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This supplementary article is organized as follows. In Section C, we present some

examples on the estimation of the contrast function to better understand Assumption (C2),

(A4), (A5) and (A6). Section D contains proofs of Lemma 3.1, Theorem 3.1, Theorem 3.2,

Theorem 3.4 and additional simulation results. We omit the proof of Theorem 3.3 since it

is very similar to that of Theorem 3.1. Additional simulation results are given in Section

E.

C More on the technical conditions

In this section, we present some examples on the estimation of the contrast function to

better understand Assumption (C2), (A4), (A5), (A6) and (A7).

C.1 Detailed discussion on (C2)

We consider the case where the structure parameter γ in (C1) equals 1. As commented in

Section B, this assumption holds when τ(X) has a bounded density near 0.

Example 1 (B-spline methods) Assume p = 1 and X has a bounded probability density

function on a closed interval. For j = 0, 1, let ĥj,I(·) be the B-spline regression estimators of

the conditional mean functions hj(·) based on the sub-dataset {(Xi, Yi)}i∈I,Ai=j. Define the

estimated contrast function τ̂I(·) = ĥ1,I(·)− ĥ0,I(·). Then similar to Equation (8) in Zhou

et al. (1998), we can show E|τ̂I(X)− τ(X)|2 = O(|I|−4/5) when τ(·) is twice continuously

differentiable and the number of interior knots K satisfies K = C|I|1/5 for some C > 0.

Condition (C2) is thus satisfied.
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Example 2 (Kernel ridge regression) For j = 0, 1, let ĥj,I(·) be the kernel ridge re-

gression estimator of hj(·) by minimizing,

ĥj,I = argmin
h∈H

{
1

|I|
∑
i∈I

I(Ai = j){Yi − h(Xi)}2 + λ∥h∥2H

}
,

where λ > 0 is a regularization parameter, H is a reproducing kernel Hilbert space with

a reproducing kernel K(·, ·) and ∥ · ∥H is the corresponding Hilbert norm. It follows from

Mercer’s theorem that

K(x, x′) =
∞∑
j=1

µjϕj(x)ϕj(x
′),

for some nonnegative and nonincreasing sequence {µj}∞j=1, and some orthogonal basis func-

tions {ϕj(·)}∞j=1. Assume h0, h1 ∈ H, supx E[{Y ∗(a)−ha(X)}2|X = x] = O(1) for a = 0, 1.

Assume for some k ≥ 2, there exists a constant ρ <∞ such that E{ϕ2k
j (X)} ≤ ρ2k for any

integer j ≥ 1. Further assume one of the following three conditions is satisfied:

(i) µj = 0,∀j ≥ r for some integer r that satisfies r = o(|I|1/4), and λ = r/|I|;

(ii) µj = O(j−2ν),∀j ≥ 1 for some ν > 3/2, and λ = |I|−2ν/(1+2ν);

(iii) µj = O(exp(−c̄j2)),∀j ≥ 1 for some constant c̄ > 0, and λ = |I|−1.

Then, we have E|ĥj,I(X) − hj(X)|2 = o(|I|−3/4) (see Corollaries 2-4 in Zhang et al.,

2013). Set τ̂I(x) = ĥI,1(x) − ĥI,0(x). It follows from Cauchy-Schwarz inequality that

E|τ̂I(X) − τ(X)|2 = o(|I|−3/4). Notice that the convergence rates are independent of the

dimension p. Condition (C2) therefore holds.

C.2 Discussion on (A4)-(A6)

We assume covariates follow an elliptical distribution with mean zero and covariance matrix

Σ. Further assume there exists some constant c0 ≥ 1 such that c−1
0 ≤ λmin(Σ) ≤ λmax(Σ) ≤

c0. Then, X has the following stochastic representation:

X
d
= Σ1/2U, (S.1)
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where U is spherically distributed. For 1 ≤ j ≤ p, we denoted by U (j) the j-th element of

U . Assume U (1) has a positive probability density function that is bounded away from 0

and ∞ on (−umax, umax) for some umax <∞ where (−umax, umax) is the support of U (1).

Assume τ(X) = a0S
∗X + b0 for some sketching matrix S∗ ∈ R1×p with ∥S∗∥0 ≤ s and

∥S∗∥2 = 1 and some a0, b0 ∈ R with a0 ̸= 0. Then the optimal choice of the projected

dimension q would be 1. In the following, we focus on the case where q = 1 and show

(A4)-(A6) hold.

More generally, one may consider the following model:

τ(X) = ψ(S∗(1)X,S∗(2)X, . . . , S∗(q0)X),

for some sketching matrices S∗(1), S∗(2), . . . , S∗(q0) ∈ R1×p, some integer q0 > 1 and some

function ψ(·). The choice of q then involves a trade-off. For q < q0, the contrast function

might not be well approximated. However, the convergence rate of the estimated contrast

function slows as q increases.

C.2.1 Validity of (A4)

The random vector U (see (S.1)) has a spherical distribution. For any sketching matrix

S ∈ R1×p, it follows from Theorem 2.4 of Fang et al. (1990) that

SΣ1/2U
d
= ∥SΣ1/2∥2U (1).

This together with (S.1) implies that

SX
d
= ∥SΣ1/2∥2U (1). (S.2)

For any S ∈ S, we have ∥S∥2 = 1. Hence, c
−1/2
0 ≤ ∥SΣ1/2∥ ≤ c

1/2
0 . It follows from (S.2)

that there exists some constant c∗ ≥ 1 such that the probability density function qS(·) of

SX satisfies

c−1
∗ ≤ qS(u) ≤ c∗, ∀u ∈ (−∥SΣ1/2∥2umax, ∥SΣ1/2∥2umax) and S ∈ S. (S.3)

We focus on the cubic B-spline methods discussed in Section 3.3.2. Let QS denote the
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matrix

∑
i∈I

N
(S)
1 (SXi)N

(S)
1 (SXi)

∑
i∈I

N
(S)
1 (SXi)N

(S)
2 (SXi) · · ·

∑
i∈I

N
(S)
1 (SXi)N

(S)
K+4(SXi)∑

i∈I

N
(S)
1 (SXi)N

(S)
2 (SXi)

∑
i∈I

N
(S)
2 (SXi)N

(S)
2 (SXi) · · ·

∑
i∈I

N
(S)
2 (SXi)N

(S)
K+4(SXi)

...
...

...∑
i∈I

N
(S)
1 (SXi)N

(S)
K+4(SXi)

∑
i∈I

N
(S)
2 (SXi)N

(S)
K+4(SXi) · · ·

∑
i∈I

N
(S)
K+4(SXi)N

(S)
K+4(SXi)


.

Assume the interior knots are placed at equally-spaced quantiles of SX. Since |I| ≥ n/2,

similar to Equation (13) in Zhou (2009) and Theorem 2 in de Boor (1973), we can show

there exists some constant c∗∗ > 1 such that

(2c∗∗K)−1n ≤ c−1
∗∗ |I|K−1 ≤ λmin(EQS) ≤ λmax(EQS) ≤ c∗∗|I|K−1 ≤ 2c∗∗K

−1n, ∀S ∈ S,(S.4)

under the condition in (S.3). The B-spline bases are uniformly bounded. Therefore, we

have

max
1≤k1,k2≤K+4

sup
S∈S

Var{N (S)
k1

(SX)N
(S)
k2

(SX)} ≤ max
1≤k1,k2≤K+4

sup
S∈S

E{N (S)
k1

(SX)N
(S)
k2

(SX)}2

= O

(
max
1≤k≤K

sup
S∈S

{EN (S)
k (SX)}2

)
= O(K−1).(S.5)

Assume K = Cn1/5 for some constant C > 0, and B = O(nκB) for some κB > 0. It follows

from Bernstein’s inequality (see Lemma 2.2.9, van der Vaart and Wellner, 1996) that the

following event occurs with probability tending to 1,

max
b∈{1,...,B}

1≤k1,k2≤K+4

∣∣∣∣∣∑
i∈I

(
N

(Sb)
k1

(SbXi)N
(Sb)
k2

(SbXi)− EN
(Sb)
k1

(SbX)N
(Sb)
k2

(SbX)
)∣∣∣∣∣ = O(n2/5

√
log n).(S.6)

Notice that N
(Sb)
k1

(SbX)N
(Sb)
k2

(SbX) = 0 when |k1 − k2| > 4, QSb − EQSb is a band matrix.

Under the event defined in (S.6), we have ∥QSb − EQSb∥1 = O(n2/5
√
log n) and ∥QSb −

EQSb∥∞ = O(n2/5
√
log n). As a result, we have

max
b∈{1,...,B}

∥QSb − EQSb∥2 ≤ max
b∈{1,...,B}

√
∥QSb − EQSb∥1∥QSb − EQSb∥∞ = O(n2/5

√
log n).
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with probability tending to 1. This together with (S.4) yields

min
b∈{1,...,B}

λmin(QSb) ≥ c̄∗n
4/5, (S.7)

for some constant c̄∗ > 0. By (S.4), (S.6) and (S.7), we have

max
b∈{1,...,B}

∥(QSb)−1 − (EQSb)−1∥2

≤ max
b∈{1,...,B}

∥(QSb)−1∥2∥QSb − EQSb∥2∥(EQSb)−1∥2 = O(n−6/5
√
log n). (S.8)

Consider the pseudo-outcome defined in (12). The estimated propensity score function

π̂I(·) and conditional mean functions ĥI0 , ĥ
I
1 will converge to some π∗(·), h∗0(·) and h∗1(·)

respectively. Under certain regularity conditions, we can show the following event holds

with probability tending to 1,

max
i∈I

∣∣τ̂Ii − τ ∗i
∣∣ = O(n−2/5

√
log n), (S.9)

where

τ ∗i =

(
Ai

π∗(Xi)
− 1− Ai

1− π∗(Xi)

)
Yi +

(
Ai

π∗(Xi)
− 1

)
h∗1(Xi)−

(
1− Ai

1− π∗(Xi)
− 1

)
h∗0(Xi).

Similar to (S.6), we have by Bernstein’s inequality that

max
b∈{1,...,B}
1≤k≤K+4

∣∣∣∣∣∑
i∈I

{N (Sb)
k (SbXi)τ

∗
i − EN

(Sb)
k (SbXi)τ

∗
i }

∣∣∣∣∣ = O(n2/5
√
log n),

with probability tending to 1. By the doubly-robustness property, we have E(τ ∗i |Xi) =

τ(Xi) and hence EN
(S)
k (SXi)τ

∗
i = EN

(S)
k (SX)τ(X). Therefore,

Pr

 max
b∈{1,...,B}
1≤k≤K+4

∣∣∣∣∣∑
i∈I

{N (Sb)
k (SbXi)τ

∗
i − EN

(Sb)
k (SbXi)τ(Xi)}

∣∣∣∣∣ = O(n2/5
√

log n)

→ 1. (S.10)

For any 1 ≤ k ≤ K + 4, 1 ≤ b ≤ B, N
(Sb)
k (·) has bounded support of length O(K−1) =

O(n−1/5). It follows from (S.3) that

sup
S∈S

max
k∈{1,...,K}

E|N (S)
k (SX)| = O(n−1/5). (S.11)
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Similar to (S.6), we have by Bernstein’s inequality that

max
b∈{1,...,B}
1≤k≤K+4

∣∣∣∣∣∑
i∈I

{|N (Sb)
k (SbXi)| − E|N (Sb)

k (SbXi)|}

∣∣∣∣∣ = O(n2/5
√
log n),

with probability tending to 1. This together with (S.11) yields

max
b∈{1,...,B}
1≤k≤K+4

∑
i∈I

|N (Sb)
k (SbXi)| = O(n4/5),

with probability tending to 1. By (S.9) and (S.10), we have

max
b∈{1,...,B}
1≤k≤K+4

∣∣∣∣∣∑
i∈I

{N (Sb)
k (SbXi)τ̂

I
i − EN

(Sb)
k (SbXi)τ(Xi)}

∣∣∣∣∣ ≤ max
b∈{1,...,B}
1≤k≤K+4

(∑
i∈I

|N (Sb)
k (SbXi)|

)

×max
i∈I

∣∣τ̂Ii − τ ∗i
∣∣+ max

b∈{1,...,B}
1≤k≤K+4

∣∣∣∣∣∑
i∈I

{N (Sb)
k (SbXi)τ

∗
i − EN

(Sb)
k (SbXi)τ(Xi)}

∣∣∣∣∣ = O(n2/5
√

log n),

with probability tending to 1. As a result, we have

max
b∈{1,...,B}

√√√√K+4∑
k=1

(∑
i∈I

{N (Sb)
k (SbXi)τ̂Ii − EN

(Sb)
k (SbX)τ(X)}

)2

= O
(√

n log n
)
, (S.12)

with probability tending to 1. In view of (S.2), since ∥S∗∥2 = 1, λmax(Σ) ≤ c0 and

∥U (1)∥∞ ≤ umax, the contrast function τ(·) is uniformly bounded. Similar to (S.11), we can

show supS∈S maxk∈{1,...,K} |ENk(SX)τ(X)| = O(n−1/5). Therefore, we have

∥{EN1(SX)τ(X), · · · ,ENK+4(SX)τ(X)}∥2 = O(
√
Kn−1/5) = O(n−1/10),

where the big-O term is uniform in S ∈ S. This together with (S.7), (S.8) and (S.12) yields

max
b∈{1,...,B}

∥ξ̂I,Sb − ξSb∥2 (S.13)

≤ max
b∈{1,...,B}

∥(QSb)−1 − (E(QSb)−1)∥2|I|∥{EN1(SX)τ(X), · · · ,ENK+4(SX)τ(X)}∥2

+ max
b∈{1,...,B}

∥(QSb)−1∥2

√√√√K+4∑
k=1

(∑
i∈I

{Nk(SbXi)τ̂Ii − ENk(SbX)τ(X)}

)2

= O(n−3/10
√
log n),
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with probability tending to 1, where

ξ̂I,Sb = (QSb)−1

(∑
i∈I

N1(SbXi)τ̂
I
i , · · · ,

∑
i∈I

NK+4(SbXi)τ̂
I
i

)T

,

ξSb = (EQSb)−1|I|{EN1(SbX)τ(X), · · · ,ENK+4τ(X)}.

