
Web supplement: Estimating and testing vaccine
sieve effects using machine learning
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1 Hazard-based TMLE estimator

Equation (5) in Appendix A relates the cause-specific hazard functions to the covariate-conditional

cumulative incidence and suggests that an alternative plug-in estimator of cumulative incidence

could be developed based on estimators of λ := {λj,t : t = 1, . . . , t0; j = 1, 2}. Such an estimator

is a natural extension of Moore and van der Laan (2009) to the competing risks setting. To

estimate the cause-specific hazard function for matched endpoints, we can use a pooled estimate as

in Stitelman and van der Laan (2010). In particular, this estimate may be based on super learner.

To estimate the hazard function for mismatched endpoints, we require a minor modification to

ensure that λ1,t + λ2,t ≤ 1 for all t. In this case, using an estimate λn,1,t of λ1,t, we may regress

pseudo-outcome M̃n(t) := M(t)/{1 − λn,1,t(W )} on W in the subset of observations with Z = 1

and C(t− 1) = N(t) = M(t− 1) = 0. This provides an estimate of λ̃2,t(w) := prP0
(T = t, J = 2 |

Z = 1, C(t − 1) = M(t − 1) = N(t) = 0,W = w), which we can relate back to λ2,t(w) using the

relationship λ2,t(w) = λ̃2,t(w)/{1− λ1,t(w)}.

The EIF can be written in terms of λ rather than µ. We define

Qt(λ)(w) :=

t0∑
s=t+1

[
λ1,s(w)

s−1∏
m=t+1

{1− λ1,s(w)− λ2,s(w)}

]
,

and Rt(o) := I(z = 1, c(t − 1) = 0, n(t − 1) = 0,m(t − 1) = 0). The EIF can then be written as

D∗(λ,G, ζ, π) =
2∑
j=1

t∑
t=1

Dt,j(λ, ζ, π) +DW (λ,G), where for t = 1, . . . , t0 we set

Dt,1(λ, ζ, π)(o) :=
Rt(o)

ζ(w)
∏t−1
s=1 π0,s(w)

{1−Qt(λ)(w)} {n(t)− λ1,t(w)} ,

Dt,2(λ, ζ, π)(o) := − Rt(o)

ζ(w)
∏t−1
s=1 π0,s(w)

Qt(λ)(w) {m(t)− λ2,t(w)} ,

DW (λ,G)(o) := Q1(λ)(w)−
∫
Q1(λ)(u)dG(u) .

A hazard-based TMLE can be constructed by choosing stopping criteria cn = oP (n−1/2) and

proceeding as follows:

1. If the conditional treatment probability ζ is known, set ζn = ζ; otherwise, construct estimate

ζn of ζ. Construct estimate πn of the censoring probabilities π.

2. Construct estimate λ0n = (λ0n,1, λ
0
n,2) of λ as described above.

3. Set k = 0. While
∣∣ 1
n

∑n
i=1D

∗(λkn, Gn, ζn, πn)(Oi)
∣∣ > cn, repeat the following:
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i) Fit logistic regression pooled over t = 1, . . . , t0 with outcome N(t), offset logit{λkn,1,t(W )}

and single covariate {ζn(W )
∏t−1
s=1 πn,s(W )}−1{1−Qt(λkn)(W )} using only observations

with Z = 1 and C(t − 1) = N(t − 1) = M(t − 1) = 0. Denote by εk1,n the MLE of the

regression coefficient in this model. Define the updated estimate

λk+1
n,1,t := expit

{
logit(λkn,1,t) + εk1,n

1−Qt(λkn)

ζn
∏t−1
s=1 πn,s

}
.

Define λk,◦n := (λk+1
1,n , λ

k
2,n).

ii) Fit logistic regression pooled over t = 1, . . . , t0 with outcome M(t)/{1−λk+1
n,1,t(W )}, offset

term logit[λk2,n,t(W )/{1 − λk+1
n,1,t(W )}], and single covariate −[ζn(W )

∏t−1
s=1 πn,s(W ){1 −

λk+1
n,1,t(W )}]−1Qt(λk,◦n )(W ) in the subset of data with Z = 1, C(t − 1) = 0, N(t − 1) =

0,M(t − 1) = 0. Denote by εk2,n the MLE of the regression coefficient in this model.

Define the updated estimate

λk+1
n,2,t := (1− λk+1

n,1,t)expit

{
logit

(
λkn,2,t

1− λk+1
n,1,t

)
− εk2,n

Qt(λ
k,◦
n )

ζn
∏t−1
s=1 πn,s(1− λ

k+1
n,1,t)

}
.

iii) Set k = k + 1.

4. Set λ∗n = λkn and construct estimate by averaging over observed values of W ,

µ̄∗n =
1

n

n∑
i=1

t0∑
t=1

[
λ∗n,1,t(Wi)

t−1∏
s=1

{
1− λ∗n,1,s(Wi)− λ∗n,2,s(Wi)

}]
.

