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A Technical details

Proof of Theorem 3.3. From (3.4), (3.6) we obtain the representation

m−3/2Ũ(bmrc, bmsc, bmtc) = m−3/2(bmtc − bmsc)(bmsc − bmrc)
(
θ̂
bmsc
bmr+1c − θ̂

bmtc
bmsc+1

)
=
bmtc − bmsc

m3/2

bmsc∑
i=bmrc+1

IF(Xi, F, θ)−
bmsc − bmrc

m3/2

bmtc∑
t=bmsc+1

IF(Xi, F, θ)

+
(bmtc − bmsc)(bmsc − bmrc)

m3/2

(
Rbmrc+1,bmsc −Rbmsc+1,bmtc

)
.
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By Assumption 3.1 we have

{bmtc − bmsc
m3/2

bmsc∑
i=bmrc+1

IF(Xi, F, θ)−
bmsc − bmrc

m3/2

bmtc∑
i=bmsc+1

IF(Xi, F, θ)
}

(r,s,t)∈∆3

D
=⇒ Σ

1/2
F

{(
t− s

)(
W (s)−W (r)

)
−
(
s− r

)(
W (t)−W (s)

)}
(r,s,t)∈∆3

= Σ
1/2
F

{
B(s, t) +B(r, s)−B(r, t)

}
(r,s,t)∈∆3

,

where we use the definition of the process B in (3.11) and the fact

sup
(s,t)∈∆2

∣∣∣bmtc − bmsc
m

− (t− s)
∣∣∣ ≤ 2

m
= o(1) .

Finally, Assumption 3.2 yields

(bmtc − bmsc)(bmsc − bmrc)
m3/2

(
Rbmrc+1,bmsc −Rbmsc+1,bmtc

)
= op(1) ,

uniformly with respect to (r, s, t) ∈ ∆3 so that the proof of Theorem 3.3 is finished by

Slutsky’s Theorem.

Proof of Corollary 3.5. Define

Dm(k) = m−3 k−1
max
j=0
|U>(m+ j,m+ k)Σ−1

F U(m+ j,m+ k)| . (A.1)

Using the fact, that the detection scheme {Dm(bmtc)}t∈[0,T ] is piecewise constant (with

respect to t) and the monotonicity of the threshold function we obtain the representation

Tm
max
k=1

Dm(k)

w(k/m)
= sup

t∈[0,T ]

Dm(bmtc)
w(t)

= sup
t∈[1,T+1]

sup
s∈[1,t]

m−3
∣∣U>(bmsc, bmtc)Σ−1

F U(bmsc, bmtc)
∣∣

w(t− 1)
.

By Remark 3.4 and the continuous mapping theorem we have

Tm
max
k=1

Dm(k)

w(k/m)

D
=⇒ sup

t∈[1,T+1]

sup
s∈[1,t]

B(s, t)>B(s, t)

w(t− 1)
,
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where the process B is defined in (3.11). The result now follows from Remark 3.4, the fact,

that w has a lower bound and that Σ̂m is a consistent estimate of the matrix ΣF , which

implies (observing the definition of D̂ in (A.1))∣∣∣ Tm
max
k=1

Dm(k)

w(k/m)
− Tm

max
k=1

D̂m(k)

w(k/m)

∣∣∣ ≤ Tm
max
k=1

∣∣Dm(k)− D̂m(k)
∣∣

≤ ‖Σ̂−1
m − Σ−1

F ‖op sup
t∈[1,T+1]

sup
s∈[1,t]

|m−3/2U(bmsc, bmtc)|2

= oP(1) .

Here ‖·‖op denotes the operator norm and we have used the estimate ‖Σ̂−1
m −Σ−1

F ‖op = oP(1),

which is a consequence of the Continuous Mapping Theorem.

Proof of Theorem 3.8. By the definition of the statistic D̂ in (2.9), we obtain

Tm
max
k=0

D̂m(k)

w(k/m)
≥ m−3

∣∣U>(bmcc,m(T + 1))Σ̂−1
m U(bmcc,m(T + 1)

∣∣
w(T )

, (A.2)

where bmcc denotes the (unknown) location of the change. We can apply expansion (3.4)

to X1, . . . , Xbmcc and Xbmcc+1, . . . , XbmT c and obtain

m−3/2U(bmcc,m(T + 1)) =
bmcc

(
m(T + 1)− bmcc

)
m3/2

(
θ̂
bmcc
1 − θ̂m(T+1)

bmcc+1

)
=
m(T + 1)− bmcc

m3/2

bmcc∑
i=1

IF(Xi, F
(1), θF (1))

− bmcc
m3/2

m(T+1)∑
i=bmcc+1

IF(Xi, F
(2), θF (2))

+
bmcc

(
m(T + 1)− bmcc

)
m3/2

(
θF (1) − θF (2) +R

(F (1))
1,bmcc −R

(F (2))
bmcc+1,m(T+1)

)
,

where θF (`) = θ(F (`)) (` = 1, 2). Using Assumption 3.6 we obtain the joint convergence of

1

m3/2

(m(T + 1)− bmcc
)∑bmcc

i=1 IF(Xi, F
(1), θF (1))

bmcc
∑m(T+1)

i=bmcc+1 IF(Xi, F
(2), θF (2))

 D
=⇒

 (T + 1− c)
√

ΣF (1)W1(c)

c
√

ΣF (2)

(
W2(T + 1)−W2(c)

)
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and

bmccm(T + 1)

m3/2

(
R

(F (1))
1,bmcc −R

(F (2))
bmcc+1,m(T+1)

)
P

=⇒ 0 .

