82

0.14

0.37

0.89

0.13

0.44

0.62

0.84

0.02

0.44

0.63

0.83

0.8

0.9

0.6

0.97

0.2

0.16

0.25

0.63

0.17

0.13

0.64

0.36

0.93

0.01

0.09

0.71

0.61

0.24

0.35

0.99

0.12

0.92

0.14

0.11

0.69

Bottled Juices

Cereals

Cheeses

Cookies

Crackers

Canned Soup

Front−end−Candies

Frozen Juices

Soft Drinks

Snack Crackers

Canned Tuna

B
ot

tle
d 

Ju
ic

es

C
er

ea
ls

C
he

es
es

C
oo

ki
es

C
ra

ck
er

s

C
an

ne
d 

S
ou

p

F
ro

nt
−e

nd
−C

an
di

es

F
ro

ze
n 

Ju
ic

es

S
of

t D
rin

ks

S
na

ck
 C

ra
ck

er
s

C
an

ne
d 

Tu
na

0.25

0.50

0.75

p−values

(b) 1-Week effect of prices of x−axis categories on sales of y−axis categories

Figure 10: Figures 10a, and 10b respectively show the p-values for cross-category effects of

sales and prices of x−axis categories on sales of y−axis categories after one week.
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(a) 1-Week effect of promotions of x−axis categories on sales of y−axis categories
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(b) 2-Week effect of promotions of x−axis categories on sales of y−axis categories

Figure 11: Figures 11a, and 11b show p−values for cross-category effects of promotions of

x−axis categories on sales of y−axis categories, after one week and two weeks.
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(a) 2-Week effect of sales of x−axis categories on sales of y−axis categories
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(b) 2-Week effect of prices of x−axis categories on sales of y−axis categories

Figure 12: Figures 12a, and 12b respectively show p-values for cross-category effects of sales

and prices of x-axis categories on sales of y−axis categories after two weeks.
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F Proofs of Section 3

F.1 Technical preliminaries

Recall the definition of the regression design from Eqs.(11) in the time series case:

θ0 = (A
(1)
i , A

(2)
i , . . . , A

(d)
i )T,

X =


zT
d zT

d−1 . . . zT
1

zT
d+1 zT

d . . . zT
2

...
...

. . .
...

zT
T−1 zT

T−2 . . . zT
T−d

 ,

y = (zd+1,i, zd+2,i, . . . , zT,i),

ε = (ζd+1,i, ζd+2,i, . . . , ζT,i).

We first establish some preliminary results for stable time series. For the stationary

process xt = (zT
t+d−1, . . . , z

T
t )T (rows of X), let Γx(s) = Cov(xt, xt+s), for t, s ∈ Z and

define the spectral density fx(r) ≡ 1/(2π)
∑∞

`=−∞ ΓX(`)e−j`r, for r ∈ [−π, π] . The

measure of stability of the process is defined as the maximum eigenvalue of the density

M(fx) ≡ sup
r∈[−π,π]

σmax(fx(r)) . (61)

Likewise, the minimum eigenvalue of the spectrum is defined asm(fx) ≡ inf
r∈[−π,π]

σmin(fx(r)),

which captures the dependence among the covariates. (Note that for the case of i.i.d.

samples, M(fx) and m(fx) reduce to the maximum and minimum eigenvalue of the

population covariance.)

The p-dimensional VAR(d) model (5) can be represented as a dp-dimensional VAR(1)

model. Recall our notation xt = (zT
t+d−1, . . . , z

T
t )T (rows of X in (11)). Then (5) can

be written as

xt = Ãxt−1 + ζ̃t , (62)
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with

Ã =

A1 A2 . . . Ad−1 Ad

I(d−1)p 0

 , ζ̃t =

ζt+d−1

0

 . (63)

The reverse characteristic polynomial for the VAR(1) model reads as Ã = I − Ãz.

The following lemma controls M(fx),m(fx) in terms of the spectral properties of

the noise Σζ and the characteristic polynomials A, Ã.

Lemma F.1 ([2]). We have:

1

2π
λmax(Σ) ≤M(fx) ≤

λmax(Σζ)

µmin(Ã)
,

λmin(Σ) ≥ λmin(Σζ)

µmax(A)
. (64)

We also use the following bound on M(fx) in terms of characteristic polynomial A

of the time series zt.

Lemma F.2. The following holds:

1

2π
λmax(Σ) ≤M(fx) ≤ dM(fz) ≤

dλmax(Σζ)

µmin(A)
.

Proof. Let Γx(`) = E[xtx
T
t+`] to refer the autocovariance of the dp-dimensional process

xt. Therefore Σ = Γx(0). Likewise, the autocovariance Γz(`) is defined for the p-

dimensional process zt. We represent Γx(`) in terms of d2 blocks, each of which is a

p×p matrix. The block in position (r, s) is Γz(`+r−s). Now, for a vector v ∈ Rdp with

unit `2 norm, decompose it as d blocks of p dimensional vectors v = (vT
1 , v

T
2 , . . . , v

T
d )T,

by which we have

vTΓz(`)v =
∑

1≤r,s≤d

vT
r Γx(`+ r − s)vs . (65)

Since the spectral density fz(θ) is the Fourier transform of the autocorrelation function,
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we have by Equation (65),

〈v, fz(θ)v〉 =
1

2π

∞∑
`=−∞

〈v,Γz(`)e−j`θv〉

=
1

2π

∞∑
`=−∞

∑
1≤r,s≤d

〈vr,Γz(`+ r − s)e−j`θvs〉

=
∑

1≤r,s≤d

〈vr,
( 1

2π

∞∑
`=−∞

Γx(`+ r − s)e−j(`+r−s)θ
)
vse

j(r−s)θ〉

=
∑

1≤r,s≤d

〈vr, fx(θ)ej(r−s)θvs〉

= V (θ)∗fx(θ)V (θ),

with V (θ) =
d∑
r=1

e−jrθvr. Now, we have:

‖V (θ)‖2 ≤
d∑
r=1

‖vr‖2 ≤
(
d

d∑
r=1

‖vr‖2
2

)1/2

≤
√
d.

Combining this with the Rayleigh quotient calculation above, yields M(fx) ≤ dM(fz).

Now, by using [2, Equation (4.1)] for the process zt, with reverse characteristic poly-

nomial A, we obtain

λmax(Σ) ≤ 2πM(fx) ≤ 2πdM(fz) ≤
dλmax(Σζ)

µmin(A)
. (66)

The following proposition is a straightforward consequence of the spectral bounds

above and [2, Proposition 2.4].

Proposition F.3. There exists a constant c > 0, such that for any vectors u, v ∈ Rdp

with ‖u‖ ≤ 1, ‖v‖ ≤ 1, and any η ≥ 0,

P
(
|uT(Σ̂(`) − Σ)v| > dλmax(Σζ)

µmin(A)
η

)
≤ 6 exp

(
−cn` min{η2, η}

)
. (67)
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F.2 Remarks on proof of Theorem 3.2

The key part of establishing Theorem 3.2 is to establish an appropriate ‘restricted

eigenvalue’ condition as follows:

Proposition F.4. Let {z1, . . . , zT} be generated according to the (stable) VAR(d) pro-

cess (5) and let n = T − d. Then there exist constants c ∈ (0, 1) and C > 1 such that

for all n ≥ Cω2 log(dp), with probability at least 1− exp(−cn/ω2), satisfies

〈v, (XTX/n)v〉 ≥ α‖v‖2 − ατ‖v‖2
1.

Here, α, ω and τ are given by:

ω =
dλmax(Σζ)µmax(A)

λmin(Σζ)µmin(A)
,

α =
λmin(Σζ)

2µmax(A)
,

τ = ω2

√
log(dp)

n
.

(68)

Given Proposition F.4, the estimation result of Theorem 3.2 is standard (see [6]).

Proposition F.4 can be proved analogous to [2, Proposition 4.2], with the following

considerations and minor modifications:

1. [2] writes the VAR(d) model as a VAR(1) model and then vectorize the obtained

equation to get a linear regression form (cf. Section 4.1 of [2]). This way, they

prove I ⊗ (XTX/n) satisfies a restricted eigenvalue property. Towards this, the

first step in their proof is to show that XTX/n satisfies a restricted eigenvalue

property, i.e. Proposition F.4.

2. [2, Proposition 4.2] assumes n ≥ Ckmax{ω2, 1} log(dp), with k =
∑d

`=1 ‖vec(A(`))‖0,

the total number of nonzero entries of matrices A` and then it is later used to

get τ ≤ 1/(Ck). However, as the restricted eigenvalue condition is independent

of the sparsity of matrices A(`), we can use their result with k = 1.

