Supplementary Materials to the article
“Nonparametric imputation by data depth”

by Pavlo Mozharovskyi, Julie Josse and Francois Husson

1 Additional figures

Figure 1: A Gaussian sample consisting of 250 points and a hyperplane of two missing coordinates
(top, left), and the function f(ziss) to be optimized on each single iteration of Algorithm 1, for
the smaller rectangle, for Tukey (top, right), zonoid (bottom, left), and Mahalanobis (bottom,
right) depth. For the Tukey depth the maximum is not unique, and forms a polygon.
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Figure 2: Samples of size 100 (top, left), 200 (top, right), 500 (bottom, left), and 1000 (bottom,
right) are drawn from the bivariate Cauchy distribution with the location and scatter param-
eters p; and 3; from the introduction. Single point with one missing coordinate is imputed
with the Tukey depth. Its kernel density estimate (solid) and the best approximating Gaussian
curve (dashed) over 10,000 repetitions are plotted. The population’s conditional center given the
observed value equals 3.
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Figure 3: Illustration of imputation with the Tukey depth. When imputing the point with a
missing second coordinate (left), the maximum of the constrained Tukey depth is non-unique
(the red line segment), and an average over the optimal arguments (the red point) is used in
equation (3) (right).

2 Simulation results with other percentages of missing val-
ues

When varying the percentage of missing values, the general trend remains unchanged. The small
differences seen can be summarized as follows: with a decreasing percentage of missing values,
the difference between EM and Mahalanobis depth imputation (and thus also the rank two PCA
one) shrinks, and indeed the latter performs comparably to EM for 5% missingness. For the
same percentage and the Cauchy distribution, nonparametric methods (ENN and random forest)
perform comparably to the Tukey depth due to a sufficient quantity of available observations and
an absence of correlation structure (outliers are generated from Cauchy distribution as well).



Distr. | DTuF DFomn pMah T pMak EM regPCAL | regPCA2 ENN RF mean oracle
Too 1577 1.547 1532 1.537 1.518 1.596 1532 T.684 1.681 2.058 1.487
(0.2345) | (0.2128) | (0.216) (0.2199) | (0.2129) | (0.2327) | (0.2159) | (0.2422) | (0.2445) | (0.2774) | (0.2004)

T10 1.748 1.718 1.693 1.709 1.69 1.769 1.692 1.853 1.871 2.275 1.642
(0.287) | (0.2838) | (0.2737) | (0.2827) | (0.2826) | (0.3039) | (0.2741) | (0.3168) | (0.3085) | (0.3757) | (0.2771)

5 1.993 1.971 1.956 1.956 1.933 2.017 1.956 2.125 2.134 2.565 1.874
(0.378) | (0.3602) | (0.8799) (0.361) (0.361) | (0.3759) | (0.3796) | (0.4126) | (0.3976) | (0.4732) | (0.3492)

73 2.417 2.434 2.39 2.333 2.362 2.431 2.39 2.55 2.592 3.045 2.235
(0.5996) | (0.6032) | (0.5792) | (0.5571) | (0.5808) | (0.5734) | (0.5793) | (0.6154) | (0.612) | (0.6943) | (0.5319)

72 3.81 3.373 3.431 3.192 3.366 3.437 3.422 3.538 3.555 4.155 2.986
(1.191) | (1.273) | (1.314) (1.148) (1.249) (1.343) (1.289) (1.33) (1.321) | (1.466) | (1.063)

71 13.19 15.13 15.17 18.39 14.86 14.82 15.22 14.09 13.91 16.77 11.17
(10.83) | (12.06) | (11.74) (10.32) (11.57) (11.64) (11.94) (11.28) | (11.06) | (13.22) | (8.901)

Table 1: Median and MAD of the RMSEs of the imputation for a sample of 100 points drawn
from elliptically symmetric Student-t¢ distributions with p, and 35 having 15% of MCAR values,
over 1000 repetitions.