By Cauchy-Schwarz inequality, we have

max
1≤b≤B

E|τ̂Sb
I (SbX)− τSb(SbX)|2

= max
1≤b≤B

E

∣∣∣∣∣τSb(SbX)−
K+4∑
k=1

N
(Sb)
k (SbX)ξSb

k +
K+4∑
k=1

N
(Sb)
k (SbX)ξSb

k −
K+4∑
k=1

N
(Sb)
k (SbX)ξ̂I,Sb

k

∣∣∣∣∣
2

≤ 2 max
1≤b≤B

E

∣∣∣∣∣τSb(SbX)−
K+4∑
k=1

N
(Sb)
k (SbX)ξSb

k

∣∣∣∣∣
2

︸ ︷︷ ︸
I1

+2 max
1≤b≤B

E

∣∣∣∣∣
K+4∑
k=1

N
(Sb)
k (SbX)(ξ̂I,Sb

k − ξSb
k )

∣∣∣∣∣
2

︸ ︷︷ ︸
I2

.

It follows from (S.4) and (S.13) that

I2 ≤ 2 max
1≤b≤B

(ξ̂I,Sb − ξSb)T{E(QSb/|I|)}(ξ̂I,Sb − ξSb)

≤ 2 max
1≤b≤B

λmax{E(QSb/|I|)}∥ξ̂I,Sb − ξSb∥22 = O(n−4/5 log n).

Besides, since X is elliptically distributed, we have

E(S∗X|SX) = (SΣST )−1(S∗ΣST )(SX), (S.14)

for any sketching matrix S ∈ R1×p. Thus,

E{τ(X)|SX} = a0(SΣS
T )−1(S∗ΣST )(SX) + b0. (S.15)

This implies that τS1 , · · · , τSB have uniformly bounded second-order derivatives. As a

result, we have I1 = O(n−4/5) (see the proof of Equation (5) in Zhou, 2009). Therefore,

(A4) holds with r0 = 4/5. The condition r0 > (2 + γ)/(2 + 2γ) in Theorem 3.4 holds as

long as γ > 2/3.
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C.2.2 Validity of (A5)

Below, we show Assumption (9) holds. In view of (S.15), we have for any S ∈ R1×p that

E|τ(X)− E{τ(X)|SX}|2 = a20E|S∗X − (SΣST )−1(S∗ΣST )(SX)|2 (S.16)

= a20

(
S∗Σ(S∗)T − 2

(S∗ΣST )2

SΣST
+

(S∗ΣST )2

SΣST

)
= a20

(
S∗Σ(S∗)T − (S∗ΣST )2

SΣST

)
.

By Cauchy-Schwarz inequality, we have

(S∗ΣST )2

SΣST
+ SΣST ≥ 2S∗ΣST .

This together with (S.16) yields that

E|τ(X)− E{τ(X)|SX}|2 ≤ a20(S
∗ − S)Σ(S∗ − S)T ≤ a0λmax(Σ)∥S∗ − S∥22 ≤ a0c0∥S∗ − S∥22.

Assumption (9) is thus satisfied.

C.2.3 Validity of (A6)

In view of (S.15), we have

V (doptS∗ )− V (doptS ) = E(a0S
∗X + b0)[I(a0S

∗X > −b0)− I{a0(S∗ΣST )(SΣST )−1(SX) > −b0}]

= −E{a0(S∗ΣST )(SΣST )−1(SX) + b0}I{a0(S∗ΣST )(SΣST )−1(SX) > −b0}

− a0E{S∗X − (S∗ΣST )(SΣST )−1(SX)}I{a0(S∗ΣST )(SΣST )−1(SX) > −b0}

+ E(a0S
∗X + b0)[I(a0S

∗X > −b0) = E(a0S
∗X + b0)[I(a0S

∗X > −b0)

− E{a0(S∗ΣST )(SΣST )−1(SX) + b0}I{a0(S∗ΣST )(SΣST )−1(SX) > −b0}

= |a0|(S∗ΣS∗T )1/2 {E(U (1) − r0)I(U
(1) > r0)− E(ρU (1) − r0)I(ρU

(1) > r0)}︸ ︷︷ ︸
Ψ(ρ)

,

where U (1) is the first element of U defined in (S.1), ρ =
√
(S∗ΣST )(SΣST )−1(SΣS∗T )/(S∗ΣS∗T )

and r0 = −b0/{|a0|(S∗ΣS∗T )1/2}. The third equality is due to (S.15), and the last equality

follows from Theorem 2.5 (i) of Fang et al. (1990).

Case 1: r0 = 0. Then we have Ψ(ρ) = (1− ρ)Emax(U (1), 0). Since Emax(U (1), 0) ≥ c̄
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for some constant c̄ > 0, for any ε0 > 0 that satisfies V (doptS∗ )− V (doptS ) ≤ ε0, we have

1− ρ ≤ ε0
c̄|a0|(S∗ΣS∗T )1/2

≤ ε0

c̄|a0|c−1
0

.

By (S.14), we have E{τ(X)|SX} d
= C̄U (1) for some C̄ that is uniformly bounded away

from 0. Since U (1) has a bounded probability density function near 0, (A6) thus holds with

γ = 1.

Case 2: r0 > 0, Pr(U (1) ≥ r0) = 0. It follows that Pr(ρU (1)− r0 < 0) = 1, ∀ρ ≤ 1. Thus

(A6) holds for any γ > 0.

Case 3: r0 < 0, Pr(U (1) ≤ r0) = 0. It follows that Pr(ρU (1)− r0 > 0) = 1, ∀ρ ≤ 1. Thus

(A6) holds for any γ > 0.

Case 4: r0 ̸= 0, Pr(|U (1)| > |r0|) > 0. Let f
(1)
U (·) denote the probability density of U (1).

With some calculations, we have

dΨ(ρ)

dρ
= −

∫ +∞

r0
ρ

ufU(1)(u)du.

The derivation of Ψ(·) is nonpositive for all 0 < ρ ≤ 1. Since Pr(|U (1)| > |r0|) > 0, there

exists some ρ0 > 0 such that |dΦ(ρ)/dρ|ρ=ρ0 | > 0 and As a result, we have Ψ(ρ) ≥ Ψ(ρ0)

for all 0 ≤ ρ ≤ ρ0. In addition, |dΨ(ρ)/dρ| is monotonically increasing as a function of ρ.

For ρ0 ≤ ρ ≤ 1, it follows from Taylor’s theorem that

Ψ(ρ) ≥

∣∣∣∣∣ dΦ(ρ)dρ

∣∣∣∣
ρ=ρ0

∣∣∣∣∣ (1− ρ).

Therefore, for any sufficiently small ε0 such that V (doptS∗ )− V (doptS ) ≤ ε0, we have

1− ρ ≤ ε0
|a0|(S∗ΣS∗T )1/2|dΦ(ρ)/dρ|ρ=ρ0 |

.

As a result, for any sufficiently small ε0 > 0 and any sketching matrix S such that

V (doptS∗ )− V (doptS ) ≤ ε0, we have 1− ρ ≤ c̄∗ε0/{|a0|(S∗ΣS∗T )1/2} for some constant c̄∗ > 0.

By (S.14), it is immediate to see that (A6) holds with γ = 1 since U (1) has a bounded

probability density function.
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C.3 Additional discussion on (A5)

In Section C.2.2, we show (9) in (A5) is satisfied when X follows an elliptical distribution

and the contrast function is linear. More generally, (A5) holds as long as τ(X) = ψ(S∗X)

for some Lipschitz continuous function ψ(·), some S∗ ∈ S∗, and Σ = EXXT satisfies

λmax(Σ) = O(1). Notice that

E|τ(X)− E{τ(X)|SX}|2 = E|ψ(S∗X)− ψ(SX) + ψ(SX)− E{ψ(S∗X)|SX}|2

≤ 2E|ψ(S∗X)− ψ(SX)|2 + 2E|E[{ψ(S∗X)− ψ(SX)}|SX]|2 ≤ 4E|ψ(S∗X)− ψ(SX)|2

= O
(
E∥S∗X − SX∥22

)
= O

(
q∑

j=1

(S(j) − S∗(j))T (EXXT )(S(j) − S∗(j))

)
,

where the first inequality is due to Cauchy-Schwarz inequality, the second inequality is due

to Jensen’s inequality and the second equality follows by the Lipschitz continuity of ψ(·).

Since λmax(EXX
T ) = O(1), it is immediate to see that (9) holds.

C.4 Additional discussion on (A6)

In Section C.2.3, we assume X follows an elliptical distribution and the contrast function is

linear. If we are willing to assume X ∼ N(0,Σ) for some Σ that satisfies c−1
0 ≤ λmin(Σ) ≤

λmax(Σ) ≤ c0 for some c0 ≥ 1, then we can show (A6) holds when τ(·) takes some other

nonlinear forms as well.

Example 3 (Quadratic contrast function) Assume τ(x) = a0(S
∗x)2 − b0 for some

S∗ ∈ R1×p such that ∥S∗∥2 = 1 and a0, b0 > 0. Notice that for any sketching matrix

S ∈ S ⊆ Rq×p, SX is independent of S∗X − (S∗ΣST )(SΣST )−1SX. Hence,

E{τ(X)|SX} = a0E{S∗X − (S∗ΣST )(SΣST )−1SX + (S∗ΣST )(SΣST )−1SX|SX}2 − b0

= a0E{S∗X − (S∗ΣST )(SΣST )−1SX}2 + a0|(S∗ΣST )(SΣST )−1(SX)|2 − b0

= a0{S∗ΣS∗T − (S∗ΣST )(SΣST )−1(SΣS∗T )}+ a0|(S∗ΣST )(SΣST )−1(SX)|2 − b0. (S.17)
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Notice that S∗X − (S∗ΣST )(SΣST )−1(SX) is independent of SX. Thus, we have

V (doptS ) = {a0E(S∗X)2 − b0}I[E{τ(X)|SX} > 0]

= [a0E{(S∗ΣST )(SΣST )−1(SX)}2 − b0]I[E{τ(X)|SX} > 0]

+ a0E{S∗X − (S∗ΣST )(SΣST )−1(SX)}2I[E{τ(X)|SX} > 0]

+ 2a0E{S∗X − (S∗ΣST )(SΣST )−1(SX)}{(S∗ΣST )(SΣST )−1(SX)}I[E{τ(X)|SX} > 0]

= a0E[E{τ(X)|SX}I{E(τ(X)|SX) > 0}].

Let r0 =
√
b0/(a0S∗ΣS∗T ) and ρ =

√
(S∗ΣS)(SΣST )−1(SΣS∗T )/(S∗ΣS∗T ). Then we have

V (doptS∗ )− V (doptS ) = a0Eτ(X)I{τ(X) > 0} − a0E[E{τ(X)|SX}I{E(τ(X)|SX) > 0}]

= a0(S
∗ΣS∗T ) {E(Z2 − r20)I(|Z| > r0)− E(1− ρ2 + ρ2Z2 − r20)I(1− ρ2 + ρ2Z2 > r20)}︸ ︷︷ ︸

Ψ(ρ)

.

Case 1: r0 < 1. For any ρ such that 1− ρ2 ≥ r20, we have

Ψ(ρ) = E(Z2 − r20)I(|Z| > r0)− (1− r20) > E(Z2 − r20)− (1− r20) > 0.

For any ρ such that 1− ρ2 < r20, we have

dΨ(ρ)

dρ
= 2ρ

∫ +∞

√
r20+ρ2−1/ρ

(1− x2) exp

(
−x

2

2

)
dx = 2ρ

∫ √
r20+ρ2−1/ρ

0

(x2 − 1) exp

(
−x

2

2

)
dx.(S.18)

Since r0 < 1, we have
√
r20 + ρ2 − 1 < ρ and hence dΨ(ρ)/dρ is negative. Therefore, for

any ρ such that 1 − ρ2 ≥ r20/2, we have Ψ(ρ) ≥ Ψ(
√
1− r20/2). For any ρ such that

1− ρ2 < r20/2, we have

dΨ(ρ)

dρ
≤ −2

√
1− r20/2

∫ r0/
√

2−r20

0

(1− x2) exp

(
−x

2

2

)
dx.

Therefore, for any sufficiently small ε0 > 0 such that V (doptS∗ )− V (doptS ) ≤ ε0, we have

1− ρ ≤ ε0
a0(S∗ΣS∗T )

{
2
√

1− r20/2

∫ r0/
√

2−r20

0

(1− x2) exp

(
−x

2

2

)
dx

}−1

.
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Case 2: r0 ≥ 1. Since r0 ≥ 1, we have
√
r20 + ρ2 − 1/ρ ≥ 1. Hence, the integral∫ √

r20+ρ2−1/ρ

0

(1− x2) exp

(
−x

2

2

)
dx (S.19)

decreases as
√
r20 + ρ2 − 1/ρ increases for any

√
r20 + ρ2 − 1/ρ ≥ 1. Notice that (S.19) is

equal to 0 when setting
√
r20 + ρ2 − 1/ρ = ∞. In view of (S.18), dΨ(ρ)/dρ is negative for

any 0 < ρ ≤ 1. As a result, we have Ψ(ρ) ≥ Ψ(1/2) for any ρ such that 0 < ρ ≤ 1/2. For

any ρ such that 1/2 < ρ ≤ 1, we have

dΨ(ρ)

dρ
≤ −

∫ √
r20+ρ2−1/ρ

0

(1− x2) exp

(
−x

2

2

)
dx ≤ −

∫ √
r20−3/4

0

(1− x2) exp

(
−x

2

2

)
dx.