3. The proof involves upper bounding M(fx), for which we use Lemma F.2 in lieu

of Lemma F.1.
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F.3 Proof of Lemma 3.3

The idea is to use Proposition F.3 along with the union bound. Fix i, j ∈ [dp] and let

u = Ωei
‖Ωei‖ and v = ej. Then:

|(ΩΣ̂(`) − I)ij| = |〈Ωei, (Σ̂(`) − Σ)ej〉|

= ‖Ωei‖|〈u, (Σ̂(`) − Σ)v〉|

≤ λmax(Ω)|〈u, (Σ̂(`) − Σ)v〉|

≤ µmax(A)

λmin(Σζ)
|〈u, (Σ̂(`) − Σ)v〉|,

where the last line uses Lemma F.1 to bound λmin(Σ) from below. Combining this

with Proposition F.3, for η ≤ 1:

P
{
|(ΩΣ̂(`) − I)ij| ≥ dλmax(Σζ)η/µmin(A)

}
≤ P

{
|〈u, (Σ̂(`) − Σ)v〉| ≥ ωη

}
≤ 6 exp(−cn`η2).

Setting η = C
√

log(dp)/n` for a large enough constant C, the probability bound above

is smaller than (dp)−8. With a union bound over i, j ∈ [dp]:

P
{
‖ΩΣ̂(`) − I‖∞ ≥ Cω

√
log(dp)

n`

}
≤ (dp)2 sup

i,j
P
{
|(ΩΣ̂(`) − I)ij| ≥ Cω

√
log(dp)

n`

}
≤ (dp)−6.

This completes the proof.

F.4 Proof of Theorem 3.4

Starting from the decomposition (20), we have

√
n(θ̂on − θ0) = ∆n +Wn ,

with ∆n = Bn(θ̂L − θ0). As explained below (20), Wn is a martingale with respect to

filtration Fj = {ε1, . . . , εj}, j ∈ N and hence E(Wn) = 0.

We also note that ‖∆n‖∞ ≤ ‖Bn‖∞‖θ̂L − θ0‖1. Our next lemma bounds ‖Bn‖∞.
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Lemma F.5. Suppose that the decorrelating matrices M (`) are computed according to

Eq.(14), with µ` = Cω
√

(log(dp)/n` and L ≥ ‖Ω‖1. Let ω and γ be:

ω =
dµmax(A)λmax(Σζ)

µmin(A)λmin(Σζ)
,

γ =
dλmax(Σζ)

µmin(A)
.

Then, for Bn given by (18), the following bound holds with probability at least 1−(dp)−8:

‖Bn‖∞ ≤
r0√
n

+
K−1∑
`=1

[
r`µ`√
n

+ CLγ

√
log(dp)

n

( r`√
n`

+
√
r`

)]
, (69)

≤ r0√
n

+ C(ω + Lγ)

√
log(dp)

n

K−1∑
`=1

( r`√
n`

+
√
r`

)
. (70)

The bound (70) holds for general batch sizes r0, . . . , rK−1. A natural approach

to choose the values r` is by minimizing this upper bound. However, this is not a

convex function in terms of r`. Focusing just on the last term in the bound, we have∑K−1
`=1

√
r` ≥ (

∑K−1
`=1 r`)

1/2 =
√
n. Therefore, the provided bound on ‖Bn‖∞ is at least

of order
√

log(dp). We next propose a choice of batch sizes r` for which the bound (70)

achieves this order. Let r0 =
√
n, r` = β` for some β > 1 and ` = 1, . . . , K − 2.

Finally we choose rK−1 so that the total lengths of batches add up to n (that is

r0 + r1 + . . .+ rK−1 = n). Following this choice, bound (70) simplifies to:

‖Bn‖∞ ≤ Cβ(ω + γL)
√

log(dp) , (71)

for some constant Cβ > 0 that depends on the constant β.

Next by combining Theorem 3.2 and Lemma F.5 we obtain that, with probability

at least 1− 2(dp)−6

‖∆n‖∞ ≤ Cβ(ω + Lγ)
√

log(dp) ·
(s0λn

α

)
≤ Cβ

λ0(ω + Lγ)

α

s0 log(dp)√
n

. (72)

This implies the claim by selecting a β bounded away from 1, say β = 1.3.
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It remains to prove the claim on the bias E{θ̂on − θ0}. For this, define G to be the

event where ∆n satisfies the upper bound in Eq.(72). Therefore:

‖E{θ̂on − θ0}‖∞ =
‖E{∆n}‖∞√

n

≤ ‖E{∆nI(G)}‖∞√
n

+ E{‖θ̂L − θ0‖1I(Gc)}.

For the first term we use the bound Eq.(72). For the second, we use Lemma I.7:

‖E{θ̂on − θ0}‖∞ ≤
Cλ0(ω + Lγ)

α

s0 log p

n
+

E{‖ε‖2I(Gc)}
nλn

+ 2‖θ0‖1P(Gc).

It suffices, therefore, to show that the final two terms are at most C‖θ0‖1/(dp)
6. By

Holder inequality and P(Gc) ≤ 2(dp)−6:

E{‖ε‖2I(Gc)}
nλn

+ 2‖θ0‖1P(Gc) ≤ E{‖ε‖4}1/2P(Gc)1/2

nλn
+ 2‖θ0‖1P(Gc)

≤ C
λmax(Σζ)

2

(dp)3λ0

√
n log(dp)

+ C
‖θ0‖1

(dp)6
.

In the high-dimensional regime, the first term is negligible in comparison to s0 log(dp)/n,

which yields, after adjusting C appropriately:

‖E{θ̂on − θ0}‖∞ ≤
C1λ0(ω + Lγ)

α

s0 log p

n
+ C2

‖θ0‖1

(dp)6
,

as required.

It remains to prove Lemma F.5:

Proof of Lemma F.5. For each episode `, let

R(`) :=
1

r`

∑
t∈E`

xtx
T
t

be the sample covariance in episode `. Fix a ∈ [dp] and define Bn,a ≡
√
nea −

1√
n

∑K−1
`=1 r`R

(`)m`
a. We then have

Bn,a =
√
nea −

1√
n

K−1∑
`=1

r`R
(`)m`

a =
r0√
n
ea +

K−1∑
`=1

r`√
n

(
ea −R(`)m`

a

)
, (73)
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where we used that
∑K−1

`=0 r` = n. By triangle inequality, followed by Holder inequality:

‖Bn,a‖∞ ≤
r0√
n

+
1√
n

K−1∑
`=1

r`‖ea −R(`)m`
a‖∞

≤ r0√
n

+
K−1∑
`=1

r`√
n

(
‖ea − Σ̂(`)m`

a‖∞ + ‖(Σ̂(`) − Σ)m`
a‖∞ + ‖(Σ−R(`))m`

a‖∞
)

≤ r0√
n

+
K−1∑
`=1

r`√
n

(
‖ea − Σ̂(`)m`

a‖∞ + ‖Σ̂(`) − Σ‖∞‖m`
a‖1 + ‖Σ−R(`)‖∞‖m`

a‖1

)
We now bound each of the three terms appearing in the sum above:

1. By the construction of decorrelating vectors m`
a as in optimization (14), we have

‖Σ̂(`)m`
a − ea‖∞ ≤ µ` , ` = 0, . . . , K − 1 . (74)

2. Also by construction, ‖m`
a‖1 ≤ L. From an argument similar to that of Lemma

3.3, ‖Σ̂(`) − Σ‖∞ ≤ Cγ
√

log(dp)/n` with probability at least 1−K(dp)−9, where

γ = dλmax(Σζ)/µmin(A). Therefore, with the same probability, the second term

is at most CLγ
√

log(dp)/n`.

3. Again, by construction ‖m`
a‖1 ≤ L. Similar to Lemma 3.3, ‖R(`) − Σ‖∞ is at

most Cγ
√

log(dp)/r` with probability at least 1−K(dp)−9.

Combining these and the fact that we set µ` = Cω
√

log(dp)/n we have that, with

probability at least 1− 2K(dp)−9,

‖Bn,a‖∞ ≤
r0√
n

+
C√
n

K−1∑
`=1

r`

(
ω

√
log(dp)

n`
+ Lγ

√
log(dp)

n`
+ Lγ

√
log(dp)

r`

)

≤ r0√
n

+ C(ω + Lγ)

√
log(dp)

n

K−1∑
`=1

( r`√
n`

+
√
r`

)
.

This bound holds uniformly over a ∈ [dp], and since ‖Bn‖∞ = supa‖Bn,a‖∞, the

same bound holds for ‖Bn‖∞. This completes the proof.