As θF (1) 6= θF (2) this directly implies m−3/2|U(bmcc,m(T + 1))| P
=⇒ ∞ , and the assertion

follows from (A.2) and the assumption that Σ̂m is a consistent estimate for ΣF (1) .

Proof of Theorem 3.10. Recalling the definition of Ũ and U in (3.6) and (3.7), respec-

tively, we obtain for the normalizing process V in (3.19) the representation

m−4V(bmsc, bmtc) = m−4

bmsc∑
j=1

j2(bmsc − j)2
(
θ̂j1 − θ̂

bmsc
j+1

)(
θ̂j1 − θ̂

bmsc
j+1

)>
+m−4

bmtc∑
j=bmsc+1

(bmtc − j)2(j − bmsc)2
(
θ̂jbmsc+1 − θ̂

bmtc
j+1

)(
θ̂jbmsc+1 − θ̂

bmtc
j+1

)>
= m−4

bmsc∑
j=1

U(j, bmsc)U>(j, bmsc)

+m−4

bmtc∑
j=bmsc+1

Ũ(bmsc, j, bmtc)Ũ>(bmsc, j, bmtc)

= m−3

∫ s

0

U(bmrc, bmsc)U>(bmrc, bmsc)dr

+m−3

∫ t

s

Ũ(bmsc, bmrc, bmtc)Ũ>(bmsc, bmrc, bmtc)dr .

By Theorem 3.3 we have

{
m−3/2Ũm(bmrc, bmsc, bmtc)

}
(r,s,t)∈∆3

D
=⇒ Σ

1/2
F

{
B(s, t) +B(r, s)−B(r, t)

}
(r,s,t)∈∆3

(A.3)

in the space `∞(∆3,Rp), where the process B is defined in (3.11). Consequently, the
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Continuous Mapping Theorem yields in the space `∞(∆2 ∩ [1, T + 1]2,Rp × Rp×p)

{( m−3/2 · U(bmsc, bmtc)

m−4 · V(bmsc, bmtc)

)}
(s,t)∈∆2

D
=⇒

{( Σ
1/2
F B(s, t)

Σ
1/2
F

(
N1(s) +N2(s, t)

)
Σ

1/2
F

)}
(s,t)∈∆2

,

(A.4)

where N1, N2 are defined in (3.22). Now the assertion of Theorem 3.10 follows by a further

application of the Continuous Mapping Theorem using that Σ
1/2
F

(
N1(s) + N2(s, t)

)
Σ

1/2
F is

positive definite for s > 0 with probability one.

Proof of Theorem 3.11. By definition of the self-normalized statistic D̂SN in (3.20), we

obtain

Tm
max
k=0

D̂SN
m (k)

w(k/m)
≥ m ·

∣∣U>(bmcc,m(T + 1))V−1(bmcc,m(T + 1))U(bmcc,m(T + 1)
∣∣

w(T )
,

(A.5)

where bmcc denotes the (unknown) location of the change. The discussion in the proof of

Theorem 3.8 shows

m−3/2U(bmcc,m(T + 1))
P

=⇒∞ .

The proof will be completed by inspecting the random variable V−1(bmcc,m(T +1)) in the

lower bound in (A.5). Repeating again the arguments from the proof of Theorem 3.3 we

can rewrite

m−4 · V(bmcc,m(T + 1)) = m−3

∫ c

0

U(bmrc, bmsc)U>(bmrc, bmsc)dr

+m−3

∫ T+1

c

Ũ(bmsc, bmrc, bmtc)Ũ>(bmsc, bmrc, bmtc)dr .

(A.6)
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Using Assumption 3.6 and employing the arguments from the proof of Theorem 3.3 we

obtain weak convergence of {U(bmrc, bmsc)}0≤r≤s≤c

{Ũ(bmsc, bmrc, bmtc)}c≤s≤r≤t≤T+1

 D
=⇒

 {B(1)(r, s)}0≤r≤s≤c

{B(2)(r, t) +B(2)(s, r)−B(2)(s, t)}c≤s≤r≤t≤T+1

 ,

where we use the extra definition

B(`)(s, t) = tW`(s)− sW`(t) ` = 1, 2

and W1 and W2 are defined in Assumption 3.6. By the Continuous Mapping Theorem and

the representation in (A.6) this implies

m−4 · V(bmcc,m(T + 1))
D

=⇒ Σ
1/2

F (1)

(
N

(1)
1 (c)

)
Σ

1/2

F (2) + Σ
1/2

F (2)

(
N

(2)
2 (c, T + 1)

)
Σ

1/2

F (2) ,

where the processes N
(1)
1 and N

(2)
2 are distributed like N1 and N2 in (3.22) but with respect

to the processes B(1) and B(2), respectively.

Proof of Proposition 4.2. For the sake of readability, we will give the proof only for the

case d = 2. The arguments presented here can be easily extended to higher dimension. In

view of the representation in (4.12), we may also assume without loss of generality that

µ = E[Xt] = 0.

Part (a) of the proposition is a consequence of the discussion after Corollary 3.5 pro-

vided that Assumptions 3.1 and 3.2 can be established. For this purpose we introduce the

notation

Zt := IFv(Xt, F, V ) =


X2
t,1 − E[X2

t,1]

Xt,1Xt,2 − E[Xt,1Xt,2]

X2
t,2 − E[X2

t,2]


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and note that the time series {Zt}t∈Z can be represented as a physical system, that is

Zt =


g2

1(εt, . . . )− E[X2
1,1]

g1(εt, . . . )g2(εt, . . . )− E[X1,1X1,2]

g2
2(εt, . . . )− E[X2

1,2]

 := G(εt, εt−1, . . . ) , (A.7)

where gi denotes the i-th component of the function g in (4.1). In view of definition (4.2)

introduce the notation

X ′t = g(εt, εt−1, . . . , ε1, ε
′
0, ε−1, . . . ) .