Distr. pTuk Don pMah T pMak, EM regPCA1 | regPCA2 ENN RF mean oracle
too 1.656 1.754 1.853 1.671 1.817 1.855 1.853 1.793 1.762 2.182 1.514
(0.2523) | (0.3142) | (0.4062) (0.2906) | (0.3937) | (0.4158) | (0.4071) | (0.2974) | (0.282) | (0.3821) | (0.2121)

710 1.859 1.973 2.048 1.865 2.027 2.05 2.044 1.995 1.968 2.45 1.677
(0.3062) | (0.4031) | (0.511) (0.3917) | (0.4933) | (0.5069) | (0.5119) | (0.3861) | (0.3402) | (0.4778) | (0.279)

5 2.09 2.23 2.31 2.109 2.267 2.348 2.31 2.255 2.233 2.749 1.91
(0.4275) | (0.5122) | (0.6217) (0.4841) | (0.6006) | (0.6504) | (0.6219) | (0.4543) | (0.4476) | (0.6089) | (0.3742)

i3 2.507 2.697 2.772 2.541 2.737 2.791 2.779 2.707 2.699 3.32 2.239
(0.6389) | (0.7977) | (0.8516) (0.7133) | (0.8243) | (0.9306) | (0.8495) | (0.6946) | (0.7254) | (0.964) | (0.5497)

72 3.462 3.68 3.733 8.517 3.669 3.807 3.736 3.709 3.762 4.476 3.061
(1.35) (1.577) (1.6) (1.39) (1.589) (1.648) (1.601) (1.413) (1.444) | (1.794) | (1.136)

T1 11.81 14.12 14.22 12.34 13.78 13.73 14.31 12.58 13.64 15.73 10.37
(9.738) (12.09) | (12.05) (9.631) (11.48) (11.01) (12.12) (10.36) (11.44) | (12.65) | (8.249)

Table 2: Median and MAD of the RMSEs of the imputation for 100 points drawn from elliptically
symmetric Student-¢ distributions with g, and ¥y contaminated with 15% outliers, and 15% of
MCAR values on non-contaminated data, over 1000 repetitions.

Distr. DTuE D= pMah DMak EM regPCA1 | regPCA2 ENN RF mean oracle

too 1.464 1.454 1.447 1.453 1749 1.529 1.447 1.571 1.581 2.009 1.404
(0.3694) | (0.3713) | (0.3595) (0.3663) (0.3593) (0.401) | (0.3594) | (0.3892) | (0.3946) | (0.486) | (0.3399)

710 1.649 1.597 1.57 1.572 1.57 1.665 1.57 1.755 1.754 2.2 1.529
(0.4316) | (0.4285) | (0.4163) (0.4203) | (0.4206) | (0.4502) | (0.4163) | (0.4565) | (0.46) | (0.5737) | (0.4278)

5 1.816 1.799 1.757 1.758 1.757 1.876 1.757 1.955 1.972 2.402 1.712
(0.5134) | (0.5129) (0.49) (0.4991) | (0.4899) | (0.5499) | (0.4901) | (0.555) | (0.5345) | (0.7318) | (0.4869)

T3 2.213 2.184 2.147 2.101 2.139 2.242 2.147 2.37 2.343 2.844 2.054
(0.7882) | (0.8159) | (0.8016) (0.7618) (0.8) (0.7782) (0.801) | (0.8563) | (0.8357) | (1.011) | (0.7649)

72 2.837 2.919 2.813 2.68 2.8 2.911 2.813 3.03 2.99 3.578 2.529
(1.249) | (1.342) (1.309) (1.196) (1.287) (1.311) (1.31) (1.325) | (1.331) | (1.554) (1.133)

3! 7.806 8.718 8.911 8.286 8.9 9.118 8.935 8.135 8.138 10.99 6.367
(6.351) | (7.135) (7.127) (6.602) (7.124) (7.334) (7.137) (6.605) | (6.563) | (8.952) (5.12)

Table 3: Median and MAD of the RMSEs of the imputation for a sample of 100 points drawn
from elliptically symmetric Student-¢ distributions, with g, and ¥, having 5% of MCAR values,
over 1000 repetitions.

3 Proofs

Proof of Theorem 1:
Due to the fact that D, o(X)

%4 D,(X), in what follows we focus on the population version
n—o0



Distr. pTuk D=on pMah T pMak EM regPCAL | regPCA2 ENN RF mean oracle
Too 1.552 1613 1.709 1.553 T.701 1.769 1.709 1.695 1.603 2.167 1.406
(0.3693) | (0.4107) | (0.4867) | (0.4379) | (0.4788) | (0.5248) | (0.4877) | (0.407) | (0.3924) | (0.5981) | (0.3171)

T10 1.706 1.778 1.874 1.73 1.861 1.906 1.875 1.884 1.823 2.398 1.564
(0.4415) | (0.5106) | (0.6104) | (0.4912) | (0.6032) | (0.6053) | (0.6111) | (0.5182) | (0.4797) | (0.7059) | (0.3938)

