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1 Choice for the Hyperparameter

The proposed method (RIG) applies the linear regression model to the imputation proce-

dure. When the number of the predictor variables is larger than the sample size, it employs

principle component analysis and selects the top ranked principal components that explains

80% variance. Here 80% is a hyper-parameter (denoted as q) and may affect the perfor-

mance of RIG. To investigate the sensitivity of RIG to the choice of q, we set q to be

q1 = 70%, q2 = 80% and q3 = 90%, respectively, and compare their MSEs in estimating

{pAUC(α), α = 0.05, 0.1, 0.2, 1}. The MSEs corresponding to q1 = 70% are considered as

the baseline, and the results are presented in the ratio form as q2/q1 and q3/q1, indicating

those calculated by the division between MSEs of the corresponding q’s. The sample size

is 50, and the remaining parameters are the same as those stated in the main text.

The results are presented in Table S1. It shows that commonly used threshold values in

PCA, i.e., 70%, 80%, 90%, have little difference regarding the performance of RIG. Thus we
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Table S1: Ratios of MSE in pAUC(α) estimation for different hyper-parameter.

ratio ρ
LOD

α
0.05 0.1 0.15 0.2 1

q2/q1

0.2
7.5 1.00000 1.00000 1.00000 1.00000 1.00000

8.5 1.00003 1.00002 1.00002 1.00002 1.00002

0.8
7.5 1.00037 1.00037 1.00035 1.00031 1.00033

8.5 1.01449 1.01400 1.01385 1.01364 1.01227

q3/q1

0.2
7.5 1.00000 1.00000 1.00000 1.00000 1.00000

8.5 1.00012 1.00010 1.00009 1.00008 1.00008

0.8
7.5 1.00030 1.00028 1.00026 1.00024 1.00023

8.5 1.01666 1.01616 1.01588 1.01564 1.01409

select the top ranked components that explain 80% variance, a common choice in practice.

2 Bias in Parameter Estimation

We apply three methods: the resample-input-graphical lasso (RIG), the substituting NA

with LOD value method (SNL) and ignoring the observations with NA values (IGN), to

the estimation of means and covariance matrices and compare their performance. We set

(m,n) = (100, 100), r = 0.8, d = 8.5 and keep all the other parameters the same as that

described in the Numerical Studies section. Before comparing these three methods directly,

we first study the usefulness of taking the correlations between different biomarkers into

account. To do this, we estimate the mean and variance of each biomarker via two methods,

RIG, the proposed method that uses the correlation information, and OBO, a method that

conducts the estimation for each biomarker one by one separately. For each method, we

calculate the estimate biases and their corresponding estimate standard errors (SE). The

results are shown in Figure S1. The figure shows that when estimating mean, these two
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methods have similar absolute bias, and when estimating variance, RIG performs better

when the distance between LOD and mean is smaller. In both scenarios, RIG always has

smaller SE. We conclude that our method performs no worse than the classical methods. To

compare the estimation accuracy of RIG, SNL and IGN, we did the similar calculation and

present the results in Figure S2 and S3. Figure S2 shows that for both mean and variance,

RIG has smaller estimate bias than SNL, with the estimate standard errors being similar.

Comparing (a) and (b)((c) and (d)), we find that the advantage of RIG gets bigger when

the distance between population mean and LOD becomes smaller, that is, when more

values are missing. This is because under this condition, considering the relationships

between multiple variates balances the effect of higher LOD to some extent and makes the

superiority of RIG more obvious. Figure S3 indicates similar results.

In short, compared with SNL and IGN, RIG is more accurate for estimating the pa-

rameters in most of the scenarios considered here.
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Figure S1: Line chart for the bias in estimation of RIG and OBO. The bars represent

standard error(SE). (a) bias for µ; (b) bias for ψ; (c) bias for variance in V ; (d) bias for

variance in W .
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Figure S2: Line chart for estimate bias, using RIG and SNL. The bars represent standard

error(SE). (a) mean bias for µ; (b) mean bias for ψ; (c) variance bias for V ; (d)variance

bias for W .
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Figure S3: Line chart for estimate bias, using RIG and IGN. The bars represent standard

error(SE). (a) mean bias for µ; (b) mean bias for ψ; (c) variance bias for V ; (d)variance

bias for W .
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3 Asymptotic Results for Imputed Data

We prove that asymptotically the joint distribution of an imputed entry and the observed

entries is the same as an observation from the original corresponding unknown population.

More precisely, under the multivariate normal assumption, we show that each imputed

entry, x̂ik, asymptotically follows the same normal distribution N(µk, vkk) as the true la-

tent xik, and that its covariance with other elements such as xil approximates the true

corresponding covariance vkl, as the sample size goes to infinity. Specifically, we prove the

following proposition:

Proposition A.1. Assume xi1, . . . , xi,k−1, yk = (xik)>(m−mk)×1, Xk = (xil)(m−mk)×(k−1) are

observed where i = m −mk + 1, ...,m and m −mk > k. Let xik be the true value and x̂ik

be the imputed value. Then (xi1, . . . , xi,k−1, x̂ik)
d→ (xi1, . . . , xik) as m→∞.

Proof. Our result relies on the correlation between xik and xi1, . . . , xi,k−1 and thus on

the theory of conditional distribution of multivariate normal.