Therefore, for any sufficiently small ε0 > 0 such that V (doptS∗ )− V (doptS ) ≤ ε0, we have

1− ρ ≤ ε0
a0(S∗ΣS∗T )

{∫ √
r20−3/4

0

(1− x2) exp

(
−x

2

2

)
dx

}−1

.

As a result, for any r0 > 0 and sufficiently small ε0 > 0 such that V (doptS∗ )−V (doptS ) ≤ ε0,

we have 1−ρ ≤ c̄∗ε0 for some constant c̄∗ > 0. By (S.17), E{τ(X)|SX} d
= C0ρ

2Z2+C1(S)

for some constant C0 > 0, some function C1(·), and Z ∼ N(0, 1). For any ρ that satisfies

1 − ρ ≤ c̄∗ε0 for some sufficiently small ε0 > 0, the density function of E{τ(X)|SX} is

uniformly bounded. (A6) thus holds.

Example 4 (Trigonometric contrast function) Assume τ(x) = a0 sin(b0S
∗x) for some

S∗ ∈ R1×p and a0, b0 ∈ R such that ∥S∗∥2 = 1, a0 ̸= 0, b0 > 0. For any sketching matrix

S ∈ S ⊆ Rq×p, SX is independent of S∗X − (S∗ΣST )(SΣST )−1SX. Since

sin(b0S
∗X) = sin[b0(S

∗ΣST )(SΣST )−1SX + b0{S∗X − (S∗ΣST )(SΣST )−1SX}]

= sin{b0(S∗ΣST )(SΣST )−1SX} cos[b0{S∗X − (S∗ΣST )(SΣST )−1SX}]

+ cos{b0(S∗ΣST )(SΣST )−1SX} sin[b0{S∗X − (S∗ΣST )(SΣST )−1SX}],

we have E{sin(b0S∗X)|SX} = sin{b0(S∗ΣST )(SΣST )−1SX}E cos(b0κZ) where κ2 = S∗ΣS∗T−

(S∗ΣST )(SΣST )−1(SΣS∗T ) and Z follows a standard normal distribution. Using integra-
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tion by parts, we have

∂E cos(b0κZ)
∂κ

= −b0EZ sin(b0κZ) = − b0√
2π

∫ ∞

−∞
x exp

(
−x

2

2

)
sin(b0κx)dx

=
b0√
2π

exp

(
−x

2

2

)
sin(b0κx)

∣∣∣∣∞
−∞

− b20κ√
2π

∫ ∞

−∞
exp

(
−x

2

2

)
cos(b0κx) = −b20κE cos(b0κZ).

Therefore, E cos(b0κZ) = C exp(−b20κ2/2) for some constant C > 0. Since E cos(b0κZ) = 1

when κ = 0, we have E cos(b0κZ) = exp(−b20κ2/2).

Let ρ = |S∗ΣST |(SΣST )−1/2(S∗ΣS∗T )−1/2. To summarize, we’ve shown

E{τ(X)|SX} = a0 exp{−b20S∗ΣS∗T (1− ρ2)} sin{b0(S∗ΣST )(SΣST )−1SX}. (S.20)

Since V (doptS∗ )
d
= |a0|max(sgn(a0) sin(b0

√
S∗ΣS∗TZ, 0) where Z ∼ N(0, 1), we have V (doptS∗ ) ≥

2ε∗ for some ε∗ > 0. Set ε0 = ε∗. For any S such that V (doptS∗ ) − V (doptS ) ≤ ε0, we have

V (doptS ) ≥ ε0. It follows from (S.20) that

V (doptS ) = |a0| exp{−b20S∗ΣS∗T (1− ρ2)}max(sgn(a0) sin{b0(S∗ΣS∗T )1/2ρZ}, 0).

For any such S, we have |a0|max(sgn(a0) sin{b0(S∗ΣS∗T )1/2ρZ}, 0) ≥ ε0 and hence ρ satis-

fies ρ ≥ ε̄ for some ε̄ > 0. Notice that for any such S, we have E{τ(X)|SX} d
= κ1 sin(κ2Z)

with κ1 and κ2 uniformly bounded away from 0. For any sufficiently small t > 0, we have

Pr(|E{τ(X)|SX}| ≤ t) ≤
∑

k=0,±1,±2...,

Pr (|Z− kπ| ≤ arcsin(t/κ1)/κ2) = O(t).

Assumption (A6) is thus satisfied.

D Proofs

D.1 Proof of Lemma 3.1

We first show (i)⇒(ii). Assume (i) holds. We have Pr(τ(X) ≥ 0) = 1 or Pr(τ(X) ≤ 0) = 1.

When Pr(τ(X) ≥ 0) = 1, it follows from Conditions (A1)-(A3) that

V (dopt)− V (1) = Eτ(X)I(τ(X) > 0)− Eτ(X) = E{−τ(X)I(τ(X) < 0)} = 0. (S.1)
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Similarly, when Pr(τ(X) ≤ 0) = 1, we have V (dopt) = V (0). This verifies that V (dopt) ≤

max(V (0), V (1)). Besides, since dopt maximizes V , we have V (dopt) ≥ max(V (0), V (1)).

(ii) therefore follows.

We now show (ii)⇒(i). Assume V (dopt) = V (1). Then it follows from (S.1) that

E{−τ(X)I(τ(X) < 0)} = 0.

Observe that −τ(X)I(τ(X) < 0) is nonnegative and integrable. Therefore, we have

τ(X)I(τ(X) < 0) = 0, almost surely. This implies that Pr(τ(X) ≤ 0) = 1. Similarly,

when V (dopt) = V (0), we can show Pr(τ(X) ≥ 0) = 1. This completes the proof.

D.2 Proof of Theorem 3.1

It follows from Bonferroni’s inequality that

Pr(T̂CV > zα/2) ≤ Pr

( √
nV̂DI1(d̂I2)

max(σ̂I1(d̂I2), δn)
> zα/2

)
+ Pr

( √
nV̂DI2(d̂I1)

max(σ̂I2(d̂I1), δn)
> zα/2

)

≤ 2Pr

( √
nV̂DI(d̂Ic)

max(σ̂I(d̂Ic), δn)
> zα/2

)
,

where I is a random subset of {1, . . . , N} of size n. Hence, it suffices to show

Pr

( √
nV̂DI(d̂Ic)

max(σ̂I(d̂Ic), δn)
> zα/2

)
≤ α

2
.

Under H0, we have V (dopt) = V (1). This implies for any treatment regime d, we have

V (d) ≤ V (1) and hence EV̂DI(d̂Ic) ≤ 0. Therefore, it suffices to show

Pr

(√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
> zα/2

)
≤ α

2
. (S.2)

Given I and {Oi}i∈Ic , the estimated treatment regime d̂Ic is fixed. Let

σ2
0(d̂Ic) = Var

{(
A

π(X)
− 1− A

1− π(X)

)
Y {1− d̂Ic(X)} | I, {Oi}i∈Ic

}
.
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For a given ε > 0, define the event A = {σ0(d̂Ic) ≥ εδn}. In the following, we show

lim sup
n

Pr

(√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
> zα/2 | A

)
≤ α

2
, (S.3)

lim sup
n

Pr

(√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
> zα/2 | Ac

)
≤ ε2

z2α/2
. (S.4)

Combining (S.3) together with (S.4), we obtain

lim sup
n

Pr

(√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
> zα/2

)
≤ max

(
α

2
,
ε2

z2α/2

)
.

Since ε can be arbitrarily small, this proves (S.2).

Proof of (S.3). Define

ξi =

(
1− Ai

1− π(Xi)
− Ai

π(Xi)

)
Yi{1− d̂Ic(Xi)} − E

{(
1− Ai

1− π(Xi)
− Ai

π(Xi)

)
Yi{1− d̂Ic(Xi)}

}
.

Notice that

√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
≤

√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

σ̂I(d̂Ic)
=

√
nξ̄I√

(
∑

i∈I ξ
2
i − nξ̄2I)/(n− 1)

,

where ξ̄I =
∑

i∈I ξi/|I|. Therefore, we have

Pr

(√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
> zα/2

∣∣I, {Oi}i∈Ic

)
(S.5)

≤ Pr

 √
nξ̄I√

(
∑

i∈I ξ
2
i − nξ̄2I)/(n− 1)

> zα/2
∣∣I, {Oi}i∈Ic


≤ Pr

(
U√

1− U2/n
>

√
n− 1

n
zα/2

∣∣I, {Oi}i∈Ic

)
= Pr

(
U > c̄(α, n)

∣∣I, {Oi}i∈Ic

)
.

where U is the self-normalized sum
√
nξ̄I/

√∑
i∈I ξ

2
i /n, and

c̄(α, n) =

√
(n− 1)/nzα/2√

1 + (n− 1)z2α/2/n
2
.

Under (A3) and the condition E|Y |3 = O(1), it follows from Theorem 7.4 in Peña et al.
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(2008) that

Pr
(
U > c̄(α, n)

∣∣I, {Oi}i∈Ic

)
= Φ̄(c(α, n)) +O

(
1

√
nσ3

0(d̂Ic)

)
. (S.6)

On the set σ0(d̂Ic) ≥ εδn, it follows from (S.6) that

Pr
(
U > c̄(α, n)

∣∣I, {Oi}i∈Ic ,A
)
= Φ̄(c(α, n)) +O(1)

(
1

ε3
√
nδ3n

)
.

By (S.5), this further implies

Pr

(√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
> zα/2

∣∣I, {Oi}i∈Ic ,A

)
≤ Φ̄(c(α, n)) +

c̄

ε3
√
nδ3n

, (S.7)

for some constant c̄ > 0. Take the conditional expectation of I, {Oi}i∈Ic given the event A

on both sides of (S.7), we obtain

Pr

(√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
> zα/2

∣∣A) ≤ Φ̄(c(α, n)) +
c̄

ε3
√
nδ3n

.

Since c(α, n) → zα/2, under the condition that δn ≫ n−1/6, we obtain (S.3).

Proof of (S.4). It follows from Chebyshev’s inequality that

Pr

(√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
> zα/2

∣∣I, {Oi}i∈Ic

)

≤ Pr

(√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

δn
> zα/2

∣∣I, {Oi}i∈Ic

)

≤ E

(
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}2

z2α/2δ
2
n

∣∣I, {Oi}i∈Ic

)
=
σ2
0(d̂Ic)

z2α/2δ
2
n

.

Under the event Ac, we have

σ2
0(d̂Ic)

z2α/2δ
2
n

≤ ε2

z2α/2
,

and hence

Pr

(√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
> zα/2

∣∣I, {Oi}i∈Ic ,Ac

)
≤ ε2

z2α/2
. (S.8)
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Take the conditional expectation of I, {Oi}i∈Ic given the event Ac on both sides of (S.8),

we obtain (S.4).

Assume

Var

{(
A

π(X)
− 1− A

1− π(X)

)
Y {1− d̂Ij(X)} | {Oi}i∈Ij

}
= op(δn),

for j = 1, 2. Similar to the proof of (S.4), we can show that

Pr

(√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
> zα/2

)
≤ ε2

z2α/2
,

for any ε > 0. Since ε can be arbitrarily small, we have

Pr

(√
n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
> zα/2

)
→ 0.

By Bonferroni’s inequality, we obtain

Pr(T̂CV > zα/2) → 0.

The proof is hence completed.

D.3 Proof of Theorem 3.2

We first show under Assumptions (C1) and (C2),

V (d̂I) = V (dopt) + op(n
−1/2), (S.9)

for an arbitrary subset I of {1, . . . , N} of size n. For a given ε > 0, it follows from Condition

(C2) and Markov’s inequality that

Pr
(
EX |τ̂I(X)− τ(X)|2 > εn−(2+γ)/(2+2γ)

)
≤ EEX |τ̂I(X)− τ(X)|2

εn−(2+γ)/(2+2γ)
=

E|τ̂I(X)− τ(X)|2

εn−(2+γ)/(2+2γ)
→ 0,

where the expectation EX is taken with respect to X independent of the training samples

{Oi}i=1,...,N and I1, I2. Since ε can be arbitrarily small, we have

EX |τ̂Ij(X)− τ(X)|2 = op
(
n−(2+γ)/(2+2γ)

)
, (S.10)
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for j = 1, 2. In view of (S.10), Under (C1) and (C2), (S.9) follows from an application of

Theorem 8 in Luedtke and van der Laan (2016).

We now show Pr(T̂CV > zα/2) → 1 when hn ≫ n−1/2. By definition, we have

Pr(T̂CV > zα/2) = Pr

{
max
j=1,2

( √
nV̂DI1(d̂I2)

max(σ̂I1(d̂I2), δn)
,

√
nV̂DI2(d̂I1)

max(σ̂I2(d̂I1), δn)

)
> zα/2

}

≥ Pr

( √
nV̂DI(d̂Ic)

max(σ̂I(d̂Ic), δn)
> zα/2

)
,

for a random subset I of {1, . . . , N} of size n. Hence, it suffices to show

Pr

( √
nV̂DI(d̂Ic)

max(σ̂I(d̂Ic), δn)
> zα/2

)
→ 1,

or equivalently

Pr

(√
n{−V̂DI(d̂Ic) + EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
≥

√
nEV̂DI(d̂Ic)

max(σ̂I(d̂Ic), δn)
− zα/2

)
→ 0. (S.11)

It follows from (S.9) that

EV̂DI(d̂Ic) = V (d̂Ic)− V (1) = V (d̂Ic)− V (dopt) + V (dopt)− V (1) = hn + op(n
−1/2).

Under the assumption hn ≫ n−1/2, for sufficiently large n, we have hn + o(n−1/2) ≥ hn/2.