The corresponding physical dependence coefficients δZt,2 in (4.2) are then given by

δZt,2 =
∥∥∥√(X2

t,1 − (X ′t,1)2)2 + (X2
t,2 − (X ′t,2)2)2 + (Xt,1Xt,2 −X ′t,1X ′t,2)2

∥∥∥
2

≤ ‖X2
t,1 − (X ′t,1)2‖2 + ‖X2

t,2 − (X ′t,2)2‖2 + ‖Xt,1Xt,2 −X ′t,1X ′t,2‖2

≤ 3 ·max
{
‖X2

t,1 − (X ′t,1)2‖2 , ‖X2
t,2 − (X ′t,2)2‖2 , ‖Xt,1Xt,2 −X ′t,1X ′t,2‖2

}
,

where we used the inequality
√
a+ b ≤

√
a +
√
b for a, b > 0. Now Hölder’s inequality

yields for an appropriate constant C

‖X2
t,1 − (X ′t,1)2‖2 ≤ ‖Xt,1 +X ′t,1‖4‖Xt,1 −X ′t,1‖4 ≤ C · δt,4 ,

‖Xt,1Xt,2 −X ′t,1X ′t,2‖2 ≤
∥∥Xt,1

(
Xt,2 −X ′t,2

)∥∥
2

+
∥∥X ′t,2(Xt,1 −X ′t,1

)∥∥
2

≤
∥∥Xt,1

∥∥
4

∥∥Xt,2 −X ′t,2
∥∥

4
+
∥∥X ′t,2∥∥4

∥∥Xt,1 −X ′t,1
∥∥

4
≤ C · δ(1)

t,4 .

Combining these results gives
∑∞

t=1 δ
Z
t,2 ≤ C · Θ(1)

4 < ∞ and Theorem 3 from Wu (2005)

implies the weak convergence

1√
m

bmsc∑
t=1

IFv(Xt, F, V ) =
1√
m

bmsc∑
t=1

Zt
D

=⇒
√

ΣFW (s)

in the space `∞([0, T +1],R3) as m→∞, where ΣF is the long-run variance matrix defined

in (3.3). Therefore Assumption 3.1 is satisfied.
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To finish part (a) it remains to show that Assumption 3.2 holds. Due to (4.14) this is a

consequence of

sup
1≤i<j≤n

1√
j − i+ 1

∣∣∣ j∑
t=i

Xt,` − E[Xt,`]
∣∣∣ = oP(n1/4) (A.8)

for ` = 1, 2, 3. Since the arguments are exactly the same, we will only elaborate the case

` = 1. For this purpose let

Si =
i∑
t=1

Xt,1 − E[Xt,1] ,

and note that the left-hand side of (A.8) can be rewritten as

max
1≤j≤n

max
1≤k≤n−j

1√
k
|Sj+k − Sj| = max

{
max
1≤j≤n

max
1≤k≤n−j

1√
k

(Sj+k − Sj) ,

max
1≤j≤n

max
1≤k≤n−j

−1√
k

(Sj+k − Sj)
}
.

Thus it suffices to show that both terms inside the (outer) maximum are of order oP(n1/4) .

For the sake of brevity, we will only prove that

max
1≤j≤n

max
1≤k≤n−j

1√
k

(Sj+k − Sj) = oP(n1/4) (A.9)

and the other term can be treated in the same way. Assertion (A.9) follows obviously from

the two estimates

max
1≤j≤n

max
1≤k≤(n−j)∧blog2(n)c

Sj+k − Sj√
kn1/4

= oP(1) , (A.10)

max
1≤j≤n

max
blog2(n)c≤k≤n−j

Sj+k − Sj√
kn1/4

= oP(1) . (A.11)

Since the function g is bounded, one directly obtains that there exists a constant C such

that |Xj,1 − E[Xj,1]| ≤ C. This gives∣∣∣∣ max
1≤j≤n

max
1≤k≤(n−j)∧blog2(n)c

Sj+k − Sj√
kn1/4

∣∣∣∣ ≤ max
1≤j≤n

max
1≤k≤(n−j)∧blog2(n)c

√
kC

n1/4
= o(1)
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and so (A.10) is shown. To establish (A.11) we will use Corollary 1 from Wu and Zhou

(2011), which implies, that (on a richer probability space) there exists a process {Ši}ni=1

and a Gaussian process {Ǧi}ni=1, such that

(Š1, . . . , Šn)
D
= (S1, . . . , Sn) and max

1≤i≤n
|Ši − Ǧi| = OP

(
n1/4(log n)3/2

)
.

Additionally, (again on a richer probability space) there exists another Gaussian process

{Ĝi}ni=1 such that

(Ǧ1, . . . , Ǧn)
D
= (Ĝ1, . . . , Ĝn) and max

1≤i≤n
|Ĝi −Gi| = OP

(
n1/4(log n)3/2

)
,

where the process G is given by

{Gi}ni=1 =
{ i∑

t=1

Yt

}n
i=1

,

with i.i.d. Gaussian distributed random variables Y1, . . . , Yn ∼ N (0, (Γ(g))1,1)
)

with Γ(g)

defined in (4.4). Therefore we obtain∣∣∣∣ max
1≤j≤n

max
blog2(n)c≤k≤n−j

Šj+k − Šj√
kn1/4

− max
1≤j≤n

max
blog2(n)c≤k≤n−j

Ǧj+k − Ǧj√
kn1/4

∣∣∣∣
≤ max

1≤j≤n
max

blog2(n)c≤k≤n−j

∣∣∣∣ Šj+k − Šj − Ǧj+k + Ǧj√
kn1/4

∣∣∣∣ ≤ 2 max
1≤j≤n

|Šj − Ǧj|
log2(n)n1/4

= oP(1)

and by the same arguments∣∣∣∣ max
1≤j≤n

max
blog2(n)c≤k≤n−j

Ĝj+k − Ĝj√
kn1/4

− max
1≤j≤n

max
blog2(n)c≤k≤n−j

Gj+k −Gj√
kn1/4

∣∣∣∣ = oP(1) .