28



F.5 Proof of Lemma 3.6

We start by proving Claim (23). Let ma = Ωea be the first column of the inverse

(stationary) covariance. Using the fact that E{xtxT
t } = Σ we have 〈ma,E{xtxT

t }ma〉 =

Ωa,a, which is to be the dominant term in the conditional variance Vn,a. Recall the

shorthand σ2 ≡ Σζ i,i, with i ∈ [p] the fixed coordinate in (11). Therefore, we decompose

the difference as follows:

Vn,a − σ2Ωa,a =
σ2

n

K−1∑
`=1

∑
t∈E`

[
〈m`

a, xt〉2 − Ωa,a

]
− r0σ

2

n
Ωa,a

=
σ2

n

K−1∑
`=1

∑
t∈E`

[
〈m`

a, xt〉2 − 〈ma,E{xtxT
t }ma〉

]
− r0σ

2

n
Ωa,a

=
σ2

n

K−1∑
`=1

∑
t∈E`

[〈m`
a, xt〉2 − 〈ma, xt〉2]

+
1

n

n−1∑
t=0

〈ma, (xtx
T
t − E{xtxT

t })ma〉 −
r0σ

2

n
Ωa,a . (75)

We treat each of these three terms separately. Write∣∣∣∣ 1n
K−1∑
`=1

∑
t∈E`

[〈m`
a, xt〉2 − 〈ma, xt〉2]

∣∣∣∣ =
1

n

∣∣∣∣K−1∑
`=1

∑
t∈E`

[〈m`
a −ma, xt〉〈m`

a +ma, xt〉]
∣∣∣∣

≤ 1

n

∥∥∥∥K−1∑
`=1

∑
t∈E`

〈m`
a −ma, xt〉xt

∥∥∥∥
∞
‖m`

a +ma‖1

≤ 2L

n

∥∥∥∥K−1∑
`=1

∑
t∈E`

〈m`
a −ma, xt〉xt

∥∥∥∥
∞
. (76)
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To bound the last quantity, note that

1

n

∥∥∥∥K−1∑
`=1

∑
t∈E`

〈m`
a −ma, xt〉xt

∥∥∥∥
∞
≤
∥∥∥∥ea − 1

n

K−1∑
`=1

∑
t∈E`

〈m`
a, xt〉xt

∥∥∥∥
∞

+

∥∥∥∥ea − 1

n

K−1∑
`=1

∑
t∈E`

〈ma, xt〉xt
∥∥∥∥
∞

=

∥∥∥∥ea − 1

n

K−1∑
`=1

r`R
(`)m`

a

∥∥∥∥
∞

+

∥∥∥∥ea − Σ̂(K)ma

∥∥∥∥
∞

=
1√
n
‖Bn,a‖∞ +

∥∥∥∥ea − Σ̂(K)ma

∥∥∥∥
∞

≤ CLγ

√
log(dp)

n
+ Cω

√
log(dp)

n
≤ C(Lγ + ω)

√
log(dp)

n
,

(77)

for some constant C. The last inequality follows from the positive events of Lemma

F.5 and Lemma 3.3. Combining Equations (76) and (77), we obtain∣∣∣∣ 1n
K−1∑
`=1

∑
t∈E`

[〈m`
a, xt〉2 − 〈ma, xt〉2]

∣∣∣∣ ≤ CL(ω + Lγ)

√
log(dp)

n
. (78)

For the second term in (75), we can use Proposition F.3 with v = u = ma/‖ma‖, η =

C
√

log(dp)/n to obtain∣∣∣ 1
n

n−1∑
t=0

〈ma, (xtx
T
t − E{xtxT

t })ma〉
∣∣∣ =

∣∣〈ma, (Σ̂
(K−1) − Σ)ma〉

∣∣
≤ Cdλmax(Σζ)

µmin(A)
‖ma‖2

√
log(dp)

n

≤ Cdλmax(Σζ)

µmin(A)λmin(Σ)2

√
log(dp)

n
(79)

≤ Cω

α

√
log(dp)

n
, (80)

where we used that ‖ma‖ = ‖Ωea‖ ≤ λmax(Ω) = λmin(Σ)−1 ≤ 1/α. For the third term,

we have r0 =
√
n. Also, Ωa,a ≤ λmax(Ω) ≤ 1/α. Therefore, this term is O(1/α

√
n).

Combining this bound with (78) and (80) in Equation (75) we get the Claim (23).

We next prove Claim (24). Note that |εt| = |ζt+d,i| is bounded with σ
√

2 log(n),

with high probability for t ∈ [n], by tail bound for Gaussian variables. In addition,
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max`|〈m`
a, xt〉| ≤ ‖m`

a‖1‖xt‖∞ ≤ L‖xt‖∞ ≤ L‖X‖∞. Note that variance of each entry

xt,i is bounded by Σii ≤ λmax(Σ). Hence, by tail bound for Gaussian variables and

union bounding we have

P
(
‖X‖∞ <

√
2λmax(Σ) log(dpn)

)
≥ 1− (pdn)−2 , (81)

Putting these bounds together we get

max
{ 1√

n
|〈m`

a, xt〉εt| : ` ∈ [K − 2], t ∈ [n]
}

≤ 1√
n
L
√

2λmax(Σ) log(dpn)σ
√

2 log(n)

≤ 2Lσ
√
λmax(Σ)

log(dpn)√
n

≤ 2L0σ‖Ω‖1

(
2πdλmax(Σζ)

µmin(A)

)1/2
log(dpn)√

n
= o(1) ,

where in the last inequality we used Lemma F.2 to upper bound λmax(Σζ). The con-

clusion that the final expression is o(1) follows from Assumption 3.5.

F.6 Proof of Proposition 3.8

We prove that for all x ∈ R,

lim
n→∞

sup
‖θ0‖0≤s0

P
{√n(θ̂on

a − θ0,a)√
Vn,a

≤ x
}
≤ Φ(x) . (82)

We can obtain a matching lower bound by a similar argument which implies the result.

Invoking the decomposition (21) we have

√
n(θ̂on

a − θ0,a)√
Vn,a

=
Wn√
Vn,a

+
∆n√
Vn,a

.

By Corollary 3.7, we have that W̃n ≡ Wn/
√
Vn,a → N(0, 1) in distribution. Fix an

arbitrary ε > 0 and write

P
{√n(θ̂on

a − θ0,a)√
Vn,a

≤ x
}

= P
{
W̃n +

∆n√
Vn,a
≤ x

}
≤ P{W̃n ≤ x+ ε}+ P

{ |∆a|√
Vn,a
≥ ε
}
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By taking the limit and using Equation (21), we get

lim
n→∞

sup
‖θ0‖0≤s0

P
{√n(θ̂on

a − θ0,a)√
Vn,a

≤ x
}
≤ Φ(x+ ε) + lim

n→∞
sup

‖θ0‖0≤s0
P
{ |∆a|√

Vn,a
≥ ε
}

(83)

We show that the limit on the right hand side vanishes for any ε > 0. By virtue of

Lemma 3.6 (Equation (23)), we have

lim
n→∞

P
{ |∆a|√

Vn,a
≥ ε
}
≤ lim

n→∞
P
{ |∆a|
σ
√

Ωa,a

≥ ε
}

≤ lim
n→∞

P
{
|∆a| ≥ εσ

√
Ωa,a

}
≤ lim

n→∞
(dp)−4 = 0 . (84)

Here, in the last inequality we used that s0(Lγ + ω) = o(
√
n/ log(dp)) and therefore,

for large enough n, εσ
√

Ωa,a exceeds the bound (22) of Theorem 3.4.

Using (84) in bound (83) and then taking the limit ε→ 0, we obtain (82).

G Proofs of Section D

G.1 Proof of Lemma D.1

Rewrite the optimization problem (14) as follows:

minimize mTΣ̂(`)m

subject to 〈z, Σ̂(`)m− ea〉 ≤ µ`, ‖m‖1 ≤ L, ‖z‖1 = 1 ,
(85)

The Lagrangian is given by

L(m, z, λ) = mTΣ̂(`)m+ λ(〈z, Σ̂(`)m− ea〉 − µ`), ‖z‖1 = 1, ‖m‖1 ≤ L , (86)

If λ ≤ 2L, minimizing Lagrangian over m is equivalent to ∂L
∂m

= 0 and we get m∗ =

−λz∗/2. The dual problem is then given by

maximize − λ2

4
zTΣ̂(`)z − λ〈z, ea〉 − λµ`

subject to
λ

2
≤ L, ‖z‖1 = 1 ,

(87)
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As ‖z‖1 = 1, by introducing β = −λ
2
z, we get ‖β‖1 = λ

2
. Rewrite the dual optimization

problem in terms of β to get

minimize
1

2
βTΣ̂(`)β − 〈β, ea〉+ µ`‖β‖1

subject to ‖β‖1 ≤ L ,

(88)

Given β∗ as the minimizer of the above optimization problem, from the relation of β

and z we realize that m∗ = β∗.

Also note that since optimization (88) is the dual to problem (85), we have that if

(85) is feasible then the problem (88) is bounded.

G.2 Proof of Lemma A.1

By virtue of Proposition F.4, the sample covariance Σ̂ satisfies RE condition, Σ̂ ∼

RE(α, τ), where

α =
λmin(Σζ)

2µmax(A)
, τ = Cω2

√
log(dp)

n
, (89)

and by the sample size condition we have sΩ < 1/32τ .

