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Table 1. Correlation functions and parameters for data generation in the simulation study.

Type ρ ν

Bessel Jv (z) =
(|z|/ρ1

2

)ν∑∞
j=0

(−(|z|/ρ)2/4)
j

j!Γ(ν+j+1)
0.25 0

Gaussian G (z) = exp

[
−
(
|z|
ρ

)2
]

1 -

Powered exponential P (z) = exp
[
−
(
|z|
ρ

)ν]
1 0.5

A Details on Data Generation

The compact domains S and T are set, without loss of generality, equal to [0, 1] and the

number of covariates p is set equal to 3. The eigenfunctions sets {ψX
i } and {ψYi } are gen-

erated by the spectral decomposition of pre-specified correlation functions. In particular,

the eigenfunction set {ψX
i } is obtained considering the correlation function GX through

the following steps.

1. Set the diagonal elements GX
ll , l = 1, 2, 3 of GX as the Bessel correlation function

of the first kind (Abramowitz and Stegun, 1964), the gaussian correlation function

(Abrahamsen and Regnesentral, 1997) and the powered exponential correlation func-

tion (Stein, 1999). The general form of the correlation functions and parameters used

in the simulation study are listed in Table 1. Then, calculate the eigenvalues {ηXlk}

and the corresponding eigenfunctions {ϑXlk}, k = 1, 2, . . . , of GX
ll , l = 1, 2, 3.

2. Obtain the cross-correlation function GX
lj , l, j = 1, 2, 3 and l 6= j, by

GX
lj (s1, s2) =

∞∑
k=1

η̃Xk ϑ̃
X
lk (s1) ϑ̃

X
jk (s2) s1, s2 ∈ S, (A.1)

where η̃Xk = (1/3)
∑3

l=1 η
X
lk and ϑ̃Xlk =

(
1/
√
3
)
ϑXlk .

3. Calculate the eigenvalues {λXi } and the corresponding eigenfunctions {ψX
i } through

the spectral decomposition of GX = {GX
lj }l,j=1,2,3, for i = 1, . . . , L∗.

The eigenvalues {λYi } and the corresponding eigenfunctions {ψYi }, i = 1, . . . ,M∗ are calcu-

lated by means of the spectral decomposition of GY set as the Bessel correlation function
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Table 2. Diagonal values bii of BLM11 and corresponding R2 for three different settings.

bii R2

0.698, 0.838, 0.315, 0.0504, 0.002,
0.000, 0.000, 0.000, 0.000, 0.000

0.97

0.658, 0.795, 0.275, 0.010, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000

0.86

0.608, 0.745, 0.225, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000

0.76

of the first kind with ρ = 0.2 and ν = 0 (Abramowitz and Stegun, 1964). Further, set L∗

and M∗ equal to 50 and 10, respectively. Then, β is calculated as follows,

β (s, t) =
(
ψY (t)

)T
(BL∗M∗)T ΨX (s) s, t ∈ [0, 1] , (A.2)

where the matrixBL∗M∗ , is set as a partitioned matrix [BL∗M∗11 BL∗M∗21]
T , whereBL∗M∗11

is a diagonal matrix of dimensionM∗ and BL∗M∗21 is a (L∗ −M∗)×M∗ matrix of all zeros.

Diagonal values of BL∗M∗11 are listed in Table 2 for three different settings, along with the

corresponding R2 values (Horváth and Kokoszka, 2012; Yao et al., 2005), defined as

R2 =

∫
[0,1]

Var (E (Y (t) |X))

Var (Y (t))
dt. (A.3)

The R2 value measures globally the proportion of the variance in the response explained

by the covariates. Then, in order to ensure the validity of the model in Equation (3), ΣεM∗

is chosen such that the following relation holds

ΣξY
M∗

= ΛY = (BL∗M∗)T ΛXBL∗M∗ + ΣεM∗ , (A.4)

with ΣξY
M∗

= Cov
(
ξYM∗

)
, ΛY = diag

(
λY1 , . . . , λ

Y
M∗

)
, and ΛX = diag

(
λX1 , . . . , λ

X
L∗

)
. Real-

izations of X are obtained through

X =
L∗∑
i=1

ξXi ψ
X
i , (A.5)

with ξXL∗ =
(
ξX1 , . . . , ξ

X
L∗

)T generated by means of a multivariate normal distribution with

covariance Cov
(
ξXL∗

)
= ΣξX

L∗
= ΛX . In the same way, realizations of Y are generated by
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Table 3. Values of mi and si to generate the mean functions µX̃ =
(
µX̃1 , µ