Now Theorem 1 in Shao (1995) gives

lim
n→∞

max
1≤j≤n

max
blog2(n)c≤k≤n−j

Gj+k −Gj√
kn1/4

= 0

with probability 1, which completes the proof of Part (a).
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For a proof of part (b) of Proposition 4.2 let F (1), ΣF (1) and F (2), ΣF (2) denote the distri-

bution function and corresponding long-run variances in equation (3.18) before and after

the change point, respectively. Note that h = A · g and consider the time series

X̃t =

g(εt, εt−1, . . . ) if t < bmcc ,

A−1 · h(εt, εt−1, . . . ) if t ≥ bmcc ,

which is strictly stationary with distribution function F (1). Using similar arguments as in

the proof of part (a), one easily verifies that{ 1√
m

bmsc∑
t=1

IFv(X̃t, F
(1), V )

}
s∈[0,T+1]

D
=⇒ {

√
ΣF (1)W (s)}s∈[0,T+1] . (A.12)

Next, observe that there exists a matrix A(v) ∈ R3×3, such that for all symmetric matrices

M ∈ R2×2, the following identity holds

vech(A ·M · A>) = A(v) · vech(M) .

Further, using (4.9) one observes

A · IF(X̃t, F
(1), V ) · A> = AX̃tX̃t

>
A> − A · V (F (1)) · A> = IF(Xt, F

(2), V )

whenever t ≥ bmcc, which yields

A(v)IFv(X̃t, F
(1), V ) = IFv(Xt, F

(2), V ) for t ≥ bmcc . (A.13)

Similar arguments give

A(v)ΣF (1)(A(v))> = ΣF (2) . (A.14)

Now consider the mapping

ΦA :


`∞([0, T + 1],R3)→ `∞([0, c],R3)× `∞([c, T + 1],R3) ,

{f(s)}s∈[0,T+1] 7→

 {f(s)}s∈[0,c]{
A(v)(f(s)− f(c))

}
s∈[c,T+1]

 ,
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then the Continuous Mapping, (A.12) and (A.13) yield {
1√
m

∑bmsc
t=1 IFv(Xt, F

(1), V )
}
s∈[0,c]{

1√
m

∑bmsc
t=bmcc+1 IFv(Xt, F

(2), V )
}
s∈[c,T+1]

 D
=⇒

 {√
ΣF (1)W (s)

}
s∈[0,c]{

A(v)
√

ΣF (1)

(
W (s)−W (c)

)}
s∈[c,T+1]


D
=

 {√
ΣF (1)W (s)

}
s∈[0,c]{√

ΣF (2)

(
W (s)−W (c)

)}
s∈[c,T+1]

 ,

where the identity in distribution follows from the fact that both components are indepen-

dent and the identity

(
A(v)

√
ΣF (1)

)(
A(v)

√
ΣF (1)

)>
= A(v)ΣF (1)(A(v))> = ΣF (2) .

For the verification of Assumption 3.6 it suffices to show that both, the phase before and

after the change point satisfy Assumption 3.2. This can be done using similar arguments

as in the proof of part (a) of Proposition 4.2 and the details are omitted.

Proof of Theorem 4.4. For a proof of Theorem 4.4 we will require six Lemmas, that are

stated below. Lemmas A.1, A.2, A.3, A.5, A.8 are partially adapted from Lemma 2 and the

proof of Theorem 4 in Wu (2005b) but extended to hold uniformly in sample size. Lemma

A.7 controls the error of the quantile estimators in case of small samples, where the tail

assumptions on the distribution function comes into play.

Lemma A.1 Under the assumptions of Theorem 4.4 for all 0 < r < 1 and ϑ > 1, there

exists a constant Cr,ϑ, such that

P
(

max
1≤i<j≤n
|j−i|≥nr

sup
x∈R
|F̂ j
i (x)− F (x)| > Cr,ϑ

√
r log(n)

nr/2

)
. n−ϑ .
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Proof. We have the following upper bounds

P
(

max
1≤i<j≤n
|j−i|≥nr

sup
x∈R
|F̂ j
i (x)− F (x)| > Cr,ϑ

√
r log(n)

nr/2

)

≤
∑

1≤i<j≤n
|j−i|≥nr

P
(

sup
x∈R
|F̂ j
i (x)− F (x)| > Cr,ϑ

√
r log(n)

nr/2

)

≤
∑

1≤i<j≤n
|j−i|≥nr

P
(

sup
x∈R
|F̂ j
i (x)− F (x)| > Cr,ϑ

√
log(j − i+ 1)√
j − i+ 1

)
.

Now choose τ > 0 sufficiently large to fulfill 2 − τr < −ϑ. Applying Lemma 2 from Wu

(2005b), we obtain that Cr,ϑ can be chosen, such that the last term is (up to a constant)

bounded by ∑
1≤i<j≤n
|j−i|≥nr

|j − i+ 1|−τ ≤
∑

1≤i<j≤n
|j−i|≥nr

n−rτ ≤ n2−rτ ≤ n−ϑ .