Therefore, we have

Pr

(√
n{−V̂DI(d̂Ic) + EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
≥

√
nEV̂DI(d̂Ic)

max(σ̂I(d̂Ic), δn)
− zα/2

)

≤ Pr

(√
n{−V̂DI(d̂Ic) + EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
≥

√
nhn/2

max(σ̂I(d̂Ic), δn)
− zα/2

)
+ o(1).

Therefore, it suffices to show

Pr

(√
n{−V̂DI(d̂Ic) + EV̂DI(d̂Ic)}

max(σ̂I(d̂Ic), δn)
≥

√
nhn/2

max(σ̂I(d̂Ic), δn)
− zα/2

)
→ 0.
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By the dominated convergence theorem, it suffices to show

Pr

(√
n{EV̂DI(d̂Ic)− V̂DI(d̂Ic)} ≥

√
nhn
2

− zα
2
max(σ̂I(d̂Ic), δn) | {Oi}i∈Ic , I

)
= op(1).(S.12)

Given {Oi}i∈Ic and I, the estimated treatment regime d̂Ic is fixed. Thus, conditional

on {Oi}i∈Ic and I, it follows from the law of large numbers that,

1

n

∑
i∈I

ξ2i
P→ Eξ21 and

1

n

∑
i∈I

ξi
P→ 0, (S.13)

where ξi is defined in the proof of Theorem 1. By (S.13), we have that conditional on

{Oi}i∈Ic and I,

σ̂I(d̂Ic)
P→ σ0(d̂Ic). (S.14)

Under (A3) and the condition E|Y |3 = O(1), we have

σ0(d̂Ic)2 ≤ E

{(
A

π(X)
− 1− A

1− π(X)

)
Y {1− d̂Ic}

}2

≤ E

{(
A

π(X)
− 1− A

1− π(X)

)
Y

}2

≤

{
E

∣∣∣∣( A

π(X)
− 1− A

1− π(X)

)
Y

∣∣∣∣3
}2/3

= O(1). (S.15)

Combining this together with (S.14) and the conditions hn ≫ n−1/2, δn → 0, we obtain

that

Pr

(√
nhn
2

− zα/2max(σ̂I(d̂Ic), δn) ≥
√
nhn
4

| {Oi}i∈Ic , I
)

P→ 1.

In view of (S.12), it suffices to show

Pr

(√
n{−V̂DI(d̂Ic) + EV̂DI(d̂Ic)} ≥

√
nhn
4

| {Oi}i∈Ic , I
)

= op(1).

However, this is immediate to see since

Pr

(√
n{−V̂DI(d̂Ic) + EV̂DI(d̂Ic)} ≥

√
nhn
4

| {Oi}i∈Ic , I
)

≤ E

(
16n{−V̂DI(d̂Ic) + EV̂DI(d̂Ic)}2

nh2n
| {Oi}i∈Ic , I

)
=

16σ2
0(d̂Ic)

nh2n
= o(1),

19



where the first inequality is due to the Chebyshev’s inequality and the last equality is due

to (S.15) and the condition hn ≫ n−1/2.

We now show the power of our test statistic in the regular cases where Pr(τ(X) = 0) = 0.

We begin by providing an upper bound for EX |d̂Ic(X)−dopt(X)|. Since Pr(τ(X) = 0) = 0,

it follows from Assumption (C1) that

Pr(|τ(X)| ≤ t) = O(tγ) ∀0 < t ≤ δ0. (S.16)

Observe that

EX |d̂Ic(X)− dopt(X)| = EX |d̂Ic(X)− dopt(X)|I(|τ(X)| ≤ t) (S.17)

+ EX |d̂Ic(X)− dopt(X)|I(|τ(X)| > t)
∆
= I1 + I2.

For any t ≤ δ0, it follows from (S.16) that I1 = O(tγ). Note that for any a, b ∈ R, we have

I(a > 0) = I(b > 0) when |a− b| > |a|. Therefore, we have

I2 ≤ EXI(|τ(X)− τ̂Ic(X)| > |τ(X)|)I(|τ(X)| > t) ≤ EX |τ(X)− τ̂Ic(X)|2

|τ(X)|2
I(|τ(X)| > t)

≤ 1

t2
EX |τ(X)− τ̂Ic(X)|2I(|τ(X)| > t) ≤ 1

t2
EX |τ(X)− τ̂Ic(X)|2,

where the second inequality is due to Markov’s inequality.

Set t =
(
EX |τ(X)− τ̂Ic(X)|2

)1/(2+γ)
, we obtain

I1 + I2 =
(
EX |τ(X)− τ̂Ic(X)|2

)γ/(2+γ)
= op

(
n−γ/(2+2γ)

)
,

where the last equality is due to (S.10). By (S.17), this implies

EX |d̂Ic(X)− dopt(X)| = op
(
n−γ/(2+2γ)

)
= op(1). (S.18)

Therefore, the estimated treatment regime is consistent to dopt in the regular cases.
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As a result, it follows from Hölder’s inequality that

EX,A,Y

∣∣∣∣( A

π(X)
− 1− A

1− π(X)

)
Y {d̂Ic(X)− dopt(X)}

∣∣∣∣2 (S.19)

≤

{
E

∣∣∣∣( A

π(X)
− 1− A

1− π(X)

)
Y

∣∣∣∣3/2
}2/3(

EX
∣∣∣d̂Ic(X)− dopt(X)

∣∣∣6)1/3

=

{
E

∣∣∣∣( A

π(X)
− 1− A

1− π(X)

)
Y

∣∣∣∣3/2
}2/3 (

EX
∣∣∣d̂Ic(X)− dopt(X)

∣∣∣)1/3 = op(1),

where the last equality is due to (A3), the condition E|Y |3 = O(1) and (S.18).

Similarly, we can show

E

{
EX,A,Y

∣∣∣∣( A

π(X)
− 1− A

1− π(X)

)
Y {d̂Ic(X)− dopt(X)}

∣∣∣∣2
}3/2

≤ E

{
EX,A,Y

∣∣∣∣( A

π(X)
− 1− A

1− π(X)

)
Y

∣∣∣∣2
}3/2

≤ EEX,A,Y

∣∣∣∣( A

π(X)
− 1− A

1− π(X)

)
Y

∣∣∣∣3
= E

∣∣∣∣( A

π(X)
− 1− A

1− π(X)

)
Y

∣∣∣∣3 = O(1).

This implies LHS of (S.19) is uniformly integrable. Hence, it follows from (S.19) that

E

∣∣∣∣( A

π(X)
− 1− A

1− π(X)

)
Y {d̂Ic(X)− dopt(X)}

∣∣∣∣2 = o(1). (S.20)

Similarly, we can show V (d̂Ic)− V (dopt) is uniformly integrable and hence by (S.9),∣∣∣EV (d̂Ic)− EV (dopt)
∣∣∣ = ∣∣∣EV̂DI(d̂Ic)− EV̂DI(d

opt)
∣∣∣ = o(n−1/2). (S.21)

Combing (S.21) with Cauchy-Schwarz inequality, we obtain that

E
∣∣∣√n{V̂DI(d̂Ic)− V̂DI(d

opt)}
∣∣∣2

≤ 2E
∣∣∣√n{V̂DI(d̂Ic)− EV̂DI(d̂Ic)− V̂DI(d

opt) + EV̂DI(d
opt)}

∣∣∣2
+ 2n

∣∣∣EV̂DI(d̂Ic)− EV̂DI(d
opt)
∣∣∣2 ≤ 2

n

∑
i∈I

Var(ηi) +
4

n

∑
i̸=j

cov(ηi, ηj) + o(1),(S.22)
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where

ηi =

(
Ai

π(Xi)
− 1− Ai

1− π(Xi)

)
Yi{d̂Ic(Xi)− dopt(Xi)}.

Notice that conditional on d̂Ic , ηi and ηj are independent for i, j ∈ I, i ̸= j. This implies

4

n

∑
i ̸=j

cov(ηi, ηj) =
4

n

∑
i̸=j

Ecov(ηi, ηj|d̂Ic) = 0.

In view of (S.20) and (S.22), we obtain

E
∣∣∣√n{V̂DI(d̂Ic)− V̂DI(d

opt)}
∣∣∣2 ≤ 2

n

∑
i∈I

Var(ηi) + o(1) = 2Var(η1) + o(1) ≤ 2Eη21 + o(1) = o(1).

By Chebyshev’s inequality, this implies

|
√
n{V̂DI(d̂Ic)− V̂DI(d

opt)}| P→ 0,

and hence

|
√
n{V̂DIj(d̂Ic

j
)− V̂DIj(d

opt)}| P→ 0, (S.23)

for j = 1, 2.

Similarly, we can show∣∣∣∣∣∣ 1n
∑
i∈Ij

(
Ai

πi
− 1− Ai

1− πi

)2

Y 2
i {1− d̂Ic

j
(Xi)}2 −

1

n

∑
i∈Ij

(
Ai

πi
− 1− Ai

1− πi

)2

Y 2
i {1− dopt(Xi)}2

∣∣∣∣∣∣ P→ 0,

which together with (S.23) implies that∣∣∣σ̂2
Ij(d̂Ic

j
)− σ̂2

Ij(d
opt)
∣∣∣ P→ 0,

for j = 1, 2. This immediately implies that∣∣∣σ̂Ij(d̂Ic
j
)− σ̂Ij(d

opt)
∣∣∣ ≤

(∣∣∣σ̂Ij(d̂Ic
j
)− σ̂Ij(d

opt)
∣∣∣ ∣∣∣σ̂Ij(d̂Ic

j
) + σ̂Ij(d

opt)
∣∣∣)1/2

=
(∣∣∣σ̂2

Ij(d̂Ic
j
)− σ̂2

Ij(d
opt)
∣∣∣)1/2 P→ 0. (S.24)
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Similar to (S.14), we can show

∣∣σ̂Ij(dopt)− σ0
∣∣ P→ 0. (S.25)

This together with (S.24) and the condition lim infn σ0 > 0 implies that there exists some

constant c̄ > 0 such that

Pr(∪j=1,2σ̂Ij(d̂Ic
j
) > c̄) → 1, Pr(∪j=1,2σ̂Ij(d

opt) > c̄) → 1. (S.26)

Since δn → 0, we have

Pr
(
max(σ̂Ij(d̂Ic

j
), δn) = σ̂Ij(d̂Ic

j
)
)
→ 1,

for j = 1, 2. This further implies

Pr(T̂CV > zα/2) = Pr

{
max

(√
nV̂DI1(d̂I2)

σ̂I1(d̂I2)
,

√
nV̂DI2(d̂I1)

σ̂I2(d̂I1)

)
> zα/2

}
+ o(1). (S.27)

Besides, under (A3) and the condition E|Y 3| = O(1), we have

Var
(√

nV̂DIj(d
opt)
)

= σ2
0 ≤ E

(
A

π(X)
− 1− A

1− π(X)

)2

Y 2

≤

(
E

∣∣∣∣ A

π(X)
− 1− A

1− π(X)

∣∣∣∣3 |Y |3
)2/3

= O(1).

By Chebyshev’s inequality, we obtain
√
n{V̂DIj(d

opt)−EV̂DIj(d
opt)} = Op(1). By assump-

tion, we have
√
nEV̂DIj(d

opt) =
√
nhn = O(1). Therefore, we obtain

√
nV̂DIj(d

opt) = Op(1), (S.28)

for j = 1, 2.

It follows from (S.23), (S.24), (S.26) and (S.28) that∣∣∣∣∣
√
nV̂DIj(d̂Ic

j
)

σ̂Ij(d̂Ic
j
)

−
√
nV̂DIj(d

opt)

σ̂Ij(d
opt)

∣∣∣∣∣ ≤
∣∣∣∣∣
√
n{V̂DIj(d

opt)− V̂DIj(d̂Ic
j
)}

σ̂Ij(d̂Ic
j
)

∣∣∣∣∣
+

√
n
∣∣∣V̂DIj(d

opt)
∣∣∣ ∣∣∣∣∣ σ̂Ij(d̂Ic

j
)− σ̂Ij(d

opt)

σ̂Ij(d̂Ic
j
)σ̂Ij(d

opt)

∣∣∣∣∣ = op(1), (S.29)
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for j = 1, 2.

Besides, it follows from (S.25), and the conditions lim infn σ0 > 0,
√
nhn = O(1) that

√
nhn

σ̂Ij(d
opt)

−
√
nhn
σ0

P→ 0.

This together with (S.29) implies that∣∣∣∣∣
√
nV̂DIj(d̂Ic

j
)

σ̂Ij(d̂Ic
j
)

−
√
n{V̂DIj(d

opt)− EV̂DIj(d
opt)}

σ̂Ij(d
opt)

−
√
nhn
σ0

∣∣∣∣∣ P→ 0. (S.30)

For any random variables V1, V2, V3, V4, we have

|max(V1, V2)−max(V3, V4)| = |max(0, V2 − V1)−max(0, V4 − V3) + V1 − V3|

≤ |V1 − V3|+ |max(0, V2 − V1)−max(0, V4 − V3)| ≤ |V1 − V3|+ |V2 − V1 − V4 + V3|

≤ 2|V1 − V3|+ |V2 − V4|.

Therefore, it follows from (S.29) that∣∣∣∣∣max

(√
n{V̂DI1(d

opt)− EV̂DI1(d
opt)}

σ̂I1(d
opt)

+

√
nhn
σ0

,

√
n{V̂DI2(d

opt)− EV̂DI2(d
opt)}

σ̂I2(d
opt)

+

√
nhn
σ0

)

− max

(√
nV̂DI1(d̂I2)

σ̂I1(d̂I2)
,

√
nV̂DI2(d̂I1)

σ̂I2(d̂I1)

)∣∣∣∣∣ P→ 0.