X̃
2 , µ

X̃
3

)T
and µỸ , and the variance functions

vX̃ =
(
vX̃1 , v

X̃
2 , v

X̃
3

)T
and vỸ of X̃ and Ỹ , respectively, in the simulation study.

mi si

µX̃1
0.075, 0.100, 0.250, 0.350,

0.500, 0.650, 0.850, 0.900, 0.950
0.050, 0.030, 0.050, 0.050,

0.100, 0.050, 0.100, 0.040, 0.035

µX̃2 - -

µX̃3
0.075, 0.100, 0.150, 0.225, 0.400, 0.525,

0.550, 0.600, 0.625, 0.650, 0.850, 0.900, 0.925
0.050, 0.060, 0.050, 0.040, 0.050, 0.035,

0.045, 0.045, 0.040, 0.030, 0.015, 0.010, 0.015

µỸ - -

vX̃1
0.075, 0.100, 0.125, 0.150,

0.400, 0.650, 0.850, 0.900, 0.925
0.050, 0.060, 0.075, 0.075,
0.075, 0.045, 0.045, 0.040

vX̃2 - -

vX̃3
0.075, 0.100, 0.150, 0.225, 0.400, 0.525,

0.550, 0.600, 0.625, 0.650, 0.850, 0.900, 0.925
0.050, 0.060, 0.050, 0.040, 0.050, 0.035,

0.045, 0.045, 0.040, 0.030, 0.015, 0.010, 0.015

vỸ - -

means of

Y =
M∗∑
i=1

ξYi ψ
Y
i . (A.6)

Realizations of the score vector ξYM∗ =
(
ξY1 , . . . , ξ

Y
M∗

)T are obtained as

ξYM∗ = (BL∗M∗)T ξXL∗ + εM∗ , (A.7)

with εM∗ = (ε1, . . . , εM∗)T generated by means of a multivariate normal distribution with

covariance matrix Cov (εM∗) = ΣεM∗ independent of ξXL∗ . Further, the mean functions

µX̃ =
(
µX̃1 , µ

X̃
2 , µ

X̃
3

)T
and µỸ and the variance functions vX̃ =

(
vX̃1 , v

X̃
2 , v

X̃
3

)T
and vỸ are

generated through the following reference model

µ (z) = P (z) + r

I∑
i=1

hi (z;mi, si) z ∈ [0, 1] , (A.8)

where

P (z) = az2 + bz + c z ∈ [0, 1] , (A.9)

a, b, c are real numbers, the terms hi (z;mi, si) are normal probability density functions

having parameters mi and si and z is equal to s (resp. t) if we are computing µX̃ (resp.

µỸ ). The values of all unknown parameters are listed in Table 3 and Table 4. Then, given

the mean functions µX̃ and µỸ and the variance functions vX̃ and vỸ , realizations of X̃

and Ỹ are easily obtained. Finally, X̃ and Ỹ are assumed to be observed at 150 equally
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Table 4. Values of a, b, c and r to generate the mean functions µX̃ =
(
µX̃1 , µ

X̃
2 , µ

X̃
3

)T
and µỸ , and the variance functions

vX̃ =
(
vX̃1 , v

X̃
2 , v

X̃
3

)T
and vỸ of X̃ and Ỹ , respectively, in the simulation study.

a b c r

µX̃1 −20 20 −20 0.05

µX̃2 0 4 0 0

µX̃3 −10 14 −8 0.05

µỸ 0 30 0 0

vX̃1 0 0 1 0.1

vX̃2 0 0.02 1 0

vX̃3 −40 150 30 2

vỸ 0 8 1 0

spaced time points [0, 1] with measurement errors ζX̃i ∼ N
(
0,σ2

X̃

)
and ζ Ỹi ∼ N

(
0, σ2

Ỹ

)
where σX̃ = (0.3, 0.05, 0.3)T and σỸ = 0.3. For illustrative purposes, a sample of 1000

randomly generated realizations of X̃ =
(
X̃1, X̃2, X̃3

)T
and Ỹ with their mean functions

are shown in Figure 1 for R2 = 0.97.

Figure 1. 1000 randomly generated realizations of X̃ =
(
X̃1, X̃2, X̃3

)T
and Ỹ with their mean functions (black solid line).