The following inequality is a (direct) consequence of inequality 14.0.9 from Shorack and

Wellner (1986).

Lemma A.2 Under the assumptions of Theorem 4.4, let LF := sup f(x) > 0. It holds for

all 0 < a ≤ 1

2LF
, s > 0, n ∈ N that

P
(

sup
|x−y|≤a

∣∣F̂ n
1 (x)− F (x)−

(
F̂ n

1 (y)− F (y)
)∣∣ ≥ s

√
LFa√
n

)
≤ c1

a
exp

(
− c2s

2ψ
( s√

nLFa

))
,

where c1 and c2 are positive constants (only depending on F ) and ψ is defined by

ψ(x) = 2
(x+ 1) log(x+ 1)− x

x2
for x > 0 .

Proof. Denote by U1, . . . , Un a sample of i.i.d. ∼ U([0, 1]) random variables and note that

by Lipschitz continuity |x − y| ≤ a implies |F (x) − F (y)| ≤ LF · a. Using also that F is

12



surjective and continuous by assumption, we obtain by quantile transformation

sup
|x−y|≤a

∣∣F̂ n
1 (x)− F (x)−

(
F̂ n

1 (y)− F (y)
)∣∣

= sup
|x−y|≤a

1

n

∣∣∣∣ n∑
i=1

I{Xi ≤ x} − F (x)− I{Xi ≤ y}+ F (y)

∣∣∣∣
D
= sup
|x−y|≤a

1

n

∣∣∣∣ n∑
i=1

I{F−(Ui) ≤ x} − F (x)− I{F−(Ui) ≤ y}+ F (y)

∣∣∣∣
= sup
|x−y|≤a

1

n

∣∣∣∣ n∑
i=1

I{Ui ≤ F (x)} − F (x)− I{Ui ≤ F (y)}+ F (y)

∣∣∣∣
≤ sup
|F (x)−F (y)|≤LF ·a

1

n

∣∣∣∣ n∑
i=1

I{Ui ≤ F (x)} − F (x)− I{Ui ≤ F (y)}+ F (y)

∣∣∣∣
= sup

x,y∈[0,1]
|x−y|≤LF ·a

1

n

∣∣∣∣ n∑
i=1

I{Ui ≤ x} − x− I{Ui ≤ y}+ y

∣∣∣∣ .
The claim now follows from inequality 14.0.9 in Shorack and Wellner (1986) for the uniform

empirical process.

Lemma A.3 Under the assumptions of Theorem 4.4 for all 0 < r < 1 and ϑ > 1, there

exists a constant Cr,ϑ, such that for all positive sequences {an}n∈N with

r log n

nran
= o(1) and an = o(1) (A.15)

it holds that

P
(

max
1≤i<j≤n
|j−i|≥nr

sup
|x−y|≤an

|F̂ j
i (x)− F (x)− (F̂ j

i (y)− F (y))| > Cr,ϑ

√
anr log(n)

nr

)
. n−ϑ

provided that n is sufficiently large.

Proof. First consider m = mn ≥ nr. For n sufficiently large we have an ≤ 1/(2LF ) and so

13



choosing a = an and s = Cr,ϑ
√

log(m)/LF in Lemma A.2 we obtain that

P
(

sup
|x−y|≤an

∣∣F̂m
1 (x)− F (x)−

(
F̂m

1 (y)− F (y)
)∣∣ ≥ Cr,ϑ

√
an log(m)√

m

)

≤ c1

an
exp

(
− c2C

2
r,ϑ log(m)ψ

(
Cr,ϑ
LF

√
log(m)

man

))
.

Using that ψ is non-increasing the last expression can be bounded by

c1

an
exp

(
− c2 log(nC

2
r,ϑr)ψ

(
Cr,ϑ
LF

√
r log(n)

nran

))
. (A.16)

Next note that by the assumption on an we obtain

lim
n→∞

ψ

(
Cr,2
LF

√
r log(n)

nran

)
= 1 .

Thus for n sufficiently large and with an adapted constant c̃2 the term in (A.16) is bounded

by

c1

an
exp

(
− c̃2 log(nC

2
r,ϑr)

)
=
c1n
−c̃2C2

r,ϑr

an
=
c1n
−c̃2C2

r,ϑr+r

nran
. n−ϑ−2 ,

where we chose Cr,ϑ sufficiently large in the last estimate and used that (nran)−1 = o(1)

by assumption (A.15). Since the sequence {Xt}t∈Z is i.i.d. we can now finish the proof

P
(

max
1≤i<j≤n
|j−i|≥nr

sup
|x−y|≤an

|F̂ j
i (x)− F (x)− (F̂ j

i (y)− F (y))| > Cr,ϑ

√
anr log(n)

nr/2

)

≤
∑

1≤i<j≤n
|j−i|≥nr

P
(

sup
|x−y|≤an

|F̂ j
i (x)− F (x)− (F̂ j

i (y)− F (y))| > Cr,ϑ

√
anr log(n)

nr/2

)

≤
∑

1≤i<j≤n
|j−i|≥nr

P
(

sup
|x−y|≤an

|F̂ j
i (x)− F (x)− (F̂ j

i (y)− F (y))| > Cr,ϑ

√
an log(j − i+ 1)√

j − i+ 1

)

.
∑

1≤i<j≤n
|j−i|≥nr

n−ϑ−2 ≤ n−ϑ .