For any ε > 0, this together with (S.27) gives

Pr

(
max

(√
n{V̂DI1(d

opt)− EV̂DI1(d
opt)}

σ̂I1(d
opt)

,

√
n{V̂DI2(d

opt)− EV̂DI2(d
opt)}

σ̂I2(d
opt)

)

> zα/2 − ε−
√
nhn
σ0

)
≤ Pr(T̂CV > zα/2) + o(1), (S.31)

and

Pr

(
max

(√
n{V̂DI1(d

opt)− EV̂DI1(d
opt)}

σ̂I1(d
opt)

,

√
n{V̂DI2(d

opt)− EV̂DI2(d
opt)}

σ̂I2(d
opt)

)

> zα/2 + ε−
√
nhn
σ0

)
≥ Pr(T̂CV > zα/2) + o(1). (S.32)
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Since {Oi}i∈I1 and {Oi}i∈I2 are independent, we have,

Pr

(
max

(√
n{V̂DI1(d

opt)− EV̂DI1(d
opt)}

σ̂I1(d
opt)

,

√
n{V̂DI2(d

opt)− EV̂DI2(d
opt)}

σ̂I2(d
opt)

)

> zα/2 + ε−
√
nhn
σ0

)
= 2Pr

(√
n{V̂DI1(d

opt)− EV̂DI1(d
opt)}

σ̂I1(d
opt)

> zα/2 + ε−
√
nhn
σ0

)

−Pr2

(√
n{V̂DI(d

opt)− EV̂DI(d
opt)}

σ̂I(dopt)
> zα/2 + ε−

√
nhn
σ0

)
,

for a simple random sample I of size n.

Assume for now, we have for any |ε| ≤ 1,

Pr

(√
n{V̂DI1(d

opt)− EV̂DI1(d
opt)}

σ̂I1(d
opt)

> zα/2 + ε−
√
nhn
σ0

)

= Φ̄

(
zα/2 + ε−

√
nhn
σ0

)
+ o(1), (S.33)

where the little-o term is uniform in ε. In view of (S.31) and (S.32), we have

Pr(T̂CV > zα/2) ≤ 2Φ̄

(
zα/2 + ε−

√
nhn
σ0

)
− Φ̄2

(
zα/2 + ε−

√
nhn
σ0

)
+ o(1),

and

Pr(T̂CV > zα/2) ≥ 2Φ̄

(
zα/2 − ε−

√
nhn
σ0

)
− Φ̄2

(
zα/2 − ε−

√
nhn
σ0

)
+ o(1),

for any 0 < ε ≤ 1. Let ε→ 0, we obtain

Pr(T̂CV > zα/2) = 2Φ̄

(
zα/2 −

√
nhn
σ0

)
− Φ̄2

(
zα/2 −

√
nhn
σ0

)
+ o(1).

This gives the asymptotic power function of T̂CV . Therefore, it remains to show (S.33).

Similar to (S.5), we can show LHS of (S.33) is equal to

Pr(V > c̄(α, n, ε, hn)),
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where V is the self-normalized sum
√
nζ̄I1/{

∑
i∈I1 ζ

2
i /n} where

ζi =

(
Ai

π(Xi)
− 1− Ai

1− π(Xi)

)
Yi{1− dopt(Xi)} − E

(
A1

π(X1)
− 1− A1

1− π(X1)

)
Y1{1− dopt(X1)},

ζ̄ =
∑

i∈I1 ζ
2
i /n, and

c̄(α, n, ε, hn) =

√
(n− 1)/n(zα/2 + ε+

√
nhn/σ0)√

1 + (n− 1)(zα/2 + ε+
√
nhn/σ0)/n2

.

Under the condition lim infn σ0 > 0,
√
nhn = O(1), c̄(α, n, ε, hn) is equivalent to zα/2 + ε+

√
nhn/σ0. Moreover, it follows from Theorem 7.4 in Peña et al. (2008) that

Pr(V > c̄(α, n, ε, hn) | I1) = Φ̄(c̄(α, n, ε, hn)) +O(1)

(
1√
nσ3

0

)
,

where the O(1) term is bounded by an absolute constant. Therefore, we have

Pr(V > c̄(α, n, ε, hn)) = Φ̄(c̄(α, n, ε, hn)) + o(1) = Φ̄(zα/2 + ε+
√
nhn/σ0) + o(1).

This proves (S.33). The proof is hence completed.

D.4 Proof of Theorem 3.4

D.4.1 Consistency of the test

Recall that h∗n = V (doptS∗
)− V (1). We first show

Pr
(
T̂SRP > zα/2

)
→ 1,

when h∗n ≫ max(
√
logB/

√
n, n−r0/2

√
log n). By definition, it suffices to show that

Pr

( √
nV̂DI1(d̂

SI2
I2 )

max(σ̂I1(d̂
SI2
I2 ), δn)

> zα/2

)
→ 1.

Similar to the proof of Theorem 3.2, it suffices to show that with probability tending to 1,

VD(d̂
SI2
I2 ) ≫ max(n−1/2

√
logB, n−r0/2

√
log n). (S.34)

According to Algorithm 2, we generate S1, S2, . . . , SB according as S0. Let {I(k)
j }Kk=1
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be a partition of Ij for j = 1, 2, and let I(k)−
j be the subset of Ij excluding I(k)

j . For any

k = 1, . . . ,K, it follows from Lemma A.2 in Chernozhukov et al. (2014) that for every t > 0,

we have

Pr

{
B

max
b=1

∣∣∣∣n(V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VD(d̂Sb

I(k)−
2

)

)∣∣∣∣
≥ 2E

∣∣∣∣n(V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VD(d̂Sb

I(k)−
2

)

)∣∣∣∣+ t | {Sb}Bb=1, {Oi}i∈I(k)−
2

}
≤ exp

(
− t2

3nσ2

)
+

C0n

t3
E

{
B

max
b=1

∣∣∣∣ A

π(X)
− 1− A

1− π(X)

∣∣∣∣3 |Y |3
∣∣∣∣1− d̂Sb

I(k)−
2

(X)

∣∣∣∣3|{Sb}Bb=1, {Oi}i∈I(k)−
2

}
,

for some universal constant C0 > 0, where

σ2 = E

{(
A

π(X)
− 1− A

1− π(X)

)2

Y 2

∣∣∣∣1− d̂Sb

I(k)−
2

(X)

∣∣∣∣2|{Sb}Bb=1, {Oi}i∈I(k)−
2

}
.

Under (A3) and the condition E|Y |3 = O(1), we have

E

(
A

π(X)
− 1− A

1− π(X)

)2

Y 2 ≤

{
E

∣∣∣∣ A

π(X)
− 1− A

1− π(X)

∣∣∣∣3 |Y |3
}2/3

= O(1).

This implies

σ2 = O(1), (S.35)

where the big-O term is independent of {Sb}Bb=1 and {Oi}i∈I(k)−
2

. In addition,

E

{
B

max
b=1

∣∣∣∣ A

π(X)
− 1− A

1− π(X)

∣∣∣∣3 |Y |3
∣∣∣∣1− d̂Sb

I(k)−
2

(X)

∣∣∣∣3 | {Sb}Bb=1, {Oi}i∈I(k)−
2

}

≤ E

∣∣∣∣ A

π(X)
− 1− A

1− π(X)

∣∣∣∣3 |Y |3 = O(1),

where the big-O term is independent of {Sb}Bb=1 and {Oi}i∈I(k)−
2

. Therefore, we obtain

Pr

{
B

max
b=1

∣∣∣∣n(V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VD(d̂Sb

I(k)−
2

)

)∣∣∣∣ ≥ 2E

∣∣∣∣n(V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VD(d̂Sb

I(k)−
2

)

)∣∣∣∣+ t

}
≤ exp

(
−C1t

2/n
)
+
C2n

t3
,(S.36)
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for some constant C1, C2 > 0.

Moreover, it follows from (S.35) and Lemma A3 in Chernozhukov et al. (2014) that

E

{
B

max
b=1

∣∣∣∣n(V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VD(d̂Sb

I(k)−
2

)

)∣∣∣∣ | {Sb}Bb=1, {Oi}i∈I(k)−
2

}
≤ C3(σ

√
n logB +

√
EM2 logB) ≤ C4(

√
n logB +

√
EM2 logB), (S.37)

where C4 is some universal constant and

M = max
i∈I(k)

2

B
max
b=1

∣∣∣∣(Ai

πi
− 1− Ai

1− πi

)
Yi{1− d̂Sb

I(k)
2

(Xi)}
∣∣∣∣ .

Under (A3) and the condition E|Y |3 = O(1), we have

EM2 ≤ E
n

max
i=1

∣∣∣∣(Ai

πi
− 1− Ai

1− πi

)
Yi

∣∣∣∣2 ≤ E

{
n

max
i=1

∣∣∣∣(Ai

πi
− 1− Ai

1− πi

)
Yi

∣∣∣∣3
}2/3

≤ E

{
n∑

i=1

∣∣∣∣(Ai

πi
− 1− Ai

1− πi

)
Yi

∣∣∣∣3
}2/3

≤ C5n
2/3,

for some constant C5 > 0. Combining this together with (S.37), we obtain

E

{
B

max
b=1

∣∣∣∣n(V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VD(d̂Sb

I(k)−
2

)

)∣∣∣∣ | {Sb}Bb=1, {Oi}i∈I(k)−
2

}
≤ C6(n

1/3 logB + n1/2
√

logB) ≤ 2C6n
1/2
√
logB,

for some constant C6 > 0, since logB = o(n1/3). Therefore, we obtain

E
B

max
b=1

∣∣∣∣n(V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VD(d̂Sb

I(k)−
2

)

)∣∣∣∣ ≤ 2C6n
1/2
√
logB.

Combining this together with (S.36), we obtain

Pr

{
B

max
b=1

∣∣∣∣n(V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VD(d̂Sb

I(k)−
2

)

)∣∣∣∣ ≥ 4C6n
1/2
√
logB + t

}
≤ exp

(
−C1t

2

n

)
+
C2n

t3
, (S.38)

Condition (A5) requires B → ∞. Take t = n1/2
√
logB in (S.38), we obtain that with
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probability tending to 1,

B
max
b=1

∣∣∣∣n(V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VD(d̂Sb

I(k)−
2

)

)∣∣∣∣ ≤ C7n
1/2
√

logB,

for some constant C7 > 0. Define

A(2)
0 =

{
K

max
k=1

B
max
b=1

∣∣∣∣n(V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VD(d̂Sb

I(k)−
2

)

)∣∣∣∣ ≤ C7n
1/2
√
logB

}
.

Since K is fixed, by Bonferroni’s inequality, we obtain

Pr
(
A(2)

0

)
≥

K∑
k=1

Pr

{
B

max
b=1

∣∣∣∣n(V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VD(d̂Sb

I(k)−
2

)

)∣∣∣∣ ≤ C7n
1/2
√
logB

}
→ 1.(S.39)

Below, we show

BPr
{
dτ (S0, S

∗) ≤ cnn
−1/2

}
→ ∞, (S.40)

for some sequence cn → 0, where S∗ in defined in Condition (A5). Notice that q, s are

fixed. By (9), it suffices to show

BPr

(
q∑

j=1

∥S(j)
0 − S∗(j)∥22 ≤ s2qc∗nn

−1

)
→ ∞, (S.41)

for some sequence c∗n → 0. By definition, ∥S∗(j)∥2 = 1, ∥S∗(j)∥0 ≤ s, ∀j = 1, . . . , q. Let M∗
j

be the support of S∗(j). According to Algorithm 2, we have

q∑
j=1

∥S(j) − S∗(j)∥22 =
q∑

j=1

∥∥∥∥ gj
∥gj∥2

− S
∗(j)
Mj

∥∥∥∥2
2

+

q∑
j=1

∥S∗(j)
M∗

j∩Mc
j
∥22.

Notice that

Pr

(
q∩

j=1

{M∗
j ⊆ Mj}

)
=

1(
p
s

)q ≥ 1

psq
. (S.42)

Under the event defined in (S.42), we have

q∑
j=1

∥S(j) − S∗(j)∥22 =
q∑

j=1

∥∥∥∥ gj
∥gj∥2

− S
∗(j)
Mj

∥∥∥∥2
2

. (S.43)
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The random vector gj/∥gj∥2 follows a uniform distribution on the unit sphere. By Equation

(4.11) in Fang et al. (1990), we have

q∑
j=1

∥∥∥∥ gj
∥gj∥2

− S
∗(j)
Mj

∥∥∥∥2
2

d
=

q∑
j=1

∥∥∥∥∥∥ gj
∥gj∥2

− (0, 0, . . . , 0︸ ︷︷ ︸
s−1

, 1)T

∥∥∥∥∥∥
2

2

. (S.44)

Consider the variable transformation:

gj
∥gj∥2

= {cos(Θ1), sin(Θ1) cos(Θ2), · · · ,
s−2∏
i=1

sin(Θi) cos(Θs−1),
s−1∏
i=1

sin(Θi)}T ,

for 0 ≤ Θi ≤ π, ∀1 ≤ i ≤ s− 2 and 0 ≤ Θs−1 ≤ 2π. Notice that∣∣∣∣∣
k−1∏
i=1

sin(Θi) cos(Θj)

∣∣∣∣∣ ≤ | cos(Θj)| =
∣∣∣sin(π

2
−Θj

)∣∣∣ ≤ ∣∣∣π
2
−Θj

∣∣∣ , ∀1 ≤ k ≤ s− 1,

and ∣∣∣∣∣
s−1∏
i=1

sin(Θi)− 1

∣∣∣∣∣ ≤
s−1∑
k=1

∣∣∣∣∣
k∏

i=1

sin(Θi)−
k−1∏
i=1

sin(Θi−1)

∣∣∣∣∣ ≤
s−1∑
k=1

|sin(Θk)− 1|

=
s−1∑
k=1

∣∣∣cos(π
2
−Θk

)
− 1
∣∣∣ = 2

s−1∑
k=1

sin2

(
π

4
− Θk

2

)
≤ 2

s−1∑
k=1

sin

∣∣∣∣π4 − Θk

2

∣∣∣∣ ≤ s−1∑
k=1

∣∣∣π
2
−Θk

∣∣∣ .
Since s is bounded, it follows from Equation (4.15) in Fang et al. (1990) that the density

function of Θ1,Θ2, . . . ,Θs−1 around π/2 are bounded from below. In addition, these s− 1

random variables are independent. By (S.44), we have

Pr

(
q∩

j=1

{∥∥∥∥ gj
∥gj∥2

− S
∗(j)
Mj

∥∥∥∥
2

≤ s
√
c∗n√
n

})
= Prq

({∥∥∥∥ gj
∥gj∥2

− S
∗(j)
Mj

∥∥∥∥
2

≤ s
√
c∗n√
n

})

≥ Prq

(
s−1∩
i=1

∣∣∣π
2
−Θi

∣∣∣ ≤ √
c∗n√
n

)
≥ c̄∗∗

(
c∗n
n

)q(s−1)/2

,

for some constant c̄∗∗ > 0. This together with (S.43) and (S.42) yields that

Pr

(
q∑

j=1

∥S(j) − S∗(j)∥22 ≤
qs2c∗n
n

)
≥ c̄∗∗c

∗q(s−1)/2
n

(p
√
n)q(s−1)

.