5 1.868 1.951 2.038 1.877 2.027 2.172 2.039 2.077 1.995 2.57 1.698
(0.5565) | (0.5843) | (0.6859) | (0.5679) | (0.6806) | (0.7747) | (0.6819) | (0.6256) | (0.6102) | (0.8625) | (0.491)

73 2.243 2.348 2.421 2.226 2.42 2.525 2.421 2.429 2.392 3.05 2.016
(0.8064) | (0.8694) | (0.9166) | (0.8258) | (0.9345) | (1.019) (0.9237) | (0.8484) | (0.8521) | (1.171) | (0.7047)

72 2.902 3.032 3.183 2.938 3.163 3.196 3.188 3.142 3.071 4.073 2.55
(1.375) | (1.498) | (1.566) (1.421) (1.558) (1.565) (1.582) (1.472) (1.43) (2.007) | (1.129)

71 7.464 8.487 8.531 8.334 8.5 8.675 8.541 7.958 8.1 10.82 6.245
(5.916) | (6.869) | (7.081) (6.867) (6.988) (7.261) (7.117) (6.509) | (6.922) | (8.802) | (4.874)

Table 4: Median and MAD of the RMSEs of the imputation for 100 points drawn from elliptically
symmetric Student-t distributions with p, and ¥y contaminated with 15% of outliers, with 5%
MCAR values on non-contaminated data, over 1000 repetitions.

only. For X ~ &i(py,Xx, Fr) allow the transform X — Z = RE"V*(X — p), with R being a
rotation operator such that w.l.o.g. @ — z, such that missing values still constitute a |miss(x)|-
dimensional affine space parallel to missing coordinates’ axes. Since contours D, (Z) are concentric
spheres centered at the origin, D! (Z) in (3) is of the form {v |v = 2’ + r, f > 0} with z;bs(z) =
Zops and z’miss(z) = Oppiss(z), and 7 € S‘m“s(“’”_l, a unit sphere in the linear span of miss(z).
Because of the fact that P({x € R*|D(x|X) = a}) = 0, # = 0 almost surely and thus z is

imputed with 2’ = RX"%(y — p). O

Proof of Theorem 2:
(The challenge here is that the resulting distribution is not elliptical.)

For X ~ &i(py, Ex, Fr) allow the transform X — Z = RXY?(X — p), with R being a
rotation operator such that w.l.o.g. @ +— =z, such that miss(z) = 1. (Z has spherical density
contours and missing values are in the first coordinate only.)

Let Z' = (0, (Z”)T)T with Z"” ~ £,-1(0, I, Fg), where I is the diagonal matrix. Consider a
random vector U ~ (1 — p)Z + pZ' which is a mixture of d- and (d — 1)-dimensional spherical
distributions. Z’ corresponds to the imputed missing values—Ilet us now show that this is true.
Due to the fact that D, (U) ﬁ D,(U), in what follows we focus on the population version

only. Missing values constitute one-dimensional affine subspaces parallel to the first coordinate.
Thus, due to the affine invariance property (P1 in Definition 2), D, (U) N {u € R¢|u; > 0} =
D,(U)N{w € R¥|u; <0} x (—=1,0,...,0)". To see this, it suffices to note that the symmetric
reflection of U w.r.t. the linear space normal to (1,0,...,0)" equals U. Now, for A € R let
u = (\, U, ...,uy) be this one-dimensional affine subspace of missingness for a point. In (3),
ave (D, (U)Nu) = ave(Do(U)N{v € R | vy > 0}NuUD(U)N{v € R? | v; < 0}NuUD,(U)N{v €
Re|v; =0} Nu) = D(U)N{v €R?|v; =0} Nu = (0,us,...,us) = RE?(y — p) (with the
obvious correspondence between u and y). ([l

Proof of Corollary 1:
(P1)—(P5) are obviously satisfied for the Tukey, zonoid and Mahalanobis depths. In Theorem 1,



Dy o(X) == Do (X) is clearly satisfied for the Mahalanobis depth, following Corollary 3.11 by
n—oo

Mosler (2002) for the zonoid depth, and by Theorem 4.2 in Zuo & Serfling (2000) for the Tukey
depth. In Theorem 2, the same logic holds for the Mahalanobis and zonoid depths, but not for
the Tukey depth as Z is not elliptical. Using techniques similar those in the proof of Theorem 3.4
in Zuo & Serfling (2000), one can show that P({x € R?| D(x|Z) = a}) = 0, from which, together

with the vanishing at infinity property (P4) and sup,cga |Dn(2|Z) — D(2|Z)| == 0 (see Donoho
n—oo
& Gasko 1992), it follows that D, o(Z) —+ Do (Z2). O
n—oo