14



Remark A.4 For the remainder of the chapter we can choose fixed ϑ > 1 and denote by

Cr,1 and Cr,2 the corresponding constants from Lemma A.1 and A.3, respectively. Further

define the sequence

bn,r = Cr,3
√
r log(n)/nr/2 , (A.17)

where Cr,3 is a constant such that Cr,3 > 2(Cr,1 + 1)/f(qβ). Now let ’i.o.’ be a shortcut

for ’infinitely often’ and note that Lemma A.1 and A.3 together with the Borel-Cantelli

Lemma imply

P
(

max
1≤i<j≤n
|j−i|≥nr

sup
x∈R
|F̂ j
i (x)− F (x)| > Cr,1

√
r log(n)

nr/2
i.o.

)
= 0

and

P
(

max
1≤i<j≤n
|j−i|≥nr

sup
|x−y|≤bn,r

|F̂ j
i (x)− F (x)−

(
F̂ j
i (y)− F (y)

)
| > Cr,2

√
bn,rr log(n)

nr/2
i.o.

)
= 0 ,

which we require for the proof of the next Lemma.

Lemma A.5 Under the assumptions of Theorem 4.4 it holds for all r ∈ (0, 1) that

lim sup
n→∞

b−1
n,r max

1≤i<j≤n
|j−i|≥nr

|[q̂β]ji − qβ| ≤ 1

with probability one.

Proof. The claim is equivalent to

P
(

max
1≤i<j≤n
|j−i|≥nr

|[q̂β]ji − qβ| > bn,r i.o.

)
= 0 . (A.18)

By definition of the empirical quantile max1≤i<j≤n
|j−i|≥nr

|[q̂β]ji −qβ| > bn,r means that at least one

of the considered e.d.f.s first exceeds the level β outside of the interval [qβ − bn,r, qβ + bn,r].

Thus using also monotonicity of the e.d.f.s statement (A.18) follows if we can establish
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(i) P
(

min
1≤i<j≤n
|j−i|>nr

F̂ j
i (qβ + bn,r)− β < 0 i.o.

)
= 0 ,

(ii) P
(

max
1≤i<j≤n
|j−i|>nr

F̂ j
i (qβ − bn,r)− β > 0 i.o.

)
= 0 .

Let us start with (i). By a Taylor expansion we obtain

min
1≤i<j≤n
|j−i|≥nr

F̂ j
i (qβ + bn,r)− β

= min
1≤i<j≤n
|j−i|≥nr

[
F (qβ + bn,r)− β − F̂ j

i (qβ) + β + F̂ j
i (qβ + bn,r)− F (qβ + bn,r) + F̂ j

i (qβ)− F (qβ)

]
≥ F (qβ + bn,r)− β − max

1≤i<j≤n
|j−i|≥nr

|F̂ j
i (qβ)− β| − max

1≤i<j≤n
|j−i|>nr

sup
|x−y|≤bn,r

∣∣F̂ j
i (x)− F (x)−

(
F̂ j
i (y)− F (y)

)∣∣
≥ bn,rf(qβ) +

b2
n,r

2
inf
x∈R

f ′(x)− max
1≤i<j≤n
|j−i|≥nr

|F̂ j
i (qβ)− β|

− max
1≤i<j≤n
|j−i|≥nr

sup
|x−y|≤bn,r

∣∣F̂ j
i (x)− F (x)−

(
F̂ j
i (y)− F (y)

)∣∣ .
This yields

P
(

min
1≤i<j≤n
|j−i|≥nr

F̂ j
i (qβ + bn,r)− β ≤ 0 i.o.

)

≤ P
(

max
1≤i<j≤n
|j−i|≥nr

sup
|x−y|≤bn,r

∣∣F̂ j
i (x)− F (x)−

(
F̂ j
i (y)− F (y)

)∣∣+ max
1≤i<j≤n
|j−i|≥nr

|F̂ j
i (qβ)− β|

≥ bn,rf(qβ) +
b2
n,r

2
inf
x∈R

f ′(x) i.o.

)
≤ P

(
max

1≤i<j≤n
|j−i|≥nr

|F̂ j
i (qβ)− β| ≥ bn,r

2
f(qβ) +

b2
n,r

4
inf
x∈R

f ′(x) i.o.

)

+ P
(

max
1≤i<j≤n
|j−i|≥nr

sup
|x−y|≤bn,r

∣∣F̂ j
i (x)− F (x)−

(
F̂ j
i (y)− F (y)

)∣∣ ≥ bn,r
2
f(qβ) +

b2
n,r

4
inf
x∈R

f ′(x) i.o.

)
.

By definition of bn,r in (A.17) we have bn,rf(qβ)/2 > (Cr,1+1)
√
r log(n)/nr/2 and so Remark

A.4 yields that the last two probabilities are zero. To achieve (ii), we proceed similar and
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obtain

max
1≤i<j≤n
|j−i|≥nr

F̂ j
i (qβ − bn,r)− β

= max
1≤i<j≤n
|j−i|≥nr

F (qβ − bn,r)− β − F̂ j
i (qβ) + β + F̂ j

i (qβ − bn,r)− F (qβ − bn,r) + F̂ j
i (qβ)− F (qβ)

≤ F (qβ − bn,r)− β + max
1≤i<j≤n
|j−i|≥nr

|F̂ j
i (qβ)− β|

+ max
1≤i<j≤n
|j−i|≥nr

sup
|x−y|≤bn,r

|F̂ j
i (x)− F (x)−

(
F̂ j
i (y)− F (y)

)
|

≤ −f(qβ)bn,r + sup
x∈R

f ′(x)
b2
n,r

2
+ max

1≤i<j≤n
|j−i|>nr

|F̂ j
i (qβ)− β|

+ max
1≤i<j≤n
|j−i|≥nr

sup
|x−y|≤bn,r

|F̂ j
i (x)− F (x)−

(
F̂ j
i (y)− F (y)

)
|

This leads to

P
(

max
1≤i<j≤n
|j−i|≥nr

F̂ j
i (qβ − bn,r)− β ≥ 0 i.o.