Therefore, it is immediate to see (S.41) holds with proper choice of c∗n when the number of
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sketching matrix B satisfies B ≫ (p
√
n)q(s−1). Thus, (S.40) is also satisfied.

For any x > 0, we have 1− x ≤ exp(−x). Given (S.40), we have

Pr

(
B

min
b=1

dτ (Sb, S
∗) > cnn

−1/2

)
=
{
Pr
(
dτ (S0, S

∗) > cnn
−1/2

)}B
=

[
1−

{
Pr
(
dτ (S0, S

∗) ≤ cnn
−1/2

)}]B ≤ exp
{
−BPr

(
dτ (S0, S

∗) ≤ cnn
−1/2

)}
→ 0.

This implies that with probability tending to 1, we have

Pr

{
B

min
b=1

EX
∣∣τSb(SbX)− τS

∗
(S∗X)

∣∣2 ≤ c2n/n

}
→ 1. (S.45)

Notice that cn → 0, we obtain that

Pr

{
B

min
b=1

EX
∣∣τSb(SbX)− τS

∗
(S∗X)

∣∣2 = o
(
n−1
)}

→ 1. (S.46)

Besides, for any sketching matrix S, we have

|VD(doptS∗ )− VD(doptS )| = |Eτ(X){I(τS∗
(S∗X) > 0)− I(τS(SX) > 0)}|

≤ |EτS∗
(S∗X)I(τS

∗
(S∗X) > 0)− EτS(SX)I(τS(SX) > 0)|

≤ |Emax(τS
∗
(S∗X), 0)− Emax(τS(SX), 0)| ≤ E|max(τS

∗
(S∗X), 0)−max(τS(SX), 0)|

≤ E|τS∗
(S∗X)− τS(SX)| ≤

√
E|τS∗(S∗X)− τS(SX)|2.

In view of (S.46), this implies Pr(A(2)
1 ) → 1 where

A(2)
1 =

{
B

max
b=1

VD(doptSb
)− VD(doptS∗ ) = o(n−1/2)

}
. (S.47)

For any k = 1, . . . ,K, the number of observations in I(k)−2 , i.e, |I(k)−2 | satisfies |I(k)−2 | ≥

(K− 1)n/K ≥ n/2. Thus, it follows from Condition (A4) that

Pr

{
B

max
b=1

EX

∣∣∣∣τ̂Sb

I(k)−
2

(SbX)− τSb(SbX)

∣∣∣∣2 = O(n−r0 log n)

}
→ 1,

for any 1 ≤ k ≤ K. Since K is fixed, it follows Bonferroni’s inequality that

Pr

{
K

max
k=1

B
max
b=1

EX

∣∣∣∣τ̂Sb

I(k)−
2

(SbX)− τSb(SbX)

∣∣∣∣2 = O(n−r0 log n)

}
→ 1. (S.48)
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Notice that for any sketching matrix S, we have

VD(doptS )− VD(d̂S
I(k)−
2

) = EXτS(SX)
{
I
(
τS(SX) > 0

)
− I

(
τ̂S
I(k)−
2

(SX) > 0
)}

≤ EXτS(SX)I
(∣∣∣τ̂SI(k)−

2

(SX)− τS(SX)
∣∣∣ ≥ ∣∣τS(SX)

∣∣)
≤ EX

∣∣∣τ̂SI(k)−
2

(SX)− τS(SX)
∣∣∣ ≤

√
EX

∣∣∣∣τ̂SI(k)−
2

(SX)− τS(SX)

∣∣∣∣2,
where the first inequality is due to the fact that for any a, b ∈ R, if I(a > 0) ̸= I(b > 0),

then we have |a− b| ≥ |a|, and the second inequality is due to Markov’s inequality.

Under the event defined in (S.48), we have Pr(A(2)
2 ) → 1 where

A(2)
2 =

{
K

max
k=1

B
max
b=1

∣∣∣∣VD(doptSb
)− VD(d̂Sb

I(k)−
2

)

∣∣∣∣ = O(n−r0/2
√

log n)

}
. (S.49)

Let b̂ = argmaxBb=1

∑K
k=1 V̂DI(k)

2
(d̂Sb

I(k)−
2

)/K. We have Sb̂ = SI2 . With some calculation,

we can show that

K
(
VD(doptSI2

)− VD(doptS∗ )
)

(S.50)

≥
K∑

k=1

(
VD(d̂

SI2

I(k)−
2

)− VD(doptS∗ )

)
−K K

max
k=1

B
max
b=1

∣∣∣∣VD(doptSb
)− VD(d̂Sb

I(k)−
2

)

∣∣∣∣︸ ︷︷ ︸
I1

≥
K∑

k=1

(
V̂DI(k)

2
(d̂

SI2

I(k)−
2

)− VD(doptS∗ )

)
−

K∑
k=1

(
V̂DI(k)

2
(d̂

SI2

I(k)−
2

)− VDI(k)
2
(d̂

SI2

I(k)−
2

)

)
−KI1

≥ B
max
b=1

K∑
k=1

(
V̂DI(k)

2
(d̂Sb

I(k)−
2

)− VD(doptS∗ )

)
−K K

max
k=1

B
max
b=1

∣∣∣∣V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VDI(k)
2
(d̂Sb

I(k)−
2

)

∣∣∣∣−KI1

≥ B
max
b=1

K∑
k=1

(
VD(d̂Sb

I(k)−
2

)− VD(doptS∗ )

)
− 2K K

max
k=1

B
max
b=1

∣∣∣∣V̂DI(k)
2
(d̂Sb

I(k)−
2

)− VDI(k)
2
(d̂Sb

I(k)−
2

)

∣∣∣∣︸ ︷︷ ︸
I2

−KI1

≥ B
max
b=1

K∑
k=1

(
VD(doptSb

)− VD(doptS∗ )
)
−KI1 − 2KI2 −K K

max
k=1

B
max
b=1

∣∣∣∣VD(doptSb
)− VD(d̂Sb

I(k)−
2

)

∣∣∣∣ ,
Since Pr(A(2)

0 ∩ A(2)
1 ∩ A(2)

2 ) → 1, with probability tending to 1, we have

V (doptSI2
)− V (doptS∗ ) = O(

√
logB/

√
n+ n−r0/2

√
log n). (S.51)
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Under the given conditions, we have that VD(doptS∗ ) ≫ n−r0/2
√
log n+

√
logB/

√
n. This

together with (S.51) implies that

Pr

(
VD(doptSI2

) ≫ n−r0/2
√

log n+

√
logB√
n

)
≥ Pr

(
VD(doptSI2

) ≥ 1

2
VD(doptS∗ )

)
→ 1. (S.52)

In addition, similar to (S.49), we can show that

Pr
{

B
max
b=1

∣∣∣VD(doptSb
)− VD(d̂Sb

I2)
∣∣∣ = O(n−r0/2

√
log n)

}
,

and hence

Pr
(∣∣∣VD(doptSI2

)− VD(d̂
SI2
I2 )

∣∣∣ = O(n−r0/2
√

log n+ n−1/2
√
logB)

)
→ 1.

This together with (S.52) implies (S.34).

D.4.2 Asymptotic power function

We now derive the asymptotic distribution of our proposed test in the regular cases where

Pr(τ(X) = 0) = 0. By (7), we have

Eτ(X){I(τ(X) > 0)− I(τS
∗
(S∗X) > 0)},

where S∗ is defined in (S.45). Notice that τ(X){I(τ(X) > 0)− I(τS
∗
(S∗X) > 0)} ≥ 0, for

any realization of X. Thus, we have τ(X){I(τ(X) > 0) − I(τS
∗
(S∗X) > 0)} = 0, almost

surely. In the regular cases, this further implies

I(τ(X) > 0) = I(τS
∗
(S∗X) > 0), (S.53)

almost surely.

Notice that n−1/2
√
logB → 0, n−r0 log n → 0. By Condition (A6), the following event

holds with probability tending to 1,

Pr(0 < |τSI2 (SI2X)| < t) = O(tγ), ∀0 < t ≤ δ0. (S.54)

Since r0 > (2 + γ)/(2 + 2γ), similar to Theorem 8 in Luedtke and van der Laan (2016),
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we can show that

Pr(A(2)
3 ) → 1, (S.55)

where

A(2)
3 =

{∣∣∣VD(doptSI2
)− VD(d̂

SI2
I2 )

∣∣∣ = o(n−1/2)
}
.

Similarly, we have

Pr

{
K

max
k=1

∣∣∣∣VD(doptSI2
)− VD(d̂

SI2

I(k)−
2

)

∣∣∣∣ = o(n−1/2)

}
→ 1. (S.56)

Combining (S.55) with (S.51), we obtain that with probability tending to 1,

EXτ(X){I(τS∗
(S∗X) > 0)− d̂

SI2
I2 (X)} ≤ εn,

for some sequence εn → 0. In view of (S.53), we have

EXτ(X){I(τ(X) > 0)− d̂
SI2
I2 (X)} ≤ εn,

with probability tending to 1. Since τ(X){I(τ(X) > 0)−I(τSI2 (SI2X) > 0)} is nonnegative

for any realization of X, we obtain

EX |τ(X)||dopt(X)− d̂
SI2
I2 (X)| ≤ εn,

or equivalently,

EX |τ(X)||doptS∗ (X)− d̂
SI2
I2 (X)| ≤ εn, (S.57)

with probability tending to 1. Under the event defined in (S.57), we have

EX |τ(X)|I(|τ(X)| ≥ ε1/(1+γ)
n )|doptS∗ (X)− d̂

SI2
I2 (X)| ≤ εn,

and hence

EX |doptS∗ (X)− d̂
SI2
I2 (X)|I(|τ(X)| ≥ ε1/(1+γ)

n ) ≤ εγ/(1+γ)
n . (S.58)
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By (A5), τ(X) also satisfies the margin condition. In the regular cases, we have Pr(|τ(X)| ≤

ε
1/(1+γ)
n ) = O(ε

γ/(1+γ)
n ). Therefore,

EX |doptS∗ (X)− d̂
SI2
I2 (X)|I(|τ(X)| ≤ ε1/(1+γ)

n ) = O(εγ/(1+γ)
n ).

This together with (S.58) yields

EX |doptS∗ (X)− d̂
SI2
I2 (X)| = O(εγ/(1+γ)

n ), (S.59)

with probability tending to 1. To summarize, we’ve shown

Pr
(
EX
∣∣∣d̂SI2

I2 (X)− doptS∗ (X)
∣∣∣ = o(1)

)
→ 1. (S.60)

Similarly we can show

Pr
(
EX
∣∣∣d̂SI1

I1 (X)− doptS∗ (X)
∣∣∣ = o(1)

)
→ 1. (S.61)

Assume for now, we’ve shown

Pr
(
VD(d̂

SIj
Ij )− VD(doptS∗ ) = o(n−1/2)

)
→ 1, (S.62)

for j = 1, 2. Using similar arguments in the proof of Theorem 3.2, it follows from (S.60)-

(S.62) and the conditions
√
nhn =

√
nVD(dopt) = O(1), lim infn σ

2
0 > 0 that T̂SRP is

equivalent to

max

(√
nV̂DI1(d

opt
S∗ )

σ̂I1(d
opt
S∗ )

,

√
nV̂DI2(d

opt
S∗ )

σ̂I2(d
opt
S∗ )

)
.

The limiting distribution therefore follows from the central limit theorem for the self-

normalized sums.

It remains to show (S.62). By (S.55), it suffices to show that with probability tending

to 1,

VD(doptSI2
) = VD(doptS∗ ) + o(n−1/2), (S.63)
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for some S∗ ∈ S∗. Define b0 to be the smallest element in [1, . . . , B] such that

EX
∣∣τSb0 (Sb0X)− τS

∗
(S∗X)

∣∣2 ≤ c2n/n.

Under the event defined in the LHS of (S.45), b0 is well defined. Similar to (S.46)-(S.47),

we can show that with probability tending to 1,

VD(doptSb0
) = VD(doptS∗ ) + o(n−1/2). (S.64)

In addition, similar to (S.56), we have

Pr

{
K

max
k=1

∣∣∣∣VD(doptSb0
)− VD(d̂

Sb0

I(k)−
2

)

∣∣∣∣ = o(n−1/2)

}
→ 1.

This together with (S.64) yields

K∑
k=1

VD(d̂
Sb0

I(k)−
2

) = KVD(doptS∗ ) + o(n−1/2), (S.65)

with probability tending to 1.