Proof of Proposition 1: w.l.o.g. we restrict ourselves to the case i = 1. Let Z be X transformed
in such a way that it is an nxd matrix with gz = 0 and 21 jiss(1) = EZmiss(l),obs(l)22101,5(1)70175(1)2:1,0175(1)-
Denote the argument @ = (0,...,0,y")" € R% Replacing z; with z; + a and subtracting the
column-wise average % from each row gives the covariance matrix estimate:

L+

nXz(y) =2Z'Z - 21z +(z1+a)(z1+a) - -aa

n—1
aa'

=Z'Z +2za" +
n

Since z{ (Z' Z) 'a = 0 due to Mahalanobis orthogonality, by simple algebra for the determinant,
one obtains:

-1 -1
Sz (y)| = ’ZTZ+\/§zlaT\/§+\/n aaT\/n ‘
n n

— }ZTZ + \/§z1aT\/§{ (1 14/ r_z 1CLT(ZTZ + \/§z1aT\/§)_1a n- 1)

—1 - —1
—1Z72|(1+v2a7(272) " 2V2) (14 /" —a T (272) ey~
n n
JELaT (27 2) 23 VBT (27 2) ay [
a 1+ \/iaT(ZTZ)—lzlx/ﬁ )
-1
—1Z2"Z|(1+—a(Z2"Z) a).
z'zi(1+ " La(z"z)a)
Thus |Xz(y)| is a quadratic function of y, which is clearly minimized in y = (0,...,0)". O

Proof of Theorem 3: The first point can be checked by elementary algebra. The second point
follows from the coordinate-wise application of Proposition 1. For the third point, it suffices to
prove the single-output regression case. The regularized PCA algorithm will converge if

d d
Yiqa = Ujs )\svds = uis( )\s - U_)Uds
o7 2 e =2 A O

2



for any 0% < \y. W.Lo.g. we prove that

1
Ya= a0 a030 a1 aey Va0 =0,
i=1 Ai

denoting 3(Y') simply X for the centered Y, and an arbitrary point y. Using matrix algebra,

. _ —1 _
yd:Ed(l, ,dfl)z(l%...,d 1) (1,....d— 1)y(, Ld—1) = _((E 1>dd) (2 1)d(17---vd*1)y(1:-~vd*1)’

d d
Udz Udzvlz vdzUQZ ,Udiv(dfl) %
’U = — — | X
2w v Z Z DTy
— 1 1 i

1=

X <Z ui\/)\_wli, Z Ui\/xvgi, ceey Z ui\/xv(dl)Z)T
i=1 =1 =1

After reordering the terms, one obtains

ZUZ\/_Z Vg vavk] _

j=1 Jkl

Due to the orthogonality of V', d*> — d terms from the two outer sum signs are zero. Gathering
non-zero terms, i.e., those with ¢ = j only, we have that

d d
Zui\/)‘_il;fh Z A
i=1 i=1

O

Derivation of (4): The integrated quantity is the conditional depth density that can be obtained
from the joint one by the volume transformation (denoting dy, (z, u) the Mahalanobis distance
between a point of depth z and p):

SDX N X o= ) (2) = [D(x1%)(2) - C - Taowon (dar(z, 1)) - Tup (das (2, 1)) X
X Tangle (dM<Z7 l'l’)7 dM(Zu /J’*>) :
Any constant C'is ignored as it is unimportant when drawing. The three terms below correspond to

descaling the density to dimension one (downscaling), re-scaling it to the dimension of the missing
values (upscaling), and the linear transformation from dimension d to dimension |miss| =number
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Figure 4: Illustration of the derivation of (4).

of missing coordinates of a point (angle transformation):

1
di; (2 p)
Tup(da (2, %)) = dip ™7 (2, )

_ <\/d?\4(z,u) — &, (D(p*|X), )
1 1

Tangte (dar (2, 1), dr (2, p*)) =

Tdown (dM(Za “)) = d}\J_d(Z7 IJ’) =

)|miss(:1:)|—1

sinf  du(zpt)
dn(z,1)

VB, 1) = &y (D(]X), )

Taown and T, are illustrated in Figure 4 (left); for T},,4. see Figure 4 (right). Setting dp(z, pu) =
dp(z) to shorten notation gives (4).
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