Hereafter, we use the shorthand m∗a = Ωea and let L(m) be the objective function

in the optimization (50). By optimality of ma, we have L(m∗a) ≤ L(ma). Defining the

error vector ν ≡ ma −m∗a and after some simple algebraic calculation we obtain the

equivalent inequality

1

2
νTΣ̂ν ≤ 〈ν, ea − Σ̂m∗a〉+ µn(‖m∗a‖1 − ‖m∗a + ν‖1) . (90)

In the following we first upper bound the right hand side. By Lemma 3.3 (for ` = K

and nK = n), we have that with high probability

〈ν, ea − Σ̂m∗a〉 ≤ ‖ν‖1a

√
log(dp)

n
= (‖νS‖1 + ‖νSc‖1)

µn
2
,

where S = supp(Ωea) and hence |S| ≤ sΩ. On the other hand,

‖ma + ν‖1 − ‖m∗a‖1 ≥ (‖m∗a,S‖1 − ‖νS‖1) + ‖νSc‖1 − ‖m∗a‖1 = ‖νSc‖1 − ‖νS‖1 .
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Combining these pieces we get that the right-hand side of (90) is upper bounded by

(‖νS‖1 + ‖νSc‖1)
µn
2

+ µn (‖νS‖1 − ‖νSc‖1) =
3

2
µn‖νS‖1 −

1

2
µn‖νSc‖1 , (91)

Given that Σ̂ � 0, the left hand side of (90) is non-negative, which implies that

‖νSc‖1 ≤ 3‖νS‖1 and hence

‖ν‖1 ≤ 4‖νS‖1 ≤ 4
√
sΩ‖νS‖2 ≤ 4

√
sΩ‖ν‖2 . (92)

Next by using the restricted eigenvalue condition for Σ̂ we write

νTΣ̂ν ≥ α‖ν‖2
2 − ατ‖ν‖2

1 ≥ α(1− 16sΩτ)‖ν‖2
2 ≥

α

2
‖ν‖2

2 , (93)

where we used τ ≤ 1/(32sΩ) in the final step.

Putting (90), (91) and (93) together, we obtain

α

4
‖ν‖2

2 ≤
3

2
µn‖νS‖1 ≤ 6

√
sΩµn‖ν‖2 .

Simplifying the bound and using equation 92, we get

‖ν‖2 ≤
24

α

√
sΩµn ,

‖ν‖1 ≤
96

α
sΩµn ,

which completes the proof.

G.3 Proof of Theorem A.2

Continuing from the decomposition (48) we have

√
n(θ̂off − θ0) = ∆1 + ∆2 + Z , (94)

with Z = ΩXTε/
√
n. By using Lemma 3.3 (for ` = K) and recalling the choice

of µ = τ
√

log(dp)/n we have that the following optimization is feasible, with high

probability:

minimize mTΣ̂m

subject to ‖Σ̂m− ea‖∞ ≤ µ .
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Therefore, optimization (50) (which is shown to be its dual in Lemma (D.1)) has

bounded solution. Hence, its solution should satisfy the KKT condition which reads

as

Σ̂ma − ea + µsign(ma) = 0 , (95)

which implies ‖Σ̂ma − ea‖∞ ≤ µ. Invoking the estimation error bound of Lasso for

time series (Proposition 3.2), we bound ∆1 as

‖∆1‖∞ ≤ C
√
nµs0

√
log p

n
= OP

(
s0

log(dp)√
n

)
. (96)

We next bound the bias term ∆2. By virtue of [2, Proposition 3.2] we have the de-

viation bound ‖XTε‖∞/
√
n = OP (

√
log(dp)), which in combination with Lemma A.1

gives us the following bound

‖∆2‖∞ ≤
(

max
i∈[dp]
‖(M − Ω)ei)‖

)(
1√
n
‖XTε‖∞

)
= OP

(
sΩ

log(dp)√
n

)
. (97)

Therefore, letting ∆ = ∆1 + ∆2, we have ‖∆‖∞ = oP (1), by recalling our assumption

s0 = o(
√
n/ log(dp)) and sΩ = o(

√
n/ log(dp)).

Our next lemma is analogous to Lemma 3.6 for the covariance of the noise compo-

nent in the offline debiased estimator, and its proof is deferred to Section G.1.

Lemma G.1. Assume that sΩ = o(
√
n/ log(dp)) and Λmin(Σε)/µmax(A) > cmin > 0

for some constant cmin > 0. For µ = τ
√

log(dp)/n and the decorrelating vectors mi

constructed by (50), the following holds. For any fixed sequence of integers a(n) ∈ [dp],

we have

mT
a Σ̂ma = Ωa,a + oP (1/

√
log(dp)) . (98)

We are now ready to prove the theorem statement. We show that

lim
n→∞

sup
‖θ0‖0≤s0

P

{√
n(θ̂off

a − θ0,a)√
Vn,a

≤ u

}
≤ Φ(u) . (99)

A similar lower bound can be proved analogously. By the decomposition (94) we have

√
n(θ̂off

a − θ0,a)√
Vn,a

=
∆a√
Vn,a

+
Za√
Vn,a

.
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Define

Z̃a ≡
Za

σ
√

Ωa,a

=
1

σ
√
nΩa,a

(ΩXTε)a =
1

σ
√
nΩa,a

n∑
i=1

eT
aΩxiεi .

Since εi is independent of xi, the summand
∑n

i=1 e
T
aΩxiεi is a martingale. Furthermore,

E[(eT
aΩxiεi)

2] = σ2Ωa,a. Hence, by a martingale central limit theorem [14, Corollary

3.2], we have that Z̃a → N(0, 1) in distribution. In other words,

lim
n→∞

P{Z̃au} = Φ(u) . (100)

Next, fix δ ∈ (0, 1) and write

P

{√
n(θ̂off

a − θ0,a)√
Vn,a

≤ u

}
= P

{√
Ωa,a√
Vn,a

Z̃a +
∆a√
Vn,a
≤ u

}

≤ P

{√
Ωa,a√
Vn,a

Z̃a ≤ u+ δ

}
+ P

{
∆a√
Vn,a
≥ δ

}

≤ P
{
Z̃a ≤ u+ 2δ + δ|u|

}
+ P

{∣∣∣√Ωa,a√
Vn,a
− 1
∣∣∣ ≥ δ

}

+ P

{
∆a√
Vn,a
≥ δ

}
.

Now by taking the limit of both sides and using (100) and Lemma G.1, we obtain

lim sup
n→∞

sup
‖θ0‖0≤s0

P

{√
n(θ̂off

a − θ0,a)√
Vn,a

≤ u

}
≤

Φ(u+ 2δ + δ|u|) + lim sup
n→∞

sup
‖θ0‖0≤s0

P

{
∆a√
Vn,a
≥ δ

}
. (101)

Since δ ∈ (0, 1) was chosen arbitrarily, it suffices to show that the limit on the right

hand side vanishes. To do that, we use Lemma G.1 again to write

lim
n→∞

sup
‖θ0‖0≤s0

P
{ |∆a|√

Vn,a
≥ δ
}
≤ lim

n→∞
sup

‖θ0‖0≤s0
P
{ |∆a|
σ
√

(Ωa,a

≥ δ
}

≤ lim
n→∞

sup
‖θ0‖0≤s0

P
{
|∆a| ≥ δσ

√
Ωa,a

}
= 0 ,

where the last step follows since we showed ‖∆‖∞ = oP (1). The proof is complete.
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G.3.1 Proof of Lemma G.1

By invoking bound (64) on minimum eigenvalue of the population covariance, we have

λmin(Σ) ≥ λmin(Σζ)

µmax(A)
, (102)

bounded away from 0 by our assumption. Therefore, λmax(Ω) = λmin(Σ)−1 is bounded

away from ∞. Since Ω < 0, we have |Ωa,b| ≤
√

Ωa,aΩb,b for any two indices a, b ∈

[dp]. Hence, |Ω|∞ ≤ 1/λmin(Σ). This implies that ‖Ωea‖1 ≤ sΩ/λmin(Σ). Using this

observation along with the bound established in Lemma A.1, we obtain

‖ma‖1 ≤ ‖Ωea‖+ ‖ma − Ωea‖1 ≤
sΩ

λmin(Σ)
+

192τ

α
sΩ

√
log(dp)

n
= O(sΩ) . (103)

We also have

‖ma − Ωea‖∞ ≤ ‖ma − Ωea‖1 = O
(
sΩ

√
log(dp)

n

)
. (104)

In addition, by the KKT condition (95) we have

‖Σ̂ma − ea‖∞ ≤ µ . (105)

Combining bounds (103), (104) and (105), we have

|mT
a Σ̂ma − Ωa,a| ≤ |(mT

a Σ̂− eT
a )ma|+ |eT

ama − Ωa,a|

≤ ‖mT
a Σ̂− eT

a‖∞‖ma‖1 + ‖ma − Ωea‖∞

= O
(
sΩ

√
log(dp)

n

)
= o(1/

√
log(dp)) ,

which completes the proof.

H Proofs of Section 4

H.1 Consistency results for LASSO under adaptively collected

samples

Theorem 4.2 shows that, under an appropriate compatibility condition, the LASSO

estimate admits `1 error at a rate of s0

√
log p/n. Importantly, despite the adaptivity
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introduced by the sampling of data, the error of LASSO estimate has the same asymp-

totic rate as expected without adaptivity. With slightly stronger restricted-eigenvalue

conditions on the covariances E{xxT} and E{xxT|〈x, θ̂1〉 ≥ ς}, it is also possible to

extend Theorem 4.2 to show `2 error of order s0 log p/n, analogous to the non-adaptive

setting. However, since the `2 error rate will not be used for our analysis of online

debiasing, we do not pursue this direction here.

H.1.1 Proof of Theorem 4.2

The important technical step is to prove that, under the conditions specified in Theorem

4.2, the sample covariance Σ̂ = (1/n)
∑

i xix
T
i is (φ0/4, supp(θ0)) compatible.