Under the event in (S.65), we have

K∑
k=1

(
VD(d̂

SI2

I(k)−
2

)− VD(doptS∗ )

)
(S.66)

≥
K∑

k=1

(
VD(d̂

SI2

I(k)−
2

)− VD(d̂
Sb0

I(k)−
2

)

)
−K K

max
k=1

∣∣∣∣VD(doptS∗ )− VD(d̂
Sb0

I(k)−
2

)

∣∣∣∣︸ ︷︷ ︸
I3

≥ B
max
b=1

K∑
k=1

(
V̂D(d̂Sb

I(k)−
2

)− V̂D(d̂
Sb0

I(k)−
2

)

)
−KI3 − 2KI2

≥ −KI3 − 2KI2 = O
(√

logB/
√
n
)
= O(

√
log n/

√
n),

where the last equality is due to the condition that B = O(nκB) for some κB > 0. Similar

to (S.59), we can show that with probability tending to 1,

K
max
k=1

EX

∣∣∣∣d̂SI2

I(k)−
2

(X)− doptS∗ (X)

∣∣∣∣ = O

(
logκ0 n

nκ0

)
, (S.67)

where κ0 = γ/(2 + 2γ).
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Define ϕn = (n log n)1/3, we have that

Pr

{
n

max
i=1

∣∣∣∣( Ai

π(Xi)
− 1− Ai

1− π(Xi)

)
Yi

∣∣∣∣ > ϕn

}
≤

n∑
i=1

Pr

{∣∣∣∣( A1

π(X1)
− 1− A1

1− π(X1)

)
Y1

∣∣∣∣ > ϕn

}
≤ n

1

ϕ3
n

E

∣∣∣∣( A1

π(X1)
− 1− A1

1− π(X1)

)
Y1

∣∣∣∣3 = o(1),

where the first inequality is due to Bonferroni’s inequality, the second inequality is due

to Markov’s inequality, the last equality is due to (A3) and the condition E|Y |3 = O(1).

Hence, we obtain Pr (A5) → 1, where

A5 =

{
n

max
i=1

∣∣∣∣( Ai

π(Xi)
− 1− Ai

1− π(Xi)

)
Yi

∣∣∣∣ ≤ ϕn

}
.

Let Zi = [(1−Ai)/{1−π(Xi)}−Ai/π(Xi)]YiI(|[(1−Ai)/{1−π(Xi)}−Ai/π(Xi)]Yi| ≤

ϕn). It follows from Bernstein’s inequality that conditional on {Sb}Bb=1 and {Oi}i∈I(k)−
2

, for

any tb,k > 0,

B
max
b=1

Pr


∣∣∣∣∣∣∣
∑
i∈I(k)

2

(
Zi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)} − EZi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)}
)∣∣∣∣∣∣∣ > tb,k


≤ exp

(
−

t2b,k/2

|I(k)
2 |σ2

b,k +Mb,ktb,k/3

)
,

where

σ2
b,k = Var

(
Z{d̂Sb

I(k)−
2

(X)− doptS∗ (X)} | Sb, {Oi}i∈I(k)−
2

)
,

Mb,k = max
i

|Zi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)} − EZi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)}|.

Similar to (S.19), we can show

σ2
b,k ≤ E

(
Z2{d̂Sb

I(k)−
2

(X)− doptS∗ (X)}2 | Sb, {Oi}i∈I(k)−
2

)
≤ E

{(
A

π(X)
− 1− A

1− π(X)

)2

Y 2{d̂Sb

I(k)−
2

(X)− doptS∗ (X)}2 | Sb, {Oi}i∈I(k)−
2

}

≤ c̄

(
EX

∣∣∣∣d̂Sb

I(k)−
2

(X)− doptS∗ (X)

∣∣∣∣)1/3

,
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for some constant c̄ > 0.

Besides, by the definition of Zi, we have |Mb,k| ≤ maxi |Zi|+Emaxi |Zi| ≤ 2ϕn. There-

fore, we obtain that conditional on {Sb}Bb=1 and {Oi}i∈I(k)−
2

,

B
max
b=1

Pr


∣∣∣∣∣∣∣
∑
i∈I(k)

2

(
Zi{d̂Sb

I(k)−
2

(SbXi)− doptS∗ (S∗Xi)} − EZi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)}
)∣∣∣∣∣∣∣ > tb,k


≤ exp

−
t2b,k/2

c̄n(K− 1)

(
EX

∣∣∣∣d̂Sb

I(k)−
2

(X)− doptS∗ (X)

∣∣∣∣)1/3

/K+ 2ϕntb,k/3

 .

Let

tb,k = 4max

[{
EX

∣∣∣∣d̂Sb

I(k)−
2

(X)− doptS∗ (X)

∣∣∣∣}1/6√
c̄n(K− 1)(logB)/K, 4ϕn(logB)/3

]
.

We have that

t2b,k/2 ≥ 8 logB × c̄n(K− 1)

(
EX

∣∣∣∣d̂Sb

I(k)−
2

(X)− doptS∗ (X)

∣∣∣∣)1/3

/K,

t2b,k/2 ≥ 4 logB × 2ϕntb,k/3.

Therefore,

t2b,k/2

c̄n(K− 1)EX

∣∣∣∣d̂Sb

I(k)−
2

(X)− doptS∗ (X)

∣∣∣∣ /K+ 2ϕntb,k/3

≥ 2 logB.

Therefore, we have that conditional on {Sb}Bb=1 and {Oi}i∈I(k)−
2

,

B
max
b=1

Pr


∣∣∣∣∣∣∣
∑
i∈I(k)

2

(
Zi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)} − EZi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)}
)∣∣∣∣∣∣∣ > tb,k


≤ exp (−2 logB) =

1

B2
.
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It follows from Bonferroni’s inequality that conditional on {Sb}Bb=1 and {Oi}i∈I(k)−
2

,

Pr

 B∪
b=1


∣∣∣∣∣∣∣
∑
i∈I(k)

2

(
Zi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)} − EZi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)}
)∣∣∣∣∣∣∣ > tb,k




≤ B
B

max
b=1

Pr


∣∣∣∣∣∣∣
∑
i∈I(k)

2

(
Zi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)} − EZi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)}
)∣∣∣∣∣∣∣ > tb,k


≤ 1

B
→ 0.

Since the probability bound 1/B is independent of {Sb}Bb=1 and {Oi}i∈I(k)−
2

. The above

inequality also holds marginally. Note that K is fixed. By Bonferroni’s inequality, we

obtain that Pr(A(2)
6 ) → 1, where

A(2)
6 =

B∩
b=1

K∩
k=1


∣∣∣∣∣∣∣
∑
i∈I(k)

2

(
Zi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)} − EZi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)}
)∣∣∣∣∣∣∣ ≤ tb,k

 .

It follows from Markov’s inequality and the definition of ϕn that∣∣∣∣EZi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)} − VD(d̂Sb

I(k)−
2

) + VD(doptS∗ )

∣∣∣∣
≤ E

∣∣∣∣( Ai

π(Xi)
− 1− Ai

1− π(Xi)

)
Yi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)}I
{∣∣∣∣( Ai

π(Xi)
− 1− Ai

1− π(Xi)

)
Yi

∣∣∣∣ > ϕn

}∣∣∣∣
≤ E

∣∣∣∣( Ai

π(Xi)
− 1− Ai

1− π(Xi)

)
Yi

∣∣∣∣ I {∣∣∣∣( Ai

π(Xi)
− 1− Ai

1− π(Xi)

)
Yi

∣∣∣∣ > ϕn

}
≤ 1

ϕ2
n

E

∣∣∣∣( Ai

π(Xi)
− 1− Ai

1− π(Xi)

)
Yi

∣∣∣∣3 = o(n−1/2).

Since Pr(A(2)
6 ) → 1, we obtain Pr(A(2)

7 ) → 1, where

A(2)
7 =

B∩
b=1

K∩
k=1


∣∣∣∣∣∣∣
∑
i∈I(k)

2

(
Zi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)} − VD(d̂Sb

I(k)−
2

) + VD(doptS∗ )

)∣∣∣∣∣∣∣ ≤ tb,k + o(
√
n)

 .

Under the event defined inA5, we have that Zi = [(1−Ai)/{1−π(Xi)}−Ai/π(Xi)]YiI(|[(1−
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Ai)/{1− π(Xi)} − Ai/π(Xi)]Yi and hence∑
i∈I(k)

2

Zi{d̂Sb

I(k)−
2

(Xi)− doptS∗ (Xi)} =
n

K

{
V̂DI(k)

2

(
d̂Sb

I(k)−
2

)
− V̂DI(k)

2

(
doptS∗

)}
.

Therefore, with probability tending to 1, we have that for any b = 1, . . . , B and k =

1, . . . ,K,∣∣∣∣ nK
{
V̂DI(k)

2

(
d̂Sb

I(k)−
2

)
− V̂DI(k)

2

(
doptS∗

)
− VD

(
d̂Sb

I(k)−
2

)
+VD

(
doptS∗

)}∣∣∣∣ ≤ tb,k + o(1)
√
n,

and hence,∣∣∣∣∣n
K∑

k=1

{
V̂DI(k)

2

(
d̂Sb

I(k)−
2

)
− V̂DI(k)

2

(
doptS∗

)
− VD

(
d̂Sb

I(k)−
2

)
+VD

(
doptS∗

)}∣∣∣∣∣ ≤ K
∑
k

tb,k + o(1)
√
n,

for b = 1, . . . , B. Define the above event to be A(2)
8 . When it holds, we have∣∣∣∣∣n

K∑
k=1

{
V̂DI(k)

2

(
d̂
SI2

I(k)−
2

)
− V̂DI(k)

2

(
doptS∗

)
− VD

(
d̂
SI2

I(k)−
2

)
+VD

(
doptS∗

)}∣∣∣∣∣ ≤ K
∑
k

tb̂,k + o(
√
n).

It follows from (S.67) and the condition B = O(nκB) that we have with probability tending

to 1,

max
k

|tb̂,k|/
√
n = O

(
n−κ0/6 logκ0/6+1/2 n

)
+O

(
ϕn log n√

n

)
.

Notice that the above expression is o(1). Therefore, we obtain that with probability tending

to 1,∣∣∣∣∣n
K∑

k=1

{
V̂DI(k)

2

(
d̂
SI2

I(k)−
2

)
− V̂DI(k)

2

(
doptS∗

)
− VD

(
d̂
SI2

I(k)−
2

)
+VD

(
doptS∗

)}∣∣∣∣∣ = o(
√
n). (S.68)

Recall that b0 is the smallest element in [1, . . . , B] such that

EX
∣∣τSb0 (Sb0X)− τS

∗
(S∗X)

∣∣2 ≤ c2n/n.
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Similar to (S.68), we can show that with probability tending to 1,

n

K∑
k=1

{
V̂DI(k)

2

(
d̂
Sb0

I(k)−
2

)
− V̂DI(k)

2

(
doptS∗

)
− VD

(
d̂
Sb0

I(k)−
2

)
+VD

(
doptS∗

)}
= o(

√
n).

In view of (S.68), we have with probability tending to 1 that

n
K∑

k=1

{
V̂DI(k)

2

(
d̂
Sb0

I(k)−
2

)
− V̂DI(k)

2

(
d̂
SI2

I(k)−
2

)
− VD

(
d̂
Sb0

I(k)−
2

)
+VD

(
d̂
SI2

I(k)−
2

)}
= o(

√
n).

By definition, we have

n
K∑

k=1

V̂DI(k)
2

(
d̂
Sb0

I(k)−
2

)
≤ n

K∑
k=1

V̂DI(k)
2

(
d̂
SI2

I(k)−
2

)
.

Therefore, we obtain that with probability tending to 1,

n
K∑

k=1

VD

(
d̂
Sb0

I(k)−
2

)
≤ n

K∑
k=1

VD

(
d̂
SI2

I(k)−
2

)
+ o(

√
n),

which together with (S.65) implies that with probability tending to 1, we have

nKVD
(
doptS∗

)
≤ n

K∑
k=1

VD

(
d̂
SI2

I(k)−
2

)
+ o(

√
n). (S.69)

Under the events defined in (S.56) and (S.69), we have that,

VD
(
doptS∗

)
≤ VD

(
doptSI2

)
+ o(

√
n).

Since VD
(
doptS∗

)
≥ VD

(
doptSI2

)
, this implies that with probability tending to 1,

VD
(
doptS∗

)
= VD

(
doptSI2

)
+ o(

√
n).

Now, it follows from (S.55) that

Pr
{
VD

(
doptS∗

)
= VD

(
d̂
SI2
I2

)
+ o(

√
n)
}
→ 1,

and hence

Pr
{
VD

(
doptS∗

)
= VD

(
d̂
SI2
I2

)
+ o(

√
n)
}
→ 1,
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Similarly, we can show that

Pr
{
VD

(
doptS∗

)
= VD

(
d̂
SI1
I1

)
+ o(

√
n)
}
→ 1.

This proves (S.62). The proof is thus completed.
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E Additional simulation results

E.1 Dependent covariates

Table S.1: Rejection probabilities (%) of the sparse random projection-based test, dense random
projection-based test, penalized least square-based test, step-wise selection-based test and the supremum-
type test based on the desparsified Lasso estimator, with standard errors in parenthesis (%), under Scenarios
1 and 2 where X ∼ N(0, {0.5|i−j|}i,j=1,...,p).