Denote ωk = (µ1, . . . , µk)>, δk = (vk1, vk2, . . . , vk,k−1),∆k = (vpq)k×k, p, q = 1, . . . , k, k >

1. For any i = 1, . . . ,m, the k×1 vector (xi1, . . . , xi,k−1, xik) follows the normal distribution

N(ωk,∆k), where

∆k =

 ∆k−1 δ>k

δk vkk

 .

Given zi,k−1 = (xi1, . . . , xi,k−1), the conditional distribution of xik is N(%ik, σ
2
k), with

%ik = µk + δk∆−1k−1(zi,k−1 − ωk−1),

and

σ2
k = vkk − δk∆−1k−1δ

>
k .

Note that %ik is a linear function of zi,k−1. Let βk0 = µk − δk∆−1k−1ωk−1 and βkl be the l-th
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entry of δk∆−1k−1. Denote βk = (βk0, · · · , βk,k−1)>. Then

%ik = βk0 +
k−1∑
l=1

βklxil.

Equivalently,

xik = βk0 +
k−1∑
l=1

βklxil + εik,

where εik follows N(0, σ2
k). Denote Zk = [1m−mk

,Xk], then we can regress yk on Zk

to estimate βk and σ2
k. And their corresponding estimates are denoted as β̂k and σ̂2

k,

respectively. Specifically,

β̂k =
(
β̂k0, · · · , β̂k,k−1

)>
=
(
Z>k Zk

)−1
Z>k yk,

σ̂2
k = ||yk − Zkβ̂k||2/(m−mk).

Then the imputed element is

x̂ik = β̂k0 +
k−1∑
l=1

β̂klxil + εik,

where εik is randomly generated from N(0, σ̂2
k).

Under the theory of least squares estimation, E(β̂k) = β, var(β̂k) = vkk(Z>k Zk)−1. So

when m → ∞, each element of cov(β̂k) is O( 1
m2 ). That is, var(β̂kl) = O( 1

m2 ) for l =

0, 1, . . . , k−1, and cov(β̂kl1 , β̂kl2) = O( 1
m2 ) for l1, l2 = 0, 1, . . . , k−1, l1 6= l2. The expectation

of x̂ik is

E(x̂ik) = E(βk0 +
k−1∑
l=1

βklxil) + E(β̂k0 − βk0) +
k−1∑
l=1

E((β̂kl − βkl)xil) + E(εik).

The second term equals 0. And β̂kl for l = 1, . . . , k−1 is estimated by using yk and Zk,

which are independent with xil, so the third term also equals 0. Therefore, E(x̂ik) = µk.
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As for the variance of x̂ik,

var(x̂ik) = var

(
β̂k0 +

k−1∑
l=1

β̂klxil + εik

)

= var

(
βk0 +

k−1∑
l=1

βklxil

)
+ var(β̂k0 − βk0) + var

(
k−1∑
l=1

(β̂kl − βkl)xil

)
+ var(εik)

+ 2cov

(
βk0 +

k−1∑
l=1

βklxil, β̂k0 − βk0

)
+ 2cov

(
βk0 +

k−1∑
l=1

βklxil,
k−1∑
l=1

(β̂kl − βkl)xil

)

+ 2cov

(
β̂k0 − βk0,

k−1∑
l=1

(β̂kl − βkl)xil

)

+ 2cov

(
βk0 +

k−1∑
l=1

βklxil, εik

)
+ 2cov(β̂k0 − βk0, εik) + 2cov

(
k−1∑
l=1

(β̂kl − βkl)xil, εik

)
.

According to var(β̂kl) = O( 1
m2 ) for l = 0, 1, . . . , k − 1 and cov(β̂kl1 , β̂kl2) = O( 1

m2 ) for

l1, l2 = 0, 1, . . . , k − 1, l1 6= l2, we have that var(β̂k0 − βk0) → 0, var((β̂kl − βkl)xil) → 0,

cov(β̂k0 − βk0, (β̂kl − βkl)xil) → 0, etc. So in the above equation, except for the first and

the forth term, all the other terms asymptotic equals to 0. Thus we have

var(x̂ik)→ var

(
βk0 +

k−1∑
l=1

βklxil

)
+ σ2

k

= var(µk + δk∆−1k−1(zi,k−1 − ωk−1)) + σ2
k

= δk∆−1k−1∆k−1∆
−1
k−1δ

>
k + σ2

k

= δk∆−1k−1∆k−1∆
−1
k−1δ

>
k + (vkk − δk∆−1k−1δ

>
k )

= vkk.
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Similarly,

cov(zi,k−1, x̂ik) = cov

(
zi,k−1, β̂k0 +

k−1∑
l=1

β̂klxil + εik

)

= cov

(
zi,k−1, βk0 +

k−1∑
l=1

βklxil

)
+ cov

(
zi,k−1, (β̂k0 − βk0) +

k−1∑
l=1

(β̂kl − βkl)xil + εik

)

→ cov

(
zi,k−1, βk0 +

k−1∑
l=1

βklxil + εik

)

= cov(zi,k−1, µk + δk∆−1k−1(zi,k−1 − ωk−1))

= cov(zi,k−1, δk∆−1k−1zi,k−1)

= ∆k−1∆
−1
k−1δ

>
k

= δ>k .

Finally, note that (xi1, . . . , xi,k−1, x̂ik) is asymptotically a linear transformation of normal

random variables since β̂kl → βkl and σ̂2
k → σ2

k, and thus asymptotically follows a mul-

tivariate normal distribution. Its distribution is determined by the mean and covariance.

This completes the proof.
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