B FRCC Performance at Different Values of R2

In the simulation study, the analysis were performed using data generated by considering

diagonal values of BL∗M∗11 corresponding to R2 = 0.97. To asses the effect on the FRCC
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performance of changes in the proportion of the response variance explained by the co-

variates, the same analysis of Scenario 1 in Section 3.2 are performed by considering the

three different settings in Table 2. As expected, when R2 decreases, Figure 2 and Table 5

show that the FRCC advantage over its competitors becomes marginal, but the conclusions

remain overall consistent with those taken in the case R2 = 0.97. This confirms the fact

that when no linear relation hold between the response and the covariates the FRCC and

the RESP control chart perform equivalently. However, already at R2 = 0.76 the FRCC

performs better than the competitors control charts.

Figure 2. Estimated ARL (ÂRL) and 95% confidence interval achieved by FRCC at R2 = 0.76 (dotted line), R2 = 0.86
(dashed line) and R2 = 0.97 (solid line), for each type of shift considered for Scenario 1 (Table 2a in the main document), as
a function of the severity level.
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C ÂRLs and 95% Approximate Confidence Intervals for

Scenario 1 and Scenario 2 in the Simulation Study

Table 6 and Table 7 show the estimated ARLs for the the FRCC, RESP and INBA frame-

works, for Scenario 1 and Scenario 2 based on the Student’s t approximation. By looking at
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Table 5. Estimated ARL (ÂRL) and 95% confidence interval achieved by FRCC, at R2 = 0.76, 0.86, 0.97, for each type of
shift and severity level considered for Scenario 1 (Table 2a in the main document).

Shift Severity R2

0.97 0.86 0.76

d ÂRL CI ÂRL CI ÂRL CI

In-control - 103.67 [98.56, 108.78] 103.42 [97.75, 109.08] 101.64 [96.20, 107.08]

A

0.5 60.40 [58.05, 62.75] 90.73 [86.43, 95.04] 91.85 [87.09, 96.61]
1.0 20.48 [19.77, 21.18] 57.71 [55.23, 60.20] 68.96 [65.92, 72.00]
1.5 6.88 [6.65, 7.11] 34.12 [32.82, 35.42] 45.23 [43.64, 46.83]
2.0 2.91 [2.85, 2.97] 19.63 [18.96, 20.30] 28.38 [27.41, 29.36]

B

0.5 45.08 [43.26, 46.90] 80.70 [76.81, 84.60] 85.29 [81.20, 89.38]
1.0 10.71 [10.34, 11.08] 42.06 [40.53, 43.58] 53.17 [50.99, 55.35]
1.5 3.16 [3.09, 3.24] 21.10 [20.27, 21.94] 31.32 [30.18, 32.47]
2.0 1.55 [1.53, 1.57] 10.56 [10.25, 10.88] 17.94 [17.37, 18.51]

C

0.5 8.31 [8.05, 8.57] 32.72 [31.53, 33.92] 40.87 [39.32, 42.43]
1.0 1.33 [1.32, 1.34] 6.57 [6.40, 6.74] 10.43 [10.06, 10.81]
1.5 1.00 [1.00, 1.00] 2.15 [2.11, 2.19] 3.43 [3.36, 3.50]
2.0 1.00 [1.00, 1.00] 1.22 [1.21, 1.23] 1.67 [1.65, 1.70]

D

0.5 15.31 [14.69, 15.92] 50.31 [48.37, 52.25] 59.64 [57.32, 61.97]
1.0 2.11 [2.08, 2.14] 14.56 [14.09, 15.02] 23.10 [22.24, 23.95]
1.5 1.07 [1.07, 1.07] 4.76 [4.64, 4.87] 9.08 [8.84, 9.33]
2.0 1.00 [1.00, 1.00] 2.20 [2.17, 2.24] 4.15 [4.05, 4.24]

the estimated ARLs achieved by the FRCC, we note that the Hotelling’s T 2 control chart is

more sensitive to mean shift than the SPE control chart, whereas, the two charts perform

comparably for the RESP control chart. These results are also graphically displayed in

Figure 1 and Figure 2 of the main document.