)

≤ P
(
− f(qβ)bn,r + sup

x∈R
f ′(x)

b2
n,r

2
+ max

1≤i<j≤n
|j−i|≥nr

|F̂ j
i (qβ)− β|

+ max
1≤i<j≤n
|j−i|≥nr

sup
|x−y|≤bn,r

|F̂ j
i (x)− F (x)−

(
F̂ j
i (y)− F (y)

)
| ≥ 0 i.o.

)

≤ P
(

max
1≤i<j≤n
|j−i|≥nr

|F̂ j
i (qβ)− β| ≥ f(qβ)bn,r − sup

x∈R
f ′(x)

b2
n,r

2
i.o.

)

+ P
(

max
1≤i<j≤n
|j−i|≥nr

sup
|x−y|≤bn,r

|F̂ j
i (x)− F (x)−

(
F̂ j
i (y)− F (y)

)
| ≥ f(qβ)bn,r − sup

x∈R
f ′(x)

b2
n,r

2
i.o.

)
.

Using again the definition of bn,r and Remark A.4 the two probabilities are zero, which

finishes the proof of Lemma A.5.
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Remark A.6 Note that Lemma A.5 in particular implies that (for all 0 < r < 1) and

c0 < 1

nc0r/2 max
1≤i<j≤n
|j−i|≥nr

∣∣[q̂β]ji − qβ
∣∣ = oP(1) ,

which we require later on.

Lemma A.7 Under the assumptions of Theorem 4.4 it holds for all 0 < r < 1/2− 1/λ

1√
n

max
1≤i<j≤n
|j−i|<nr

(j − i+ 1)
∣∣[q̂β]ji − qβ

∣∣ = oP(1) . (A.19)

Proof. Due to minnt=1Xt ≤ [q̂β]ji ≤ maxnt=1Xt for all i, j ∈ {1, . . . , n}, we observe that the

term on the left-hand side of (A.19) is bounded by

nr−1/2
(
| n
max
t=1

Xt − qβ|+ |
n

min
t=1

Xt − qβ|
)
≤ 2nr−1/2 n

max
t=1
|Xt|+ o(1) .

Now for ε > 0 we can employ the independence and obtain

P
(
nr−1/2 n

max
i=1
|Xt| > ε

)
= 1− P

(
nr−1/2 n

max
i=1
|Xt| ≤ ε

)
= 1− P

(
|X1| ≤ n1/2−rε

)n
= 1−

(
1− P

(
|X1| > n1/2−rε

))n
.

By the assumption (4.16) on the tails of the distribution of |X1| this is now bounded by

1−
(

1− ε−λn−λ(1/2−r)
)n

= o(1) ,

where we used that by assumption λ(1/2− r) > 1.

Lemma A.8 Under the assumptions of Theorem 4.4 it holds for all 2/9 < r < 1

1√
n

max
1≤i<j≤n
|j−i|>nr

(j − i+ 1)
∣∣∣F̂ j

i ([q̂β]ji )− F̂
j
i (qβ)− (F ([q̂β]ji )− F (qβ))

∣∣∣ = op(1) .
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Proof. Fix ε > 0 and choose δ such that 2/3 < δ < 3
4
r + 1/2 , then it holds that

P
(

1√
n

max
1≤i<j≤n
|j−i|≥nr

(j − i+ 1)
∣∣∣F̂ j

i ([q̂β]ji )− F̂
j
i (qβ)−

(
F ([q̂β]ji )− F (qβ)

)∣∣∣ > ε

)

≤ P
(

1√
n

max
1≤i<j≤n

nδ>|j−i|≥nr

(j − i+ 1)
∣∣∣F̂ j

i ([q̂β]ji )− F̂
j
i (qβ)−

(
F ([q̂β]ji )− F (qβ)

)∣∣∣ > ε

)
(A.20)

+ P
(

1√
n

max
1≤i<j≤n
|j−i|≥nδ

(j − i+ 1)
∣∣∣F̂ j

i ([q̂β]ji )− F̂
j
i (qβ)−

(
F ([q̂β]ji )− F (qβ)

)∣∣∣ > ε

)
.

We will treat the two summands on the right-hand side separately.

First summand of (A.20): Using δ − 1/2 < 3/4r, we can choose a constant 0 < c0 < 1

sufficiently large, such that δ− 1/2 < (c0/4 + 1/2)r. Further choose an = n−c0r/2. The first

summand of (A.20) is then bounded by

P
(

max
1≤i<j≤n
|j−i|≥nr

nδ−1/2
∣∣∣F̂ j

i ([q̂β]ji )− F̂
j
i (qβ)−

(
F ([q̂β]ji )− F (qβ)

)∣∣∣ > ε

)

≤ P
(

max
1≤i<j≤n
|j−i|≥nr

sup
|x−y|≤an,r

∣∣∣F̂ j
i (x)− F (x)− F̂ j

i (y) + F (y)
∣∣∣ > ε

nδ−1/2

)

+ P
(

max
1≤i<j≤n
|j−i|≥nr

|[q̂β]ji − qβ| > an,r

)
.

