
Supplementary material for

Toward computerized efficient estimation
in infinite-dimensional models

Verification of the KL divergence and Hellinger distance as appropriate divergences

Condition (B1) is well-known to hold for both DKL and DH (see, e.g., Pardo, 2005).

Condition (B2) holds trivially for DH with K0(m0,m1) = K1(m0,m1) = 1 irrespective of m0 and m1. The

lower bound of (B2) is also known to hold for DKL with K0(m0,m1) = 1 since

DKL(P1, P2) ≥ −
∫

2

[√
dP1

dP2
(u)− 1

]
dP2(u)

= 2− 2

∫ √
dP1

dP2
(u)dP2(u) =

∫ [
1−

√
dP1

dP2
(u)

]2

dP2(u)

in view of the fact that log(x) ≤ 2(
√
x−1) for each x > 0. A Taylor expansion of the function w 7→ log(1+w)

around w = 0 suggests further study of the function f defined as

f(w) :=
2 log(1 + w)− 2w + w2

2w3

for w 6= 0 and f(0) = 1/3, which then allows us to write 2 log(1 +w) = 2w−w2 +2w3f(w). It is not difficult

to show that f is decreasing and non-negative on (−1,+∞), and so, over any interval of the form [a,+∞)

for a > −1, f is bounded in [0, f(a)] with 0 < f(a) < +∞. We will set w =
√

dP1

dP2
(u)− 1 in the above. With

simple manipulations, we can show that

∫ 2 log

[
1 +

√
dP1

dP2
(u)− 1

]
− 2

[√
dP1

dP2
(u)− 1

]
+

[√
dP1

dP2
(u)− 1

]2
 dP2(u)

simplifies to 2DH(P1, P2)− DKL(P1, P2). This gives that

2DH(P1, P2)− DKL(P1, P2) = 2

∫ [√
dP1

dP2
(u)− 1

]3

f

(√
dP1

dP2
(u)− 1

)
dP2(u) . (1)

Of course, we can always consider that 0 < m0 < 1 < m1 < +∞ without loss of generality. In view of (1),
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defining M0 :=
√
m0 − 1, M1 :=

√
m1 − 1 and M := max(−M0,M1), we find that

2DH(P1, P2)− DKL(P1, P2) ≥ −2f(M0)

∫ ∣∣∣∣∣
√
dP1

dP2
(u)− 1

∣∣∣∣∣
3

dP2(u) ≥ −2Mf(M0)DH(P1, P2) .

As such, the upper bound of (B2) holds for DKL with K1(m0,m1) := 2 + 2Mf(M0). We have thus shown

that condition (B2) holds for both DH and DKL.

Condition (B3) can be established readily for DKL – the argument was sketched in the body of the paper.

In fact, as was argued before, if D = DKL, then
∫
h(u)dP2(u) = 0 for each h ∈ TM(P ∗2 ), which is a stronger

property that implies condition (B3). Establishing that this condition holds for DH requires more work. For

arbitrary bounded h in the interior of TM(P ∗2 ), we define the parametric path P ∗2,η via dP ∗2,η = (1 + εh)dP ∗2

with index η taking values in a neighborhood of zero. We can compute that

d

dη
DKL(P ∗2,η, P2)

∣∣∣∣
η=0

=

∫
h(u)dP2(u) and

d

dη
DH(P ∗2,η, P2)

∣∣∣∣
η=0

= 0 ,

where the latter equality follows from the fact that P ∗2 is a global minimizer of the Hellinger distance over

M(P2). We now focus on the right-hand side of (1). Writing

Eh(P ∗2 , P2) := 2
d

dη

∫ √dP ∗2,η
dP2

(u)− 1

3

f

√dP ∗2,η
dP2

(u)− 1

 dP2(u)

∣∣∣∣∣∣∣
η=0

,

by the product rule for differentiation, we find that Eh(P ∗2 , P2) = E1,h(P ∗2 , P2) + E2,h(P ∗2 , P2), where

E1,h(P ∗2 , P2) := 3

∫ [√
dP ∗2
dP2

(u)− 1

]2

f

(√
dP ∗2
dP2

(u)− 1

)√
dP ∗2
dP2

(u)h(u)dP2(u)

E2,h(P ∗2 , P2) :=

∫ [√
dP ∗2
dP2

(u)− 1

]3

f ′

(√
dP ∗2
dP2

(u)− 1

)√
dP ∗2
dP2

(u)h(u)dP2(u) .