D FRCC Performance at Different Percentages of Vari-

ance Explained by Retained Principal Components

In this section, additional simulations are run for Scenario 1 (see Section 3) at each shift

type and severity level reported in Table 1 and Table 2a of the main article, respectively, to

study the effect on the FRCC performance of δY and δX (i.e., percentage of total variance

explained by the retained principal components in the response and covariates, respec-

tively). Figure 3 displays the estimated ARL (ÂRL) and 95% confidence interval obtained

from 100 simulation runs performed at δY = 0.90, 0.95, 0.99 and δX = 0.90, 0.95, 0.99, for

every shift type and severity level. It is clear from Figure 3 that, although the choice of δY

and δX may be case-specific and related to the bias-variance trade-off, δY and δX larger
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Table 6. Estimated ARL (ÂRL) and 95% confidence intervals (CI) achieved by FRCC, RESP and INBA along with estimated
ARL for the Hotelling’s T 2 (ÂRLT2 ) and SPE (ÂRLSPE), achieved by FRCC and RESP, for each type of shift and severity
level considered for Scenario 1 (Table 2a in the main document).

Shift Severity FRCC RESP INBA

d ÂRL CI ÂRLT 2 ÂRLSPE ÂRL CI ÂRLT 2 ÂRLSPE ÂRL CI

In-control - 103.67 [98.56, 108.78] 233.03 207.69 103.77 [98.99, 108.54] 231.03 211.09 104.00 [99.91, 108.09]

A

0.50 60.40 [58.05, 62.75] 96.19 189.08 97.11 [91.74, 102.47] 219.52 201.26 101.80 [97.71, 105.90]
1.00 20.48 [19.77, 21.18] 23.83 160.03 86.25 [82.03, 90.48] 200.62 169.07 91.02 [87.69, 94.35]
1.50 6.88 [6.65, 7.11] 7.33 108.82 70.22 [67.00, 73.45] 168.55 129.98 75.08 [72.91, 77.24]
2.00 2.91 [2.85, 2.97] 3.00 74.64 54.57 [52.29, 56.85] 132.59 99.96 62.11 [60.10, 64.12]

B

0.50 45.08 [43.26, 46.90] 63.19 177.38 97.44 [92.81, 102.07] 214.27 200.60 94.14 [90.53, 97.75]
1.00 10.71 [10.34, 11.08] 11.81 121.91 85.04 [80.81, 89.26] 179.90 179.47 73.87 [71.19, 76.54]
1.50 3.16 [3.09, 3.24] 3.28 75.51 69.34 [66.07, 72.61] 134.86 157.78 57.57 [55.78, 59.35]
2.00 1.55 [1.53, 1.57] 1.57 42.70 52.27 [50.21, 54.32] 97.63 121.31 40.64 [39.65, 41.64]

C

0.50 8.31 [8.05, 8.57] 9.15 88.49 65.90 [63.32, 68.48] 168.19 117.69 77.22 [74.82, 79.61]
1.00 1.33 [1.32, 1.34] 1.35 24.29 25.31 [24.05, 26.56] 88.68 36.45 40.95 [39.86, 42.04]
1.50 1.00 [1.00, 1.00] 1.01 7.97 10.60 [10.23, 10.97] 46.91 13.62 21.06 [20.58, 21.53]
2.00 1.00 [1.00, 1.00] 1.00 3.56 5.09 [4.95, 5.23] 24.27 6.26 11.71 [11.51, 11.91]

D

0.50 15.31 [14.69, 15.92] 17.53 125.00 90.04 [85.03, 95.05] 202.77 180.29 84.18 [81.31, 87.04]
1.00 2.11 [2.08, 2.14] 2.16 58.04 53.51 [51.55, 55.48] 114.75 107.90 49.06 [47.72, 50.40]
1.50 1.07 [1.07, 1.07] 1.08 25.15 31.63 [30.54, 32.72] 66.51 63.04 28.27 [27.69, 28.85]
2.00 1.00 [1.00, 1.00] 1.00 12.36 19.47 [18.82, 20.13] 41.71 37.49 16.87 [16.51, 17.23]

than 0.90 do not significantly affect the performance of the FRCC. In general, the larger

the δY and δX values, the less they affect the ÂRL.
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Table 7. Estimated ARL (ÂRL) and 95% confidence intervals (CI) achieved by FRCC, RESP and INBA along with
estimated ARL for the Hotelling’s T 2 (ÂRLT2 ) and SPE (ÂRLSPE), achieved by FRCC and RESP, for each type
of shift and severity level considered for Scenario 2 (Table 2b in the main document). Zeros and ones in the triplets
(000, 100, 010, 001, 110, 101, 011, 111) indicate IC and OC covariates, respectively. For instance, the triplet 100 means that
only the first covariate is OC, 111 means that all the covariates are OC, and so on.