Proposition H.1. With probability exceeding 1 − p−4 the sample covariance Σ̂ is

(φ0/4, supp(θ0)) compatible when n1 ∨ n2 ≥ C(κ4/φ2
0)s2

0 log p, for an absolute constant

C > 0.

Let Σ̂(1) and Σ̂(2) denote the sample covariances of each batch, i.e. Σ̂(1) = (1/n1)
∑

i≤n1
xix

T
i

and similarly Σ̂(2) = (1/n2)
∑

i>n1
xix

T
i . We also let Σ(2) be the conditional covariance

Σ(2) = Σ(2)(θ̂1) = E{xxT|〈x, θ̂1〉 ≥ ς}. We first prove that at least one of the sample

covariances Σ̂(1) and Σ̂(2) closely approximate their population counterparts, and that

this implies they are (φ0/2, supp(θ0))-compatible.

Lemma H.2. With probability at least 1− p−4

‖Σ̂(1) − Σ‖∞ ∧ ‖Σ̂(2) − Σ(2)‖∞ ≤ 12κ2

√
log p

n
,

Proof. Since n = n1 + n2 ≤ 2 max(n1, n2), at least one of n1 and n2 exceeds n/2. We

assume that n2 ≥ n/2, and prove that ‖Σ̂(2) − Σ(2)‖∞ satisfies the bound in the claim.

The case n1 ≥ n/2 is similar. Since we are proving the case n2 ≥ n/2, for notational

convenience, we assume probabilities and expectations in the rest of the proof are

conditional on the first batch (y1, x1), . . . (yn1 , xn1), and omit this in the notation.

For a fixed pair (a, b) ∈ [p]× [p]:

Σ̂
(2)
a,b − Σ

(2)
a,b =

1

n2

∑
i>n1

xi,axi,b − E{xi,axi,b}
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Using Lemma I.4 we have that ‖xi,axi,b‖ψ1 ≤ 2‖xi‖2
ψ2
≤ 2κ2 almost surely. Then using

the tail inequality Lemma I.5 we have for any ε ≤ 2eκ2

P
{
|Σ̂(2)

a,b − Σ
(2)
a,b| ≥ ε

}
≤ 2 exp

{
− n2ε

2

6eκ4

}
With ε = ε(p, n2, κ) = 12κ2

√
log p/n2 ≤ 20κ2

√
log p/n we have that P{|Σ̂(2)

a,b − Σ
(2)
a,b| ≥

ε(p, n2, κ)} ≤ p−8, whence the claim follows by union bound over pairs (a, b).

Lemma H.3 ([6, Corollary 6.8]). Suppose that Σ is (φ0, S)-compatible. Then any

matrix Σ′ such that ‖Σ′ − Σ‖∞ ≤ φ0/(32|S|) is (φ0/2, S)-compatible.

We can now prove Proposition H.1.

Proof of Proposition H.1. Combining Lemmas H.2 and H.3 yields that, with probabil-

ity 1− p−4, at least one of Σ̂(1) and Σ̂(2) are (φ0/2, supp(θ0))-compatible provided

12κ2

√
log p

n
≤ φ0

32s0

,

which is implied by n ≥
(400κ2s0

φ0

√
log p

)2

.

Since Σ̂ = (n1/n)Σ̂(1) + (n2/n)Σ̂(2) and at least one of n1/n and n2/n exceed 1/2, this

implies that Σ̂ is (φ0/4, supp(θ0))-compatible with probability exceeding 1− p−4.

The following lemma shows that XTε is small entrywise.

Lemma H.4. For any λn ≥ 40κσ
√

(log p)/n, with probability at least 1−p−4, ‖XTε‖∞ ≤

nλn/2.

Proof. The ath coordinate of the vector XTε is
∑

i xiaεi. As the rows of X are uniformly

κ-subgaussian and ‖εi‖ψ2 = σ, Lemma I.4 implies that the sequence (xiaεi)1≤i≤n is

uniformly 2κσ-subexponential. Applying the Bernstein-type martingale tail bound

Lemma I.6, for ε ≤ 12eκσ:

P
{∣∣∣∑

i

xiaεi

∣∣∣ ≥ εn
}
≤ 2 exp

{
− nε2

24eκ2σ2

}
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Set ε = ε(p, n, κ, σ) = 20κσ
√

(log p)/n, the exponent on the right hand side above is

at least 5 log p, which implies after union bound over a that

P{‖XTε‖∞ ≥ εn} = P
{

max
a

∣∣∣∑
i

xiaεi

∣∣∣ ≥ εn
}

≤
∑
a

P
{∣∣∣∑

i

xiaεi

∣∣∣ ≥ εn
}

≤ 2p−6.

This implies the claim for p large enough.

The rest of the proof is standard, cf. [15] and is given below for the reader’s

convenience.

Proof of Theorem 4.2. Throughout we condition on the intersection of good events in

Proposition H.1 and Lemma H.4, which happens with probability at least 1−2p−4. On

this good event, the sample covariance Σ̂ is (φ0/4, supp(θ0))-compatible and ‖XTε‖∞ ≤

20κσ
√
n log p ≤ nλn/2.

By optimality of θ̂L:

1

2
‖y −Xθ̂L‖2 + λn‖θ̂L‖1 ≤

1

2
‖y −Xθ0‖2 + λn‖θ0‖1.

Using y = Xθ0 + ε, the shorthand ν = θ̂L − θ0 and expanding the squares leads to

1

2
〈ν, Σ̂ν〉 ≤ 1

n
〈XTε, ν〉+ λn(‖θ0‖1 − ‖θ̂L‖1)

≤ 1

n
‖ν‖1‖XTε‖∞ + λn(‖θ0‖1 − ‖θ̂L‖1)

≤ λn

{1

2
‖ν‖1 + ‖θ0‖1 − ‖θ̂L‖1

}
. (106)

First we show that the error vector ν satisfies ‖νSc
0
‖1 ≤ 3‖νS0‖1, where S0 ≡ supp(θ0).

Note that ‖θ̂L‖1 = ‖θ0 + ν‖1 = ‖θ0 + νS0‖1 + ‖νSc
0
‖1. By triangle inequality, therefore:

‖θ0‖1 − ‖θ̂L‖1 = ‖θ0‖1 − ‖θ0 + νS0‖1 − ‖νSc
0
‖1

≤ ‖νS0‖1 − ‖νSc
0
‖1.

40



Combining this with the basic lasso inequality Eq.(106) we obtain

1

2
〈ν, Σ̂ν〉 ≤ λn

{1

2
‖ν‖1 + ‖νS0‖1 − ‖νSc

0
‖1

}
=
λn
2

{
3‖νS0‖1 − ‖νSc

0
‖.
}

As Σ̂ is positive-semidefinite, the LHS above is non-negative, which implies ‖νSc
0
‖1 ≤

3‖νS0‖1. Now, we can use the fact that Σ̂ is (φ0/4, S0)-compatible to lower bound the

LHS by ‖ν‖2
1φ0/2s0. This leads to

φ0‖ν‖2
1

2s0

≤ 3λn‖νS0‖1

2
≤ 3λn‖ν‖1

2
.

Simplifying this results in ‖ν‖1 = ‖θ̂L − θ0‖1 ≤ 3s0λn/φ0 as required.

H.2 Bias control: Proof of Theorem 4.7

Recall the decomposition (30) from which we obtain:

∆n = Bn(θ̂L − θ0),

Bn =
√
n
(
Ip −

n1

n
M (1)Σ̂(1) − n2

n
M (2)Σ̂(2)

)
,

Wn =
1√
n

∑
i≤n1

M (1)xiεi +
1√
n

∑
n1<i≤n

M (2)xiεi.

By construction M (1) is a function of X1 and hence is independent of ε1, . . . , εn1 . In

addition, M (2) is independent of εn1+1, . . . , εn. Therefore E{Wn} = 0 as required. The

key is to show the bound on ‖∆n‖∞. We start by using Hölder inequality

‖∆n‖∞ ≤ ‖Bn‖∞‖θ̂L − θ0‖1.

Since the `1 error of θ̂L is bounded in Theorem 4.2, we need only to show the bound

on Bn. For this, we use triangle inequality and that M (1) and M (2) are feasible for the

online debiasing program:

‖Bn‖∞ =
√
n
∥∥∥n1

n
(Ip −M (1)Σ̂(1)) +

n2

n
(Ip −M (2)Σ̂(2))

∥∥∥
∞

≤
√
n
(n1

n
‖Ip −M (1)Σ̂(1)‖∞ +

n2

n
‖Ip −M (2)Σ̂(2)‖∞

)
≤
√
n
(n1µ1

n
+
n2µ2

n

)
.
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The following lemma shows that, with high probability, we can take µ1, µ2 so that the

resulting bound on Bn is of order
√

log p.

Lemma H.5. Denote by Ω = (E{xxT})−1 and Ω(2)(θ̂) = (E{xxT|〈x, θ̂〉 ≥ ς})−1 be the

population precision matrices for the first and second batches. Suppose that n1 ∧ n2 ≥

2Λ0/κ
2 log p. Then, with probability at least 1− p−4

‖Ip − ΩΣ̂(1)‖∞ ≤ 15κΛ0
−1/2

√
log p

n1

,

‖Ip − Ω(2)Σ̂(2)‖∞ ≤ 15κΛ0
−1/2

√
log p

n2

.