By direct calculation, we find that

f ′(w) =
1

w
− 1

1 + w
− 3

2w2
+

3

w3
− 3 log(1 + w)

w4

for w 6= 0 and f ′(0) = −1/4. Since f is decreasing on (−1,+∞), f ′ is negative there. We can also show that

f ′ is non-decreasing on (−1,+∞). As such, over any interval of the form [a,+∞) for a > −1, f ′ is bounded
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in [f ′(a), 0] with −∞ < f ′(a) < 0. Using these facts about f and f ′, we then obtain that

|E1,h(P ∗2 , P2)| ≤ 3
√
m1f(M0)‖h‖∞,X(P2)

∥∥∥∥dP ∗2dP2
− 1

∥∥∥∥2

2,P2

|E2,h(P ∗2 , P2)| ≤
√
m1M |f ′(M0)|‖h‖∞,X(P2)

∥∥∥∥dP ∗2dP2
− 1

∥∥∥∥2

2,P2

.

Setting C(m0,m1) :=
√
m1 [M |f ′(M0)|+ 3f(M0)], this then implies that

∣∣∣∣∫ h(u)dP2(u)

∣∣∣∣ = |Eh(P ∗2 , P2)| ≤ C(m0,m1)‖h‖∞,X(P2)

∥∥∥∥dP ∗2dP2
− 1

∥∥∥∥2

2,P2

.

This inequality allows us to conclude that condition (B3) holds for DH with B(δ) := C(m0,m1)Kδ, where

K is the uniform bound considered on h. Clearly, B(δ) tends to zero as δ tends to zero.

Direct verification of the validity of the proposed representation of the EIF in examples

Below, we directly verify that the key representation proposed in this paper indeed yields the EIF in the

particular problems studied numerically in Section 5.

Example 1. We denote by µ0 the mean of P . We define Uλ(ε, ξ) :=
∫ [

u
1−ξ(u−µ0) − µ0

]
dPε,λ(u), and take

ξ0(ε, λ) to be a solution in ξ of Uλ(ε, ξ) = 0. We note that ξ0(0, λ) = 0. We have that

∂

∂ε
Uλ(ε, ξ)

∣∣∣∣
ε=0,ξ=0

=

∫
udHx,λ(u)−

∫
udP (u) =

∫
udHx,λ(u)− µ0

∂

∂ξ
Uλ(ε, ξ)

∣∣∣∣
ε=0,ξ=0

=

∫
(u− µ0)2dP (u) .

It is easy to verify that Uλ is continuously differentiable around (0, 0), and since ∂
∂ξUλ(ε, ξ)

∣∣∣
ε=0,ξ=0

6= 0, the

Implicit Function Theorem applies. In particular, it states that there exists an open set B ⊂ R containing 0

such that there is a unique continuously differentiable function ηλ such that Uλ(ε, ηλ(ε)) = 0 for each ε ∈ B,

and additionally that

∂

∂ε
ηλ(ε)

∣∣∣∣
ε=0

= −

[
∂

∂ξ
Uλ(ε, ξ)

∣∣∣∣
ε=0,ξ=0

]−1
∂

∂ε
Uλ(ε, ξ)

∣∣∣∣
ε=0,ξ=0

= −
∫

(u− µ0)dHx,λ(u)∫
(u− µ0)2dP (u)

.

Now, we note that the density p∗ε,λ of P ∗ε,λ is given pointwise as p∗ε,λ(u) = pε,λ(u)/[1 − ξ0(ε, λ)u], and thus,

3



we find that Ψ(P ∗ε,λ) =
∫
{pε,λ(u)/[1− ξ0(ε, λ)(u− µ0)]}2du. We can then compute

d

dε
Ψ(P ∗ε,λ)

∣∣∣∣
ε=0

= 2

∫
p(u)dHx,λ(u)− 2Ψ(P ) + 2

∂

∂ε
ξ0(ε, λ)

∣∣∣∣
ε=0

∫
(u− µ0)p(u)dP (u)

= 2

∫
p(u)dHx,λ(u)− 2Ψ(P )− 2

∫
(u− µ0)dHx,λ(u)

∫
(u− µ0)p(u)dP (u)∫

(u− µ0)2dP (u)

= 2

[∫
p(u)dHx,λ(u)−Ψ(P )

]
−
∫

(u− µ0)dHx,λ(u)

∫
(u− µ0)φNP,P (u)dP (u)∫

(u− µ0)2dP (u)
,

from which we see that

lim
λ→0

d

dε
Ψ(P ∗ε,λ)

∣∣∣∣
ε=0

= 2 [p(x)−Ψ(P )]− (x− µ0)

∫
(u− µ0)φNP,P (u)dP (u)∫

(u− µ0)2dP (u)
= φP (x) .