µỸ FRCC RESP INBA

d shifted covariate combination ÂRL CI ÂRLT 2 ÂRLSPE ÂRL CI ÂRLT 2 ÂRLSPE ÂRL CI

0

0 0 0 103.68 [98.84, 108.52] 224.93 212.66 99.00 [94.43, 103.57] 205.19 209.90 102.62 [98.84, 106.40]

1 0 0 78.51 [74.41, 82.61] 230.90 128.03 88.94 [83.49, 94.39] 160.63 226.09 96.62 [92.42, 100.82]
0 1 0 98.06 [93.22, 102.90] 206.23 229.34 83.83 [80.01, 87.66] 160.32 207.11 81.15 [78.44, 83.85]
0 0 1 101.80 [96.58, 107.01] 231.09 206.50 105.04 [99.53, 110.55] 223.48 220.26 101.81 [97.58, 106.05]

1 1 0 75.47 [72.12, 78.83] 213.84 123.57 69.43 [66.38, 72.49] 109.66 208.60 98.37 [94.36, 102.37]
1 0 1 65.09 [62.55, 67.62] 223.88 95.74 98.95 [93.19, 104.72] 198.42 230.02 101.41 [97.46, 105.36]
0 1 1 98.80 [94.58, 103.02] 228.03 198.86 92.27 [87.91, 96.62] 176.01 219.36 78.71 [76.25, 81.16]

1 1 1 62.90 [60.04, 65.75] 215.26 94.17 75.49 [72.36, 78.62] 132.47 206.32 91.47 [88.31, 94.63]

0.5

0 0 0 64.02 [60.79, 67.24] 100.56 199.58 97.87 [93.32, 102.43] 209.77 206.24 101.17 [97.87, 104.48]

1 0 0 43.51 [41.93, 45.08] 97.42 83.52 87.69 [83.46, 91.91] 169.52 202.96 87.15 [84.38, 89.93]
0 1 0 63.88 [60.93, 66.83] 103.42 184.81 98.35 [93.56, 103.15] 195.85 228.30 96.99 [93.76, 100.21]
0 0 1 60.92 [58.31, 63.53] 98.93 177.52 96.42 [91.48, 101.36] 197.20 218.29 100.12 [96.46, 103.78]

1 1 0 43.62 [41.96, 45.28] 94.14 86.66 74.22 [71.22, 77.22] 128.47 203.91 102.47 [98.62, 106.33]
1 0 1 39.96 [38.59, 41.34] 95.61 72.20 94.10 [89.60, 98.61] 182.32 222.00 90.46 [87.12, 93.80]
0 1 1 58.54 [56.10, 60.98] 94.93 172.01 98.01 [92.81, 103.21] 200.14 219.36 91.28 [87.73, 94.83]

1 1 1 39.29 [37.83, 40.76] 98.35 69.97 87.17 [82.97, 91.37] 159.95 215.91 102.34 [98.37, 106.31]

1.0

0 0 0 20.72 [19.95, 21.49] 24.28 152.07 85.79 [81.97, 89.61] 192.98 169.13 87.50 [84.15, 90.86]

1 0 0 17.25 [16.61, 17.90] 24.81 59.50 79.12 [74.30, 83.93] 168.80 167.42 72.55 [69.85, 75.25]
0 1 0 21.37 [20.64, 22.10] 25.30 153.27 97.77 [94.29, 101.26] 220.36 200.63 102.43 [98.53, 106.33]
0 0 1 20.76 [19.99, 21.54] 25.54 119.09 82.14 [78.44, 85.83] 180.80 165.61 91.38 [88.03, 94.73]

1 1 0 17.39 [16.78, 17.99] 25.71 55.77 78.19 [74.48, 81.91] 139.34 202.44 102.21 [98.87, 105.55]
1 0 1 16.01 [15.48, 16.55] 24.52 47.49 81.09 [77.37, 84.81] 168.84 169.95 76.95 [73.87, 80.03]
0 1 1 20.64 [19.75, 21.53] 25.29 126.23 96.44 [91.94, 100.94] 209.49 199.31 99.53 [96.08, 102.98]

1 1 1 16.27 [15.83, 16.70] 25.22 46.88 88.79 [84.34, 93.24] 183.48 195.89 102.58 [98.72, 106.43]