In particular, with the same probability, the online debiasing program (28) is feasible

with µ` = 15κ2Λ0
−1
√

(log p)/n` < 1/2.

It follows from the lemma, Theorem 4.2 and the previous display that, with prob-

ability at least 1− 2p−3

‖∆n‖∞ ≤ ‖Bn‖∞‖θ̂L − θ0‖1

≤ 15κΛ
−1/2
0

√
n
(n1

n

√
log p

n1

+
n2

n

√
log p

n2

)
· 120κσφ−1

0 s0

√
log p

n
,

≤ 2000
κ2σ√
Λ0φ0

s0 log p

n
(
√
n1 +

√
n2)

≤ 4000
κ2σ√
Λ0φ0

s0 log p√
n

. (107)

This implies the first claim that, with probability rapidly converging to one, ∆n/
√
n

is of order s0 log p/n.

We should also expect ‖E{θ̂on − θ0}‖∞ to be of the same order. To prove this,

however, we need some control (if only rough) on θ̂on in the exceptional case when the

LASSO error is large or the online debiasing program is infeasible. Let G1 denote the

good event of Lemma H.4 and G2 denote the good event of Theorem 4.2 as below:

G1 =

{
For ` = 1, 2 : ‖Ip − Ω(`)Σ̂(`)‖∞ ≤ 15κΛ0

−1/2

√
log p

n`

}
,

G2 =
{
‖θ̂L − θ0‖1 ≤

3s0λn
φ0

=
120κσ

φ0

s0

√
log p

n
.
}
.
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On the intersection G = G1 ∩ G2, ∆n satisfies the bound (107). For the complement:

we will use the following rough bound on the LASSO error:

Now, since Wn is unbiased:

‖E{θ̂on − θ0}‖∞ =
∥∥∥E{∆n}√

n

∥∥∥
∞

=
∥∥∥E{∆nI(G)}√

n

∥∥∥
∞

+
∥∥∥E{∆nI(Gc)}√

n

∥∥∥
∞

≤ 4000
κ2σ√
Λ0φ0

s0 log p

n
+ E{‖θ̂L − θ0‖1I(Gc)}.

For the second term, we can use Lemma I.7, Cauchy Schwarz and that P{Gc} ≤ 4p−3

to obtain:

E{‖θ̂L − θ0‖1I(Gc)} ≤ E
{‖ε‖2I(Gc)

2nλn
+ 2‖θ0‖1I(Gc)

}
≤ E{‖ε‖4}1/2P(Gc)1/2

2nλn
+ 2‖θ0‖1P{Gc}

≤
√

3σ2

√
np1.5λn

+ 8‖θ0‖1p
−3 ≤ 10c

s0 log p

n
,

for n, p large enough . This implies the claim on the bias.

It remains only to prove the intermediate Lemma H.5.

Proof of Lemma H.5. We prove the claim for the second batch, and in the rest of the

proof, we assume that all probabilities and expectations are conditional on the first

batch (in particular, the intermediate estimate θ̂1). The (a, b) entry of Ip − Ω(2)Σ̂(2)

reads

(Ip − Ω(2)Σ̂(2))a,b = I(a = b)− 〈Ω(2)ea, Σ̂
(2)eb〉

=
1

n2

∑
i>n1

I(a = b)− 〈ea,Ω(2)xi〉xib.

Now, E{〈ea,Ω(2)xi〉xi,b〉} = I(a = b) and 〈ea,Ω(2)xi〉 is (‖Ω(2)‖2κ)-subgaussian. Since

Σ(2) < Λ0Ip, we have that ‖Ω(2)‖2 ≤ Λ0
−1. This observation, coupled with Lemma

I.4, yields 〈ea,Ω(2)xi〉xi,b is 2κ2/Λ0-subexponential. Then we may apply Lemma I.5 for

ε ≤ 12κ2/Λ0 as below:

P{(Ip − Ω(2)Σ̂(2))a,b ≥ ε} ≤ exp
(
− n2ε

2

36κ2Λ0
−1

)
.
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Keeping ε = ε(p, n2, κ,Λ0) = 15κΛ0
−1/2

√
(log p)/n2 we obtain:

P
{

(Ip − Ω(2)Σ̂(2))a,b ≥ 15κΛ0
−1/2

√
log p

n2

}
≤ p−6.

Union bounding over the pairs (a, b) yields the claim. The requirement n2 ≥ 2(Λ0/κ
2) log p

ensures that the choice ε above satisfies ε ≤ 12κ2/Λ0.

H.3 Central limit asymptotics: proofs of Proposition 4.9 and

Theorem 4.10

Our approach is to apply a martingale central limit theorem to show that Wn,a is ap-

proximately normal. An important first step is to show that the conditional covariance

Vn,a is stable, or approximately constant. Recall that Vn,a is defined as

Vn,a = σ2
(n1

n
〈m(1)

a , Σ̂(1)m(1)
a 〉+

n2

n
〈m(2)

a , Σ̂(2)m(2)
a 〉
)
.

We define its deterministic equivalent as follows. Consider the function f : Sn → R by:

f(Σ) = {min 〈m,Σm〉 : ‖Σm− ea‖∞ ≤ µ , ‖m‖1 ≤ L}.

We begin with two lemmas about the stability of the optimization program used

to obtain the online debiasing matrices.

Lemma H.6. On its domain (and uniformly in µ, ea), f is L2-Lipschitz with respect

to the ‖·‖∞ norm.

Proof. For two matrices Σ,Σ′ in the domain, let m,m′ be the respective optimizers

(which exist by compactness of the set {m : ‖Σm− v‖∞ ≤ µ, ‖m‖1 ≤ L}. We prove

that |f(Σ)− f(Σ′)| ≤ L2‖Σ− Σ′‖∞.

f(Σ)− f(Σ′) = 〈Σ,mmT〉 − 〈Σ′,m′(m′)T〉

≤ 〈Σ,m′(m′)T〉 − 〈Σ′,m′(m′)T〉

= 〈(Σ− Σ′)m′,m′〉

≤ ‖(Σ− Σ′)m′‖∞‖m′‖1

≤ ‖Σ− Σ′‖∞‖m′‖2
1 ≤ L2‖Σ− Σ′‖∞.
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Here the first inequality follows from optimality of m and the last two inequalities are

Hölder inequality. The reverse inequality f(Σ)− f(Σ′) ≥ −L2‖Σ− Σ′‖∞ is proved in

the same way.

Lemma H.7. We have the following lower bound on the optimization value reached to

compute f(Σ):

(1− µ)2

λmax(Σ)
≤ f(Σ) ≤ 1

λmin(Σ)
.

Proof. We first prove the lower bound for f(Σ). Suppose m is an optimizer for the

program. Then

‖Σm‖2 ≥ ‖Σm‖∞ ≥ ‖ea‖∞ − µ = 1− µ.

On the other hand, the value is given by

〈m,Σm〉 = 〈Σm,Σ−1(Σm)〉 ≥ λmin(Σ−1)‖Σm‖2
2 = ‖Σm‖2

2 λmax(Σ)−1.

Combining these gives the lower bound.

For the upper bound, it suffices to consider any feasible point; we choosem = Σ−1ea,

which is feasible since ‖Σ−1‖1 ≤ L. The value is then 〈ea,Σ−1ea〉 ≤ λmax(Σ−1) which

gives the upper bound.

Lemma H.8. (Stability of Wn,a) Define Σ(2)(θ) = E{xxT|〈x1, θ〉 ≥ ς}. Then, under

Assumptions 4.5 and 4.8

lim
n→∞

∣∣∣Vn,a − σ2
(n1f(Σ)

n
+
n2f(Σ2(θ0))

n

)∣∣∣ = 0, in probability.

Proof. Using Lemma H.6:∣∣∣Vn,a − σ2
(n1

n
f(Σ) +

n2

n
f(Σ(θ0)

)∣∣∣
=
σ2n1

n
(f(Σ̂(1))− f(Σ)) +

σ2n2

n
(f(Σ̂(2) − f(Σ(θ0))))

≤ L2σ
2n1

n
‖Σ− Σ̂(1)‖∞ + L2σ

2n2

n
‖Σ(2)(θ0)− Σ̂(2)‖∞

≤ L2σ
2n1

n
‖Σ− Σ̂(1)‖∞ + L2σ

2n2

n

(
‖Σ(2)(θ0)− Σ(2)(θ̂1)‖∞ + ‖Σ(2)(θ̂1)− Σ̂(2)‖∞

)
≤ σ2L2‖Σ− Σ̂(1)‖∞ + σ2L2

(
K‖θ̂1 − θ0‖1 + ‖Σ(2)(θ̂1)− Σ̂(2)‖∞

)
.
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Using Lemma H.2 the first and third term vanish in probability. It is straightfor-

ward to apply Theorem 4.2 to the intermediate estimate θ̂1; indeed Assumption 4.8

guarantees that n1 ≥ cn for a universal c. Therefore the intermediate estimate

has an error ‖θ̂1 − θ0‖1 of order κσφ−1
0

√
(s2

0 log p)/n with probability converging to

one. In particular, the second term is, with probability converging to one, of order

KL2σ3κφ−1
0

√
s2

0(log p)/n = o(1) by Assumption 4.8.