In simulation studies, we have found the hazard-based TMLE to perform approximately as

well as the iterated mean-based TMLE. However, van der Laan and Gruber (2012) argue that

the mean-based approach may be preferable in practice since the iterated means are of reduced

dimensionality relative to the collection of hazards, and thus may be easier to estimate well. We do

note, however, that the mean-based TMLE may be more computationally intensive, particularly

in data structures involving many time-points. In this case, the iterated mean TMLE requires

performing computationally intensive regression (e.g., super learner) at each time-point, whereas

the hazard-based TMLE requires only two such regressions that pool over all time-points. In such

situations, the hazard-based approach may be preferable.
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2 Asymptotic variance of vaccine efficacy and vaccine sieve effect

estimators

Let Fn(t0) := (Fn,1,0(t0), Fn,1,1(t0), Fn,2,0(t0), Fn,2,1(t0))
> denote the TMLE estimator of F (t0) :=

(F1,0(t0), F1,1(t0), F2,0(t0), F2,1(t0))
>. Let µj,z := {µj,z,t0 : t} denote the true value for the it-

erated means used to identify Fj,z(t0) for z = 0, 1 and j = 1, 2, and let µn,j,z denote an es-

timator of these means. Similarly, let ζz(w) := prP0
(Z = z | W = w) for z = 0, 1, and let

πz,t(w) := prP0
{C(t) = 0 | Z = z,N(t − 1) = 0,M(t − 1) = 0, C(t − 1) = 0,W = w} for z = 0, 1

and t = 1, . . . , t0 − 1. Let D∗j,z(ηj,z) denote the influence function of Fn,j,z(t0) from Theorem 2,

where we introduce the shorthand ηj,z := (µj,z, ζz, πz, G). By asymptotic linearity of each compo-

nent of Fn(t0), we have that Fn(t0) is itself asymptotically linear with influence function D∗(η) :=

(D∗1,0(η1,0), D
∗
1,1(η1,1), D

∗
2,0(η2,0), D

∗
2,1(η2,1))

>, where we defined η := {ηj,z : j, z}. By the multi-

variate central limit theorem, n1/2{Fn(t0)−F (t0)} converges in distribution to a four-dimensional

multivariate normal variate with mean zero and covariance matrix Σ := EP0{D∗(η)(O)D∗(η)(O)>}.

The covariance matrix Σ is consistenly estimated by Σn := 1
n

∑n
i=1D

∗(ηn)(Oi)D
∗(ηn)(Oi)

>, where

ηn := {ηn,j,z : j, z} is an estimate of η.

The asymptotic variance of the TMLE estimator of V E1(t0) may be computed by noting that

V E1(t0) = h(F (t0)). The gradient of h is ∇h(F (t0)) := (F1,1(t0)/F1,0(t0)
2,−1/F1,0(t0), 0, 0)>. By

the delta method, n1/2{V En,1(t0) − V E1(t0)} converges in distribution to a mean-zero normally

distributed variate with variance ∇h(F (t0))
>Σ∇h(F (t0)). An estimator of the asymptotic variance

of V En,1(t0) is ∇h(Fn)>Σn∇h(Fn). A Wald-type interval could be constructed using this variance

estimator, though we instead propose to invert a Wald-type interval constructed on the logarithmic

scale. Specifically, we propose as 100× (1− α)% confidence interval for V E1(t0) the interval

1− exp

[
log

{
Fn,1,1(t0)

Fn,1,0(t0)
± z1−α/2

τn

n1/2

}]
,

where τ2n is an estimate of the asymptotic variance of log{1− V En,1(t0)}, which can be computed

using similar delta method arguments as above. Similar calculations can be used to produce a

confidence interval for V E2.

The asymptotic variance of the TMLE estimator of log V SE(t0) may be computed by noting

that log V SE(t0) = f(F (t0)), where the gradient of f is

∇f(F (t0)) := (F1,0(t0)
−1,−F1,1(t0)

−1,−F2,0(t0)
−1, F2,1(t0)

−1)> .

4



The delta method implies that n−1/2{log V SEn(t0) − log V SE(t0)} converges in distribution to

a mean-zero normally distributed variate with variance ∇f(F0)
>Σ∇f(F ). Thus, we obtain a

100 × (1 − α)% confidence interval for V SE(t0) based upon V SEn(t0) to be exp{log V SEn(t0) ±

z1−α/2νnn
−1/2} with ν2n := ∇f(Fn)>Σn∇f(Fn).

These results easily extend to the multiple outputation setting. Let Fn,b(t0) := (Fn,1,0,b(t0),

Fn,1,1,b(t0), Fn,2,0,b(t0), Fn,2,1,b(t0))
> denote the vector of estimated cumulative incidences for the

b-th outputed data set. Let Fn,MO(t0) := (Fn,1(t0), . . . ,Fn,B(t0))
> denote a vector comprised of

the B outputed cumulative incidence estimates. Let ηn,b denote the estimates of η0 based on the

b-th outputed data set, and let D∗(ηn,b) denote the vector of efficient influence functions evaluated

at the estimates from the b-th outputed data set. Let D∗MO(ηn) := (D∗(ηn,1), . . . ,D
∗(ηn,B))>

denote the efficient influence function vector over all outputed data sets. Using nearly identical

delta method calculus above, we can derive variance estimators for V Ej,n(t0) and V SEn(t0).
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