Example 2. We define Uλ(ε, v) := ∂
∂vLε,λ(v) with Lε,λ(v) :=

∫
log
[
pε,λ(u)+pε,λ(2v−u)

2

]
dPε,λ(u), and we

consider taking µ∗ε,λ to be a solution in v of the equation Uλ(ε, v) = 0 around v = µ. In fact, it is this

equivalent formulation in terms of an equation that we use in the implementation of Example 2 in the

numerical results provided. For simplicity, suppose that µ = 0 and that ν is the Lebesgue measure on R. It

is not difficult to show that the mapping Uλ is continuously differentiable around (0, 0), and also that

∂

∂ε
Uλ(ε, v)

∣∣∣∣
ε=0,v=0

= −1

2

∫ [
ṗ(u)

p(u)

]
dHx,λ(u)

∂

∂v
Uλ(ε, v)

∣∣∣∣
ε=0,v=0

= −1

2

∫ [
ṗ(u)

p(u)

]2

dP (u) = −1

2
· I(f)

using basic calculus techniques and algebraic manipulations. Since ∂
∂vUλ(ε, v)

∣∣
ε=0,v=0

6= 0, the Implicit

Function Theorem indicates that there exists an open set B ⊂ R containing 0 such that there is a unique

continuously differentiable function ηλ such that Uλ(ε, ηλ(ε)) = 0 for each ε ∈ B, and additionally that

∂

∂ε
ηλ(ε)

∣∣∣∣
ε=0

= −

[
∂

∂v
Uλ(ε, v)

∣∣∣∣
ε=0,v=0

]−1
∂

∂ε
Uλ(ε, v)

∣∣∣∣
ε=0,v=0

= − 1

I(f)

∫ [
ṗ(u)

p(u)

]
dHx,λ(u) .

By the uniqueness of ηλ, it must be that µ∗ε,λ = ηλ(ε) for ε small enough, and so, we find that

lim
λ→0

d

dε
Ψ(P ∗ε,λ)

∣∣∣∣
ε=0

= lim
λ→0

d

dε
ηλ(ε)

∣∣∣∣
ε=0

= − 1

I(f)

ḟ(x− µ)

f(x− µ)
= φP (x) .

Similar arguments can be used to show this result using the Hellinger distance instead.
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Example 3. Writing Eε,λ to denote expectation under Pε,λ, we define

Uλ(ε, β) := Eε,λ (ZY )− Eε,λ

[
Eε,λ (Y |W )Eε,λ

(
ZeβW |W

)
Eε,λ (eβZ |W )

]
.

Using the law of total expectation, we have that E (Y Z) = E
[
eg0(W )E

(
Zeβ0Z |W

)]
and E (Y |W ) =

eg0(W )E
(
eβ0Z |W

)
. Through rather tedious calculations, it is possible to show that

∂

∂ε
Uλ(ε, β)

∣∣∣∣
ε=0,β=β0

= y

[
z −

∫
aP (u)Hw,λ(du)

]
− eβ0z

∫
eg0(u)Hw,λ(du)

[
z −

∫
eg0(u)aP (u)Hw,λ(du)∫
eg0(u)Hw,λ(du)

]

and furthermore, that

∂

∂β
Uλ(ε, β)

∣∣∣∣
ε=0,v=0

= −E
(
Z2Y

)
+ E

[
E2 (ZY |W )

E (Y |W )

]
= −E

(
Z2Y

)
+ E

[
a2
P (W )E (Y |W )

]
= −E

(
Z2Y

)
+ E

[
Y a2

P (W )
]
.