Lemma H.9. Under Assumptions 4.5 and 4.8, with probability at least 1− p−2

max
i
|〈ma, xi〉| ≤ 10Lκ

√
log p,

In particular limn→∞maxi |〈ma, xi〉| = 0 in probability.

Proof. By Hölder inequality, maxi〈|〈ma, xi〉| ≤ maxi ‖ma‖1‖xi‖∞ ≤ Lmaxi ‖xi‖∞.

Therefore, it suffices to prove that, with the required probability maxi,a|xi,a| ≤ 10κ
√

log p.

Let u = 10κ
√

log p. Since xi are uniformly κ-subgaussian, we obtain for q > 0:

P{|xi,a| ≥ u} ≤ u−qE{|xi,a|q} ≤ (
√
qκ/u)q

= exp
(
− q

2
log

u2

κ2q

)
≤ exp

(
− u2

2κ2

)
≤ p−5 ,

where the last line follows by choosing q = u2/eκ2. By union bound over i ∈ [n], a ∈ [p],

we obtain:

P{max
i,a
|xi,a| ≥ u} ≤

∑
i,a

P{|xi,a| ≥ u} ≤ p−3,

which implies the claim (note that p ≥ n as we are focusing on the high-dimensional

regime).

With these in hand we can prove Proposition 4.9 and Theorem 4.10.

Proof of Proposition 4.9. Consider the minimal filtration Fi so that

1. For i < n1, y1, . . . , yi, x1, . . . xn1 and ε1, . . . , εi are measurable with respect to Fi.

2. For i ≥ n1 y1, . . . , yi, x1, . . . , xn and ε1, . . . εi are measurable with respect to Fi.
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The martingale Wn (and therefore, its ath coordinate Wn,a) is adapted to the filtration

Fi. We can now apply the martingale central limit theorem [14, Corollary 3.1] to

Wn,a to obtain the result. From Lemmas H.7 and H.8 we know that Vn,a is bounded

away from 0, asymptotically. The stability and conditional Lindeberg conditions of

[14, Corollary 3.1] are verified by Lemmas H.8 and H.9.

Proof of Theorem 4.10. This is a straightforward corollary of the bias bound of 4.7 and

Proposition 4.9. We will show that:

lim
n→∞

P
{√ n

Vn,a
(θ̂on
a − θ0,a) ≤ x

}
≤ Φ(x).

The reverse inequality follows using the same argument.

Fix a δ > 0. We decompose the difference above as:√
n

Vn,a
(θ̂on
a − θ0,a) =

Wn,a√
Vn,a

+
∆n,a√
Vn,a

.

Therefore,

P
{√ n

Vn,a
(θ̂on
a − θ0,a) ≤ x

}
≤ P

{ Wn,a√
Vn,a
≤ x+ δ

}
+ P{|∆n,a| ≥

√
Vn,aδ}.

By Proposition 4.9 the first term converges to Φ(x + δ). To see that the second term

vanishes, observe first that Lemma H.7 and Lemma H.8, imply that Vn,a is bounded

away from 0 in probability. Using this:

lim
n→∞

P{|∆n,a| ≥
√
Vn,aδ} ≤ lim

n→∞
P{‖∆n‖∞ ≥

√
Vn,aδ}

≤ lim
n→∞

P
{
‖∆n‖∞ ≥ 4000

κ2σ√
Λ0φ0

s0 log p√
n

}
= 0

by applying Theorem 4.7 and that for n large enough,
√
Vn,aδ exceeds the bound on

‖∆n‖∞ used. Since δ is arbitrary, the claim follows.

H.4 Proofs for Gaussian designs

In this Section we prove that Gaussian designs of Example 4.6 satisfy the requirements

of Theorem 4.2 and Theorem 4.7.

The following distributional identity will be important.
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Lemma H.10. Consider the parametrization ς = ς̄〈θ̂,Σθ̂〉
1/2

. Then

x|〈x,θ̂〉≥ς
d
=

Σθ̂

〈θ̂,Σθ̂〉1/2
ξ1 +

(
Σ− Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉

)1/2

ξ2,

where ξ1, ξ2 are independent, ξ2 ∼ N(0, Ip) and ξ1 has the density:

dPξ1
du

(u) =
1√

2πΦ(−ς̄)
exp(−u2/2)I(u ≥ ς̄).

Proof. This follows from the distribution of x|〈x, θ̂〉 being N(µ′,Σ′) with

µ′ =
Σθ̂

〈θ̂,Σθ̂〉
〈x, θ̂〉, Σ′ = Σ− Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉
.

The following lemma shows that they satisfy compatibility.

Lemma H.11. Let Px = N(0,Σ) for a positive definite covariance Σ. Then, for any

vector θ̂ and subset S ⊆ [p], the second moments E{xxT} and E{xxT|〈x, θ̂〉 ≥ ς} are

(φ0, S)-compatible with φ0 = λmin(Σ)/16.

Proof. Fix an S ⊆ [p]. We prove that Σ = E{x1x
T
1 } is (φ0, S)-compatible with φ0 =

λmin(Σ)/16. Note that, for any v satisfying ‖vSc‖1 ≤ 3‖vS‖, its `1 norm satisfies

‖v‖1 ≤ 4‖vS‖1. Further Σ < λmin(Σ)Ip implies:

|S|〈v,Σv〉
‖v‖2

1

≥ λmin(Σ)
|S|‖v‖2

‖v‖2
1

≥ λmin(Σ)
|S|‖vS‖2

16‖vS‖2
1

≥ λmin(Σ)

16
.

For E{xxT|〈x, θ̂〉 ≥ ς}, we use Lemma H.10 to obtain

E{xxT|〈x, θ̂〉 ≥ ς} = Σ + (E{ξ2
1} − 1)

Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉
,

where ξ1 is as in Lemma H.10. Since E{ξ2
1} = 1 + ς̄ϕ(ς̄)/Φ(−ς̄) ≥ 1 + ς̄2 whenever

ς̄ ≥ 0:

E{xxT|〈x, θ̂〉 ≥ ς} ≥ Σ + ς̄2 Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉
< λmin(Σ)Ip .

The rest of the proof is as for Σ.
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Lemma H.12. Let Px = N(0,Σ) for a positive definite covariance Σ. Then, for any

vector θ̂ and subset S ⊆ [p], the random vectors x and x|〈x,θ̂〉≥ς are κ-subgaussian with

κ = 3λmax(Σ)1/2(ς̄ ∨ ς̄−1), where ς̄ = ς/〈θ̂,Σθ̂〉1/2.

Proof. By definition, 〈x, v〉 ∼ N(0, vTΣv) is
√
vTΣv-subGaussian. Optimizing over all

unit vectors v, x is λ
1/2
max(Σ)-subgaussian.

For x|〈x,θ̂〉≥ς , we use the decomposition of Lemma H.10:

x|〈x,θ̂〉≥ς
d
=

Σθ̂

〈θ̂,Σθ̂〉1/2
ξ1 +

(
Σ− Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉

)1/2

ξ2.

Clearly, ξ2 is 1-subgaussian, which means the second term is λ
1/2
max(Σ)-subgaussian. For

the first term, we claim that ξ1 is 1-subgaussian and therefore the first term is λ
1/2
max(Σ)-

subgaussian. To show this, we start with the moment generating function of ξ1. Recall

that ς̄ = ς/〈θ̂,Σθ̂〉1/2:

E{eλξ1} =

∫ ∞
ς̄

eλue−u
2/2 du√

2πΦ(−ς̄)
= eλ

2/2 Φ(λ− ς̄)
Φ(−ς̄)

.

Here ϕ and Φ are the density and c.d.f. of the standard normal distribution. It follows

that:

d2

dλ2
logE{eλξ1} =

1

2
+

(λ− ς̄)ϕ(λ− ς̄)
Φ(λ− ς̄)

− ϕ(λ− ς̄)2

Φ(λ− ς̄)2

≤ 1

2
+ sup

λ≥ς̄

(λ− ς̄)ϕ(λ− ς̄)
Φ(λ− ς̄)

≤ 1

2
+ sup

λ≥0

λϕ(λ)

Φ(λ)
< 1 .

Now, consider the centered version ξ′1 = ξ1 − E{ξ1}. The above bound also holds for

d2/dλ2(logE{eλξ′1}). Therefore, by integration, d logE{eλξ′1}/dλ ≤ λ + C, for some

constant C independent of λ. Now

d logE{eλξ′1}
dλ

∣∣∣
λ=0

= E{ξ′1} = 0.

Therefore, we can take the constant C to be 0. Repeating this integration argument,

we obtain logE{eλξ′1} ≤ λ2/2, which implies that ξ′1 = ξ1 − E{ξ1} is 1-subgaussian.
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It follows, by triangle inequality, that ξ1 is (1+E{ξ1})-subgaussian. It only remains

to bound E{ξ1} as below:

E{ξ1} =
ϕ(ς̄)

Φ(−ς̄)
≤ 1 + ς̄2

ς̄
≤ 2(ς̄ ∨ ς̄−1).