1.5

0 0 0 6.98 [6.76, 7.20] 7.48 104.42 71.01 [67.56, 74.47] 164.01 136.11 74.61 [72.17, 77.05]

1 0 0 6.16 [5.99, 6.33] 7.12 42.86 63.62 [60.46, 66.78] 133.23 129.84 60.13 [58.44, 61.83]
0 1 0 7.15 [6.94, 7.36] 7.65 107.79 88.23 [83.91, 92.54] 214.84 164.64 99.90 [96.09, 103.71]
0 0 1 6.94 [6.71, 7.17] 7.52 85.53 67.50 [64.45, 70.55] 152.58 133.78 79.45 [76.43, 82.47]

1 1 0 6.31 [6.15, 6.48] 7.30 42.89 77.27 [73.45, 81.10] 159.13 163.57 94.95 [91.36, 98.55]
1 0 1 6.18 [5.99, 6.38] 7.45 33.72 69.55 [66.63, 72.46] 160.59 130.90 63.93 [61.94, 65.92]
0 1 1 6.95 [6.72, 7.18] 7.58 81.18 88.47 [84.13, 92.81] 213.29 166.77 102.35 [98.39, 106.30]

1 1 1 6.40 [6.20, 6.61] 7.78 35.48 82.58 [78.31, 86.85] 188.38 166.13 93.41 [90.31, 96.50]

2.0

0 0 0 2.94 [2.87, 3.01] 3.02 79.13 54.21 [51.68, 56.73] 135.63 96.71 62.89 [60.96, 64.82]

1 0 0 2.80 [2.74, 2.86] 3.02 28.77 54.69 [52.13, 57.25] 122.63 105.76 48.12 [46.78, 49.46]
0 1 0 2.96 [2.91, 3.02] 3.05 77.76 76.05 [72.17, 79.93] 208.91 129.36 97.19 [93.43, 100.96]
0 0 1 2.93 [2.86, 3.00] 3.05 56.38 52.56 [50.37, 54.76] 127.49 98.51 65.68 [63.25, 68.11]

1 1 0 2.81 [2.75, 2.86] 3.02 28.94 66.61 [63.52, 69.69] 156.75 126.63 79.18 [76.38, 81.97]
1 0 1 2.80 [2.74, 2.86] 3.06 24.63 53.00 [50.67, 55.34] 130.02 96.06 50.26 [48.68, 51.84]
0 1 1 2.97 [2.91, 3.02] 3.08 60.24 74.26 [71.00, 77.52] 209.91 124.02 94.70 [90.95, 98.45]

1 1 1 2.83 [2.77, 2.89] 3.10 23.86 70.22 [66.68, 73.76] 178.75 126.22 83.43 [79.98, 86.87]
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Figure 3. Estimated ARL (ÂRL) and 95% confidence interval achieved by FRCC for Scenario 1 (Table 2a in the main
document), for each shift type (row-wise) and δY = 0.90, 0.95, 0.99 (column-wise, increasing from left to right panels), with
δX = 0.90 (solid line), 0.95 (dashed line), 0.99 (dotted line), as a function of the severity level.
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E An Asymptotic Property of the Studentized Func-

tional Residual

From Equation (34), it follows that the bias in the estimated residual e∆ vanishes as the

sample size and the truncation parameters increase. Here, we want to show that the same

happens for the bias of the studentized residual estu∆ in presence of covariate mean shifts.

Equation (35) defines estu in presence of covariate mean shifts for a new random observation
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(X∆, Y∆) as

estu∆ (t) =
e∆ (t)

CovY∆,Yi

(
Y∆ − ŶLM |X∆,Xi

)1/2

(t)

t ∈ [0, 1] .

Therefore, for t ∈ [0, 1], the mean of estu∆ is

EY∆,Yi (estu∆|X∆,Xi) (t) = EYi [EY∆
(estu∆|X∆,Xi, Yi) |X∆,Xi] (t) ,

where

EY∆
(estu∆|X∆,Xi, Yi) (t)

= EY∆

 e∆

CovY∆,Yi

(
Y∆ − ŶLM |X∆,Xi

)1/2
|X∆,Xi, Yi

 (t)

=
EY∆

(e∆|X∆,Xi, Yi)

CovY∆,Yi

(
Y∆ − ŶLM |X∆,Xi

)1/2
(t)

=

∫ 1

0

(
β (s, t)− β̂LM (s, t)

)T
VX̃ (s)−1 ∆X̃ (s) ds

CovY∆,Yi

(
Y∆ − ŶLM |X∆,Xi

)1/2
(t)

=

∫ 1

0

(
β (s, t)− β̂LM (s, t)

)T
VX̃ (s)−1 ∆X̃ (s) ds(

CovY∆,Yi

[∫ 1

0
β̂LM (s, t)T VX̃ (s)−1X∆ds|X∆,Xi

]
+ v2

ε

)1/2
(t) .