We can use the fact that [Z − aP (W )][Y − E (Y | Z,W )] has mean zero given (Z,W ) to write

var {[Z − aP (W )][Y − E (Y | Z,W )]} = E (var {[Z − aP (W )][Y − E (Y | Z,W )] | Z,W})

= E
{

[Z − aP (W )]2var (Y | Z,W )
}

= E
{

[Z − aP (W )]2E (Y | Z,W )
}

= E
{
Y [Z − aP (W )]2

}
.

Using that E [Y ZaP (W )] = E [E(Y Z |W )aP (W )] = E
[
Y a2

P (W )
]
, we thus see that

∂

∂β
Uλ(ε, β)

∣∣∣∣
ε=0,v=0

= −var {[Z − aP (W )][Y − E (Y | Z,W )]} .

It can be shown that the mapping Uλ is continuously differentiable around (0, β0) and ∂
∂βUλ(ε, β)

∣∣∣
ε=0,v=0

6= 0.

Hence, the Implicit Function Theorem indicates that there exists an open set B ⊂ R containing 0 such that

there is a unique continuously differentiable function ηλ such that Uλ(ε, ηλ(ε)) = 0 for each ε ∈ B, and

additionally that

∂

∂ε
ηλ(ε)

∣∣∣∣
ε=0

= −

[
∂

∂β
Uλ(ε, β)

∣∣∣∣
ε=0,β=β0

]−1
∂

∂ε
Uλ(ε, β)

∣∣∣∣
ε=0,β=β0

=
y
[
z −

∫
aP (u)Hw,λ(du)

]
− eβ0z

∫
eg0(u)Hw,λ(du)

[
z −

∫
eg0(u)aP (u)Hw,λ(du)∫
eg0(u)Hw,λ(du)

]
var {[Z − aP (W )][Y − E (Y | Z,W )]}

.
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By the uniqueness of ηλ, it must be that µ∗ε,λ = ηλ(ε) for ε small enough, and so, we find that

lim
λ→0

d

dε
Ψ(P ∗ε,λ)

∣∣∣∣
ε=0

= lim
λ→0

d

dε
ηλ(ε)

∣∣∣∣
ε=0

=
[z − aP (w)][y − E (Y | Z,W )]

var {[Z − aP (W )][Y − E (Y | Z,W )]}
= φP (x) .

Example 4. In this example, there is a closed form expression for the projected distribution P ∗ε,λ. Specifi-

cally, the projection of pLj ,1,ε,λ onto M has explicit form

p∗Lj ,1,ε,λ(`′j | `′j−1) =

∫
`′0

∫
`′1
· · ·
∫
`′j−2

pLj ,Aj−1,ε,λ
(`
′
j , 1j)d`

′
j∫

`′0

∫
`′1
· · ·
∫
`′j−2

pLj−1,Aj−1,ε,λ
(`
′
j−1, 1j)d`

′
j−1

=
(1− ε)

∫
`′0

∫
`′1
· · ·
∫
`′j−2

pLj ,Aj−1
(`
′
j , 1j)d`

′
j + εa0a1 . . . aj−1Kλ(`j − `′j)Kλ(`j−1 − `′j−1)

(1− ε)
∫
`′0

∫
`′1
· · ·
∫
`′j−2

pLj−1,Aj−1
(`
′
j−1, 1j)d`

′
j−1 + εa0a1 . . . aj−1Kλ(`j−1 − `′j−1)

for j = 1, 2, . . . ,K + 1, and furthermore, it is easy to see that p∗L0,ε,λ
= pL0,ε,λ. We can compute

d

dε
Ψ(P ∗ε,λ)

∣∣∣∣
ε=0

=
∂

∂ε

∫
`′0

∫
`′1

· · ·
∫
`′K+1

`′K+1

K+1∏
j=1

p∗Lj ,1,ε,λ(`′j | `′j−1)

 pL0,ε,λ(`′0)d`
′
K+1

∣∣∣∣∣∣
ε=0

=

K+1∑
r=0

Ar,λ ,

where we write, for r = 1, 2, . . . ,K + 1,

Ar,λ =

∫
`′0

∫
`′1

· · ·
∫
`′K+1

`′K+1

∏
j 6=r

pLj ,1(`′j | `′j−1)

 ∂

∂ε
p∗Lr,1,ε,λ(`′r | `′r−1)

∣∣∣∣
ε=0

pL0
(`′0)d`

′
K+1 ,

A0,λ =

∫
`′0

∫
`′1

· · ·
∫
`′K+1

`′K+1

K+1∏
j=1

pLj ,1(`′j | `′j−1)

 [Kλ(`0 − `′0)− pL0
(`′0)] d`

′
K+1 .