Therefore, the subgaussian constant of x|〈x,θ̂〉≥ς is at most λmax(Σ)1/2(2ς̄ ∨ ς̄−1 + 1) ≤

3λmax(Σ)1/2(ς̄ ∨ ς̄−1).

For Example 4.6, it remains only to show the constraint on the approximate sparsity

of the inverse covariance. We show this in the following

Lemma H.13. Let Px = N(0,Σ) and θ̂ be any vector such that ‖θ̂‖1‖θ̂‖∞ ≤ Lλmin(Σ)‖θ̂‖2/2

and ‖Σ−1‖1 ≤ L/2. Then, with Ω = E{xxT}−1 and Ω(2)(θ̂) = E{xxT|〈x, θ̂〉 ≥ ς}−1:

‖Ω‖1 ∨ ‖Ω(2)‖1 ≤ L.

Proof. By assumption ‖Ω‖1 ≤ L/2, so we only require to prove the claim for Ω(2) =

E{xxT|〈x, θ̂〉 ≥ ς}−1. Using Lemma H.10, we can compute the precision matrix:

Ω(2) = E{xxT|〈x, θ̂〉 ≥ ς}−1

=
(

Σ + (E{ξ2
1} − 1)

Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉

)−1

= Ω + (E{ξ2
1}−1 − 1)

θ̂θ̂T

〈θ̂,Σθ̂〉
,

where the last step follows by an application of Sherman–Morrison formula. Since

E{ξ2
1} = 1 + ς̄ϕ(ς̄)/Φ(−ς̄), where ς̄ = ς/〈θ̂,Σθ̂〉1/2 this yields:

Ω(2) = Ω− ς̄ϕ(ς̄)

Φ(−ς̄) + ς̄ϕ(ς̄)

θ̂θ̂T

〈θ̂,Σθ̂〉
.

By triangle inequality, for any ς̄ ≥ 0:

‖Ω(2)‖1 ≤ ‖Ω‖1 +
‖θ̂θ̂T‖1

〈θ̂,Σθ̂〉

≤ L

2
+
‖θ̂‖1‖θ̂‖∞
λmin(Σ)‖θ̂‖2

≤ L.

50



Next we show that the conditional covariance of x is appropriately Lipschitz.

Lemma H.14. Suppose ς = ς̄〈θ,Σθ〉1/2 for a constant ς̄ ≥ 0. Then The conditional

covariance function Σ(2)(θ) = E{xxT|〈x, θ〉 ≥ ς} satisfies:

‖Σ(2)(θ′)− Σ(2)(θ)‖∞ ≤ K‖θ′ − θ‖,

where K =
√

8(1 + ς̄2)λmax(Σ)3/2/λmin(Σ)1/2.

Proof. Using Lemma H.10,

Σ(2)(θ) = Σ + (E{ξ2
1} − 1)

ΣθθTΣ

〈θ,Σθ〉
.

Let v = Σ1/2θ/‖Σ1/2θ‖ and v′ = Σ1/2θ′/‖Σ1/2θ′‖. With this,

‖Σ(2)(θ′)− Σ(2)(θ)‖∞ = (E{ξ2
1} − 1)‖Σ1/2(vvT − v′v′T)Σ1/2‖∞

≤ (E{ξ2
1} − 1)λmax(Σ)‖vvT − v′v′T‖2

≤ (E{ξ2
1} − 1)λmax(Σ)‖vvT − v′v′T‖F

(a)

≤
√

2(E{ξ2
1} − 1)λmax(Σ)‖v − v′‖

(b)

≤
√

8λmax(Σ)3/2

λmin(Σ)1/2
(E{ξ2

1} − 1)‖θ − θ′‖

(c)

≤
√

8λmax(Σ)3/2

λmin(Σ)1/2
(ς̄2 + 1)‖θ − θ′‖ .

Here, (a) follows by noting that for two unit vectors v, v′, we have

‖vvT − v′v′T‖2
F = 2− 2(vTv′)2 = 2(1− vTv′)(1 + vTv′) ≤ 2‖v − v′‖2 .

Also, (b) holds using the following chain of triangle inequalities

‖v − v′‖ =
∥∥∥ Σ1/2θ

‖Σ1/2θ‖
− Σ1/2θ′

‖Σ1/2θ′‖

∥∥∥
≤ ‖Σ

1/2(θ − θ′)‖
‖Σ1/2θ‖

+ ‖Σ1/2θ′‖
∣∣∣ 1

‖Σ1/2θ‖
− 1

‖Σ1/2θ′‖

∣∣∣
≤ 2
‖Σ1/2(θ − θ′)‖
‖Σ1/2θ‖

≤ 2

√
λmax(Σ)

λmin(Σ)
‖θ − θ′‖

Finally (c) holds since

E{ξ1
1} − 1 = ς̄ϕ(ς̄)/Φ(−ς̄) ≤ ς̄2 + 1 ,

using standard tail bound ϕ(ς̄) ς̄
ς̄2+1
≤ Φ(−ς̄).
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I Technical preliminaries

Definition I.1. (Subgaussian norm) The subgaussian norm of a random variable X,

denoted by ‖X‖ψ2, is defined as

‖X‖ψ2 ≡ sup
q≥1

q−1/2E{|X|q}1/q.

For a random vector X the subgaussian norm is defined as

‖X‖ψ2 ≡ sup
‖v‖=1

‖〈X, v〉‖ψ2 .

Definition I.2. (Subexponential norm) The subexponential norm of a random variable

X is defined as

‖X‖ψ1 ≡ sup
q≥1

q−1E{|X|q}1/q.

For a random vector X the subexponential norm is defined by

‖X‖ψ1 ≡ sup
‖v‖=1

‖〈X, v〉‖ψ1 .

Definition I.3. (Uniformly subgaussian/subexponential sequences) We say a sequence

of random variables {Xi}i≥1 adapted to a filtration {Fi}i≥0 is uniformly K-subgaussian

if, almost surely:

sup
i≥1

sup
q≥1

q−1/2E{|Xi|q|Fi−1}1/q ≤ K.

A sequence of random vectors {Xi}i≥1 is uniformly K-subgaussian if, almost surely,

sup
i≥1

sup
‖v‖=1

sup
q≥1

E{|〈Xi, v〉|q|Fi−1}1/q ≤ K.

Subexponential sequences are defined analogously, replacing the factor q−1/2 with q−1

above.

Lemma I.4. For a pair of random variables X, Y , ‖XY ‖ψ1 ≤ 2‖X‖ψ2‖Y ‖ψ2.
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Proof. By Cauchy Schwarz:

‖XY ‖ψ1 = sup
q≥1

q−1E{|XY |q}1/q

≤ sup
q≥1

q−1E{|X|2q}1/2qE{|Y |2q}1/2q

≤ 2
(

sup
q≥2

(2q)−1/2E{|X|2q}1/2q
)
·
(

sup
q≥2

(2q)−1/2E{|Y |2q}1/2q
)

≤ 2‖X‖ψ2‖Y ‖ψ2 .

The following lemma from [37] is a Bernstein-type tail inequality for sub-exponential

random variables.

Lemma I.5 ([37, Proposition 5.16]). Let X1, X2, . . . , Xn be a sequence of independent

random variables with maxi‖Xi‖ψ1 ≤ K. Then for any ε ≥ 0:

P
{∣∣∣ 1
n

n∑
i=1

Xi − E{Xi}
∣∣∣ ≥ ε

}
≤ 2 exp

{
− nε

6eK
min

( ε

eK
, 1
)}

(108)

We also use a martingale generalization of [37, Proposition 5.16], whose proof is we

omit.

Lemma I.6. Suppose (Fi)i≥0 is a filtration, X1, X2, . . . , Xn is a uniformly K-subexponential

sequence of random variables adapted to (Fi)i≥0 such that almost surely E{Xi|Fi−1} =

0. Then for any ε ≥ 0:

P
{∣∣∣ 1
n

n∑
i=1

Xi

∣∣∣ ≥ ε
}
≤ 2 exp

{
− nε

6eK
min

( ε

eK
, 1
)}

(109)

The following is a rough bound on the LASSO error.

Lemma I.7 (Rough bound on LASSO error). For LASSO estimate θ̂L with regular-

ization λn the following bound holds:

‖θ̂L − θ0‖1 ≤
‖ε‖2

2nλn
+ 2‖θ0‖1 .
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Proof of Lemma I.7. We first bound the size of θ̂L. By optimality of θ̂L:

λn‖θ̂L‖1 ≤
1

2n
‖ε‖2

2 + λn‖θ0‖1 −
1

2n
‖y −Xθ̂L‖2

2

≤ 1

2n
‖ε‖2

2 + λn‖θ0‖1.

We now use triangle inequality and the bound above to get the claim:

‖θ̂L − θ0‖1 ≤ ‖θ̂L‖1 + ‖θ0‖1

≤ 1

2nλn
‖ε‖2 + 2‖θ0‖1 .
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