The latter denominator has been obtained by the following result

CovY∆,Yi

(
Y∆ − ŶLM |X∆,Xi

)
(t)

= CovY∆,Yi

[∫ 1

0

β̂LM (s, t)T VX̃ (s)−1X∆ds|X∆,Xi

]
(t) + v2

ε (t) , t ∈ [0, 1] .
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When the truncation parameters L and M and the sample size increase, note that the

integral ∫ 1

0

(
β (s, t)− β̂LM (s, t)

)T
VX̃ (s)−1 ∆X̃ (s) ds

converges (in probability) to zero (see Equation (34)); the denominator converges (in proba-

bility) to v2
ε , because CovY∆,Yi

[∫ 1

0
β̂LM (s, t)T VX̃ (s)−1X∆ds|X∆,Xi

]
converges (in prob-

ability) to zero.

Therefore, EY∆
(estu∆|X∆,Xi, Yi) converges (in probability) to zero, as well as EY∆,Yi (estu∆|X∆,Xi),

being the expectation a continuous operator (Casella and Berger, 2002).

F Real-case Study: Plot of Response and Covariate Pro-

file Observations

Figure 4 shows the 315 profiles observed for the covariates and response in the real-case

study of Section 5. The functional response is the cumulative fuel consumption (CFC)

per each voyage. The scale on the ordinate axis is omitted for confidentiality reasons. The

covariates are the sailing time (T ), measured in hours (h) the speed over ground (SOG),

measured in knots (kn), and the longitudinal and transverse wind components (Wlo and

Wtr), measured in knots (kn).

12



Figure 4. Plot of the 315 covariate and response observations in the real-case study.

Figure 5 shows the mean function of the response (CFC) before and after the EEI

(energy efficiency initiative). By visual inspection, it is clear that a shift downward of the

cumulative fuel consumption occurred.

Figure 5. Mean function of the CFC before (solid line) and after (dashed line) the EEI.
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G Real-case Study: A Permutation Test to Assess the

Statistical Significance of the MFLR Model

We perform a permutation test to asses the statistical significance of the MFLR model

estimated as in Section 2 in the real-case study of Section 5. The test is based on R2 =∫
[0,1]

Var(E(Y (t)|X))
Var(Y (t))

dt (Horváth and Kokoszka, 2012). In Figure 6, the black solid line indicates

the observed R2 that is equal to 0.73. The points represent 500 R2 values obtained by

random permutations of the response variable. Whereas, the grey solid line corresponds to

the 95th sample percentile. All of the 500 R2 values as well as the 95th sample percentile

is far below 0.73, and gives a strong justification for the use of the proposed MFLR model.

Figure 6. R2 values from permuting the response 500 times (points), observed R2 (black solid horizontal line) and 95th
sample percentile (grey solid horizontal line).
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H Real-case Study: Bootstrap Analysis Details

Given the n observations in Phase II
(
X̃i, Ỹi

)
, i = 1, . . . , 203, of the covariates and re-

sponse, the bootstrap analysis can be summarized in the following steps.

1. Compute the standardized versions (Xi, Yi) of
(
X̃i, Ỹi

)
, using the quantities esti-

mated in Phase I.
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2. ObtainB standard bootstrap samples of size n (X1b, Y1b) , . . . , (Xnb, Ynb), b = 1, . . . , B,

resampling with replacement from the standardized observations (X1, Y1) , . . . , (Xn, Yn).

3. Use the B bootstrap samples (X1b, Y1b) , . . . , (Xnb, Ynb), b = 1, . . . , B, to compute B

values of the statistic, ARL1, . . . ,ARLB for each chart.

4. Build the confidence interval with confidence level 1−α for the ARL statistics using

the α/2 and 1 − α/2 quantiles of the empirical bootstrapped ARL distribution and

calculate the mean, ARL∗, of the empirical bootstrapped ARL distribution for each

control chart.

The number of bootstrap samples B is set equal to 500, and confidence intervals are built

with α = 0.05.
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