We can calculate that

∂

∂ε
p∗Lj ,1,ε,λ(`′j | `′j−1)

∣∣∣∣
ε=0

=
a0a1 . . . aj−1

pLj−1,Aj−1
(`′j−1, 1j)

Kλ(`j−1 − `′j−1)
[
Kλ(`j − `′j)− pLj ,1(`′j | `′j−1)

]
.

We first investigate how Ar,λ, r ∈ {1, 2, . . . ,K + 1}, can be simplified in view of this result. It is not difficult

to see that Ar,λ = a0a1 . . . ar−1Ãr,λ, where we define Ãr,λ to be

∫
`′0

∫
`′1

· · ·
∫
`′r−1

[∫
`′r

mr,P (`′r)Kλ(`r − `′r)d`′r −mr−1,P (`′j−1)

]
Kλ(`r−1 − `′r−1)

∏r−1
j=0 pLj ,1(`′j | `′j−1)

pLr−1,Ar−1
(`′r−1, 1r)

d`
′
r−1 .
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We note that, as λ tends to zero, Ãr,λ tends to

mr,P (`r)−mr−1,P (`r−1)

pLr−1,Ar−1
(`r−1, 1r)

∫
`′0

∫
`′1

· · ·
∫
`′r−2

pLr−1,1(`r−1 | `′r−2)

r−2∏
j=0

pLj ,1(`′j | `′j−1)

 d`′r−2

=
[mr,P (`r)−mr−1,P (`r−1)]

∫
`′0

∫
`′1
· · ·
∫
`′r−2

pLr,1(`r | `r−1)pLr−1,1(`r−1 | `′r−2)
∏r−2
j=0 pLj ,1(`′j | `′j−1)d`

′
r−2

pLr,Lr−1,Ar−1
(`r, `r−1, 1r)

=
[mr,P (`r)−mr−1,P (`r−1)]

∫
`′0

∫
`′1
· · ·
∫
`′r−2

pLr,Lr−1,Lr−2,Ar−1
(`r, `r−1, `

′
r−2, 1r)d`

′
r−2

pAr−1|Lr−1,Lr−2,Ar−2
(1 | `r−1, `′r−2, 1r−1)

[∏r−2
j=0 pAj |Lj ,Aj−1

(1 | `′j , 1j)
]
pLr,Lr−1,Ar−1

(`r, `r−1, 1r)

= [mr,P (`r)−mr−1,P (`r−1)]
pLr−2|Lr,Lr−1,Ar−1

(`
′
r−2 | `r, `r−1, 1r)

pAr−1|Lr−1,Lr−2,Ar−2
(1 | `r−1, `′r−2, 1r−1)

[∏r−2
j=0 pAj |Lj ,Aj−1

(1 | `′j , 1j)
]

= [mr,P (`r)−mr−1,P (`r−1)]EP

[
1∏r−1

j=0 pAj |L̄j ,Aj−1
(1 | Lj , Aj−1)

∣∣∣∣∣ Lr = `r, Lr−1 = `r−1, Ar−1 = 1r

]
,

and so, we find that Ar,λ tends to φr,P (x). We can also verify that

A0,λ =

∫
`′0

m0,P (`′0) [Kλ(`0 − `′0)− pL0
(`′0)] d`′0 =

∫
`′0

m0,P (`′0)Kλ(`0 − `′0)d`′0 −Ψ(P )

and so, we readily see that A0,λ tends to φ0,P (x) as λ tends to zero. We thus conclude that

d

dε
Ψ(P ∗ε,λ)

∣∣∣∣
ε=0

=

K+1∑
r=0

Ar,λ −→
K+1∑
r=0

φr,P (x) = φP (x)

as λ tends to zero, which confirms the validity of our proposed representation in this problem.

Example in which the use of an inappropriate divergence leads to an invalid result

To illustrate the importance of choosing an appropriate divergence, e.g., a divergence satisfying conditions

(B1)–(B3), we explicitly calculate the limit provided in (2.3) in a simple parametric problem in which an

inappropriate divergence has been chosen, and we show that it does not coincide with the EIF.