Scenario 1 VD = 0 VD = 30% VD = 50% VD = 70%

α level α level α level α level
p 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

T̂ dr
SRP

50 0.2(0.2) 0.2(0.2) 9.4(1.3) 18(1.7) 39.4(2.2) 50.8(2.2) 63.4(2.2) 73.2(2)
100 0(0) 0(0) 7(1.1) 16.2(1.6) 37.2(2.2) 51.2(2.2) 64(2.1) 74.2(2)

T̂ dr
RP

50 0(0) 0(0) 0(0) 0.2(0.2) 0(0) 0.4(0.3) 0.2(0.2) 1.4(0.5)
100 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0.8(0.4)

T̂PLS
50 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
100 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

T̂V S
50 0(0) 0(0) 0.4(0.3) 1(0.4) 2.4(0.7) 5.4(1) 5.6(1) 12.2(1.5)
100 0(0) 0(0) 0.2(0.2) 0.6(0.3) 1.2(0.5) 3.2(0.8) 4.2(0.9) 9.4(1.3)

T̂DL
50 4.8(1) 14.6(1.6) 4.8(1) 14.2(1.6) 5.4(1) 14.6(1.6) 5.6(1) 15.2(1.6)
100 5.2(1) 20.6(1.8) 6.6(1.1) 20.4(1.8) 7(1.1) 21(1.8) 7.6(1.2) 20.2(1.8)

Scenario 2 VD = 0 VD = 30% VD = 50% VD = 70%

α level α level α level α level
p 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

T̂ dr
SRP

50 1(0.4) 5.4(1) 32.8(2.1) 46(2.2) 61(2.2) 71.4(2) 67(2.1) 76.8(1.9)
100 0.8(0.4) 5.8(1) 26.2(2) 37(2.2) 54.8(2.2) 64.2(2.1) 61.6(2.2) 71.2(2)

T̂ dr
RP

50 1(0.4) 5.6(1) 1(0.4) 5.6(1) 1.4(0.5) 7(1.1) 1.8(0.6) 6(1.1)
100 0.8(0.4) 5.6(1) 0.8(0.4) 6.6(1.1) 0.8(0.4) 6.4(1.1) 0.8(0.4) 5(1)

T̂PLS
50 1(0.4) 4.8(1) 2(0.6) 6(1.1) 1.6(0.6) 7(1.1) 1.6(0.6) 7.4(1.2)
100 1.6(0.6) 6.8(1.1) 1.8(0.6) 7.2(1.2) 2.6(0.7) 6.6(1.1) 2.4(0.7) 7(1.1)

T̂V S
50 1.8(0.6) 6.8(1.1) 1(0.4) 7.2(1.2) 0.8(0.4) 6.6(1.1) 1.2(0.5) 6.2(1.1)
100 0.8(0.4) 5(1) 1.4(0.5) 5.6(1) 1.0(0.4) 4.2(0.9) 0.2(0.2) 4.6(0.9)

T̂DL
50 0.8(0.4) 4.8(1) 4.2(0.9) 12.8(1.5) 5.2(1) 14.8(1.6) 5.4(1) 14.4(1.6)
100 0.8(0.4) 4.4(0.9) 4.2(0.9) 15.2(1.6) 5.8(1) 17.8(1.7) 7.2(1.2) 18.2(1.7)

In this section, we examine the performance of the proposed test under the setting where

covariates are dependent. Reported in Table S.1 and S.2 are the rejection probabilities of

T̂ dr
SRP , T̂

dr
RP , T̂PLS, T̂V S and T̂DL where X ∼ N(0, {0.5|i−j|}i,j=1,...,p). Similar to the results

reported in Table 1 and Table S.2, our proposed test in much more powerful than other

competing tests under Scenarios 1 and 2 where the OITR is sparse and nonlinear. In

Scenario 3 where the OITR is sparse and linear, the rejection probabilities of our test are

slightly smaller than when compared to T̂PLS, T̂DL and T̂V S, but are much larger than those

of T̂ dr
RP . In the last scenario, the rejection probabilities of T̂DL are much smaller than other

test statistics. Our proposed test achieves the greatest power in nearly all settings.
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Table S.2: Rejection probabilities (%) of the sparse random projection-based test, dense random
projection-based test, penalized least square-based test, step-wise selection-based test and the supremum-
type test based on the desparsified Lasso estimator, with standard errors in parenthesis (%), under Scenarios
3 and 4 where X ∼ N(0, {0.5|i−j|}i,j=1,...,p).

Scenario 3 VD = 30% VD = 50% VD = 70%

α level α level α level
p 0.01 0.05 0.01 0.05 0.01 0.05

T̂ dr
SRP

50 79.8(1.8) 94(1.1) 95.4(0.9) 99.4(0.3) 98.2(0.6) 99.8(0.2)
100 74(2) 92(1.2) 94.4(1) 98.8(0.5) 97.6(0.7) 99.6(0.3)

T̂ dr
RP

50 31.8(2.1) 60(2.2) 48.8(2.2) 77.2(1.9) 55.2(2.2) 84.2(1.6)
100 12.8(1.5) 34.6(2.1) 27.8(2) 54.6(2.2) 29.8(2) 63.8(2.1)

T̂PLS
50 92(1.2) 98.2(0.6) 97.8(0.7) 100(0) 99(0.4) 100(0)
100 92.4(1.2) 98.8(0.5) 98(0.6) 100(0) 99(0.4) 100(0)

T̂V S
50 86.2(1.5) 97.6(0.7) 98.2(0.6) 99.8(0.2) 99.2(0.4) 100(0)
100 81(1.8) 96.2(0.9) 96(0.9) 99.8(0.2) 98.4(0.6) 99.8(0.2)

T̂DL
50 97.4(0.7) 100(0) 99.8(0.2) 100(0) 100(0) 100(0)
100 98.4(0.6) 100(0) 99.6(0.3) 100(0) 99.6(0.3) 100(0)

Scenario 4 VD = 30% VD = 50% VD = 70%

α level α level α level
p 0.01 0.05 0.01 0.05 0.01 0.05

T̂ dr
SRP

50 66.2(2.1) 89.4(1.4) 87.8(1.5) 98.4(0.6) 94(1.1) 99.2(0.4)
100 59.6(2.2) 85.8(1.6) 87.4(1.5) 98.4(0.6) 94.6(1) 99.6(0.3)

T̂ dr
RP

50 44.8(2.2) 75.8(1.9) 60.4(2.2) 84.4(1.6) 68.4(2.1) 90(1.3)
100 42.4(2.2) 74.4(2) 57.6(2.2) 82.6(1.7) 62.4(2.2) 87.6(1.5)

T̂ dr
PLS

50 54.6(2.2) 80.2(1.8) 67.4(2.1) 86.4(1.5) 72.4(2) 92(1.2)
100 71.6(2) 89.8(1.4) 64(2.1) 88.4(1.4) 71.6(2) 89.8(1.4)

T̂ dr
V S

50 61(2.2) 84(1.6) 73.4(2) 93.4(1.1) 76.2(1.9) 92.2(1.2)
100 50.6(2.2) 80.4(1.8) 65.2(2.1) 89.6(1.4) 66.8(2.1) 89.2(1.4)

T̂ dr
DL

50 3(0.8) 11.6(1.4) 4.2(0.9) 14(1.6) 4.6(0.9) 12(1.5)
100 3.6(0.8) 11.8(1.4) 4(0.9) 12.8(1.5) 3.6(0.8) 13.8(1.5)

E.2 Choice of q

In this section, we examine the finite sample performance of the proposed test with different

choices of the projected dimension q. We use the same model described in Section 4.1, i.e,

Y = 1 + (X(1) −X(2))/2 + Aτ(X) + e,

where X ∼ N(0, Ip), A ∼ Binom(1, 0.5) and e ∼ N(0, 0.52). We set q = 50 and N = 600.

Consider the following three scenarios. In the first scenario, we set

τ(X) = δ

{(
X(1) +X(2)

√
2

)2

−
(
X(3) +X(4)

√
2

)2
}(∑9

j=5X
(j)

√
5

)2

,
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for some δ ≥ 0. In the last two scenarios, we set

τ(X) = δ

(∑m
j=1X

(j)

√
m

)(∑m+5
j=m+1X

(j)

√
5

)2

,

for some δ ≥ 0 and some positive integer m. More specifically, we set m = 15 in Scenario 2

and m = 30 in Scenario 3. Notice that the total number of variables involved in the OITR

under Scenarios 1, 2 and 3 equals 4, 15 and 30, respectively.

As in Section 4.1, the parameter δ controls the degree of overall qualitative treatment

effects. When δ = 0, the null hypothesis holds. Otherwise, the alternative holds. In each

scenario, we consider four cases by setting VD(dopt) = 0, 0.3, 0.5 and 0.7. In all three

scenarios, the settings for VD(dopt) = 0 are the same. Hence, in Scenarios 2 and 3, we only

report the simulation results for VD(dopt) = 0.3, 0.5 and 0.7.

We further consider four settings, corresponding to four choices of q. In the first three

settings, we set q = 1, 2 and 3, respectively. In the last setting, we adaptively choose q

when sampling SIj . Specifically, for b = 1, . . . , B, we first sample q uniformly from the set

{1, . . . , Q}, then sample s according as the random variable s0 = 2+Binom(p−2, 2/(p−2)),

and finally sample Sb according to Step 3 of Algorithm 2. We then output the sparse

sketching matrix that maximizes the estimated value difference function. For completeness,

we summarize the whole procedure for generating sparse sketching matrix in Algorithm 3.

Here, in Step 2(i) of Algorithm 3, we set Q = 3. In all four settings, we set B = 5 × 105

and estimate the projected contrast function as described in Section 3.3.2 and Section 4.1.

Results are reported in Table S.3 and S.4. It can be seen that the type-I error rates of

all the four test statistics are well controlled. The powers of our tests vary across different

choices of q. In Scenario 1 where the OITR involves 4 variables, the test with q = 1 is

much powerful than those with q = 2 and 3. In Scenarios 2 and 3 where more than 15

variables are involved in the OITR, the rejection probabilities of the tests with q = 2 and

3 are much larger than those with q = 1.

In addition, the proposed adaptive method performs no worse than any fixed choice of

q. In Scenarios 2 and 3, the test with adaptively chosen q achieves the greatest power in

nearly all cases. In Scenario 1, when VD = 0.3 and 0.5, the adaptive test has comparable

45



performance with the test with q = 2. When VD=0.7, it achieves greater power when

compared to the tests with q = 2 and 3.

Algorithm 3. Generate data-dependent sparse random sketching matrix with adaptively
chosen q.

1. Input observations {Oi}i∈I , integers B, and K ≥ 2.
2. Generate i.i.d matrices S1, S2, . . . , SB according as S0 whose distribution is

described as follows.
(i) Uniformly sample q from the set {1, . . . , Q}.
(ii) Sample s according as the random variable 2 + Binom(p− 2, 2/(p− 2)).
(iii) For j = 1, . . . , q,
(iii.1) Independently select a simple random sample Mj of size s from {1, . . . , p};
(iii.2) Independently generate a Gaussian random vector gj ∼ N(0, Is);

(iii.3) Set S
(j)
0,Mc

j
= 0 and S

(j)
0,Mj

= gj/∥gj∥2.
3. Randomly divide I into K subsets {I(k)}Kk=1 of equal sizes. Let I(k)− = I ∩ (I(k))c.
4. For b = 1, . . . , B,

(i) For k = 1, . . . ,K,
(i.1) Obtain the estimator τ̂Sb

I(k)− and d̂Sb

I(k)−(x) = I{τ̂Sb

I(k)−(Sbx) > 0};
(i.2) Evaluate the value difference V̂DI(k)(d̂Sb

I(k)−).

(ii) Obtain the cross-validated estimator V̂D
Sb

CV =
∑

k V̂DI(k)(d̂Sb

I(k)−)/K.

5. Output Sb̂, where b̂ = argmaxBb=1 V̂D
Sb

CV .

Table S.3: Rejection probabilities (%) of the sparse random projection-based test with different choices
of q, with standard errors in parenthesis, under Scenario 1.

VD = 0 VD = 30% VD = 50% VD = 70%

α level 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

q = 1 0.4(0.3) 4.8(1) 16.4(1.7) 33.8(2.1) 31.6(2.1) 57(2.2) 45.6(2.2) 72.2(2)
q = 2 0.8(0.4) 2.8(0.7) 9(1.3) 23(1.9) 22(1.9) 44.8(2.2) 29.6(2) 57.6(2.2)
q = 3 0.6(0.3) 5(1) 7.8(1.2) 19.2(1.8) 15.2(1.6) 36.2(2.1) 24.4(1.9) 47.4(2.2)

adaptive q 0.2(0.2) 3.6(0.8) 8.8(1.3) 21.6(1.8) 23.8(1.9) 43(2.2) 35.4(2.1) 62.2(2.2)
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Table S.4: Rejection probabilities (%) of the sparse random projection-based test with different choices
of q, with standard errors in parenthesis, under Scenarios 2 and 3.

VD = 30% VD = 50% VD = 70%

α level 0.01 0.05 0.01 0.05 0.01 0.05

Scenario 2

q = 1 11.2(1.4) 25.8(2) 19.4(1.8) 45.6(2.2) 26(2) 53.4(2.2)
q = 2 15.6(1.6) 29.4(2) 23.8(1.9) 51.8(2.2) 30.6(2.1) 59(2.2)
q = 3 14.6(1.6) 34.2(2.1) 21.8(1.8) 47.2(2.2) 30.4(2.1) 56.4(2.2)

adaptive q 14.6(1.6) 35.6(2.1) 20.6(1.8) 50.6(2.2) 31(2.1) 60.2(2.2)

Scenario 3

α level 0.01 0.05 0.01 0.05 0.01 0.05

q = 1 5.4(1) 16.8(1.7) 9.4(1.3) 26.2(2) 9.6(1.3) 27.6(2)
q = 2 6(1.1) 25.8(2) 12.6(1.5) 33.6(2.1) 15.2(1.6) 36.2(2.1)
q = 3 8.2(1.2) 21.4(1.8) 12.2(1.5) 37.8(2.2) 15.4(1.6) 40.2(2.2)

adaptive q 8.2(1.2) 26.6(2) 13.2(1.5) 33.8(2.1) 17(1.7) 36.6(2.2)
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