We take M := {Pθ : θ ∈ Θ} for some compact subset Θ ⊂ R, where all elements of M are dominated by

a common measure ν, and consider the divergence D defined as (P1, P2) 7→
∫

[p1(u)− p2(u)]
2
dν(u), where

p1 and p2 denotes, respectively, the density functions of P1 and P2 relative to ν. As the L2(ν) distance

between two densities, this particular divergence is very natural. Nevertheless, it fails to be appropriate for

our purposes, as we show below.
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Taking P0 = Pθ0 , fixing x ∈ R and defining Ψ(Pθ) = θ, we focus on obtaining the value of the EIF of Ψ

relative to M evaluated at distribution P0 and observation value x. It is well known that this value is given

by φP0
(x) := −I(θ0)−1s0(x), where s0 := sθ0 , sθ(x) := ∂

∂θ log pθ(x) and I(θ0) := −
∫

∂
∂θ sθ(x)

∣∣
θ=θ0

dP0(x).

We define the projection

θ∗ε,λ := argmin
θ∈Θ

∫
[pθ(u)− pε,λ(u)]

2
dν(u)

of pε,λ = (1− ε)p0 + εhx,λ, where p0 and hx,λ are, respectively, the density functions of P0 and Hx,λ relative

to ν, onto the parametric model M. As such, θ∗ε,λ is the solution in θ of the equation Uλ(θ, ε) = 0, where

Uλ(θ, ε) :=

∫
[pθ(u)− pε,λ(u)] ṗθ(u)dν(u)

and we write ṗθ(x) := ∂
∂θpθ(x). Writing ṗ0 := ṗθ0 , we can calculate that

∂

∂ε
Uλ(ε, θ)

∣∣∣∣
ε=0,θ=θ0

=

∫
[p0(u)− hx,λ(u)] s0(u)dP0(u) =

∫
ṗ0(u)dP0(u)−

∫
ṗ0(u)dHx,λ(u)

∂

∂θ
Uλ(ε, θ)

∣∣∣∣
ε=0,θ=θ0

=

∫
[ṗ0(u)]

2
dν(u) .

Using the Implicit Function Theorem as before, we have that

d

dε
θ∗ε,λ

∣∣∣∣
ε=0

= −

[
∂

∂θ
Uλ(ε, θ)

∣∣∣∣
ε=0,θ=θ0

]−1
∂

∂ε
Uλ(ε, θ)

∣∣∣∣
ε=0,θ=θ0

=

∫
ṗ0(u)dHx,λ(u)−

∫
ṗ0(u)dP0(u)∫

[ṗ0(u)]
2
dν(u)

−→
ṗ0(x)−

∫
ṗ0(u)dP0(u)∫

[ṗ0(u)]
2
dν(u)

as λ tends to zero. In general, this limit does not coincide with the true value φP (x) exhibited above, and

thus, we find that representation (2.3) fails.

Defining ṡθ(x) := ∂
∂θ sθ(x) and setting ṡ0 := ṡθ0 , we note that

∫
sθ∗ε,λ(u)dPε,λ(u) =

∫
sθ∗ε,λ(u)dPε,λ(u)−

∫
s0(u)dP0(u)

=

∫
s0(u)(Pε,λ − P )(du) +

∫ [
sθ∗ε,λ(u)− s0(u)

]
dP (u) +

∫ [
sθ∗ε,λ(u)− s0(u)

]
(Pε,λ − P )(du)

= ε

∫
s0(u)dHx,λ(u) + (θ∗ε,λ − θ0)

∫
ṡ0(u)dP (u) + o(ε) ,

from which it follows that

∫
φ∗ε,λ(u)dPε,λ(u)

ε
= −I(θ∗ε,λ)−1 1

ε

∫
sθ∗ε,λ(u)dPε,λ(u)
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→ −I(θ0)−1

{∫
s0(u)dHx,λ(u) +

∫
ṡ0(u)dP0(u)

[∫
ṗ0(u)dHx,λ(u)−

∫
ṗ0(u)dP0(u)∫

[ṗ0(u)]
2
dν(u)

]}

as ε tends to zero. Clearly, the latter quantity is not generally zero, which implies that condition (A1)

fails to hold. This observations explains why representation (2.3) does not hold here, and suggests that the

divergence used in this example is inappropriate and should not generally be used.
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