(A.21)

By Remark A.6 the second summand of the right-hand side of (A.21) converges to zero. For

the first summand of (A.21) note that using δ − 1/2 < (c0/4 + 1/2)r, we obtain (provided

that n is sufficiently large)

ε

nδ−1/2
≥ Cr,2

√
r log(n)

nc0r/4+r/2
= Cr,2

√
an,rr log(n)

nr/2

and so the first summand of (A.21) converges to zero by Lemma A.3.

Second summand of (A.20): Due to δ > 2/3, we can choose a constant 0 < c0 < 1

sufficiently large, such that 1/2 < δ/2 + c0δ/4. Next define an,δ = n−c0δ/2 and obtain the
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bound

P
(

1√
n

max
1≤i<j≤n
|j−i|≥nδ

(j − i+ 1)
∣∣∣F̂ j

i ([q̂β]ji )− F̂
j
i (qβ)−

(
F ([q̂β]ji )− F (qβ)

)∣∣∣ > ε

)

≤ P
(

max
1≤i<j≤n
|j−i|≥nδ

sup
|x−y|≤an,δ

∣∣∣F̂ j
i (x)− F (x)− F̂ j

i (y) + F (y)
∣∣∣ > ε

n1/2

)

+ P
(

max
1≤i<j≤n
|j−i|≥nδ

|[q̂β]ji − qβ| > an,δ

)
.

(A.22)

Employing again Remark (A.6) the second summand of (A.22) converges to zero. For the

first summand of (A.22), note that we have (for sufficiently large n)

ε

n1/2
≥ Cδ,2

√
δ log(n)

nc0δ/4+δ/2
= Cδ,2

√
an,δδ log(n)

nδ/2

and so Lemma A.3 finishes the proof.

Now we are able to proceed to the actual proof of Theorem 4.4.

Proof of Theorem 4.4:

Since β is fixed, it is easy to see that the claim is equivalent to

1√
n

max
1≤i<j≤n

(j − i+ 1)

∣∣∣∣f(qβ)
(
[q̂β]ji − qβ

)
− β + F̂ j

i (qβ)

∣∣∣∣ = oP(1) . (A.23)

Further note that (since F is continuous) |F̂ j
i ([q̂β]ji ) − β| ≤ (j − i + 1)−1 almost surely,

which yields

1√
n

max
1≤i<j≤n

(j − i+ 1)|F̂ j
i ([q̂β]ji )− β| = oP(1)

and so it remains to prove

1√
n

max
1≤i<j≤n

(j − i+ 1)

∣∣∣∣f(qβ)
(
[q̂β]ji − qβ

)
− F̂ j

i ([q̂β]ji ) + F̂ j
i (qβ)

∣∣∣∣ = oP(1) . (A.24)
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Now due to λ > 18/5, we can choose r1 with 2/9 < r1 < 1/2− 1/λ < 1/2. By Lemma A.7

and F̂ j
i ([q̂β]ji ), F̂

j
i (qβ) ∈ [0, 1] we only have to verify

1√
n

max
1≤i<j≤n
|j−i|≥nr1

(j − i+ 1)

∣∣∣∣f(qβ)
(
[q̂β]ji − qβ

)
− F̂ j

i ([q̂β]ji ) + F̂ j
i (qβ)

∣∣∣∣ = oP(1) .

Now employing Lemma A.8, the statement above follows if we can establish

1√
n

max
1≤i<j≤n
|j−i|≥nr1

(j − i+ 1)

∣∣∣∣f(qβ)
(
[q̂β]ji − qβ

)
− F ([q̂β]ji ) + F (qβ)

∣∣∣∣ = oP(1) . (A.25)

By means of a Taylor expansion the term on the left-hand side is (up to a constant almost

surely) bounded by

1√
n

max
1≤i<j≤n
|j−i|≥nr1

(j − i+ 1) sup
x∈R
|f ′(x)|

(
[q̂β]ji − qβ

)2
,

where the factor supx∈R |f ′(x)| is bounded by assumption. Now since 2/9 < r1 < 1/2, it is

easy to see, that we can choose 0 < c0 < 1 (sufficiently large), such that

1

2c0

≤ r1c0 + 1/2 .

Thus we can select δ that fulfills

r1 <
1

2c0

≤ δ ≤ r1c0 + 1/2 .

We consider the cases nr1 ≤ |i − j| ≤ nδ and nδ ≤ |i − j| separately. For the first one we

obtain

1√
n

max
1≤i<j≤n

nr1≤|j−i|<nδ

(j − i+ 1)|
(
[q̂β]ji − qβ

)2 ≤ max
1≤i<j≤n

nr1≤|j−i|<nδ

nδ−1/2
(
[q̂β]ji − qβ

)2

≤ max
1≤i<j≤n

nr1≤|j−i|<n

nc0r1
(
[q̂β]ji − qβ

)2
= max

1≤i<j≤n
nr1≤|j−i|<n

(
nc0r1/2([q̂β]ji − qβ)

)2
= oP(1) ,
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where we used Remark A.6 for the last estimate. For the other case we obtain similarly

1√
n

max
1≤i<j≤n
nδ≤|j−i|<n

(j − i+ 1)|
(
[q̂β]ji − qβ

)2 ≤ max
1≤i<j≤n
nδ≤|j−i|<n

n1/2
(
[q̂β]ji − qβ

)2

≤ max
1≤i<j≤n
nδ≤|j−i|<n

nc0δ
(
[q̂β]ji − qβ

)2
= max

1≤i<j≤n
nδ≤|j−i|<n

(
nc0δ/2([q̂β]ji − qβ)

)2
= oP(1) ,

where we again employed Remark A.6.

B Additional simulation results

In this section we provide some additional simulation results to allow a more detailed

analysis of the presented detection schemes. We will focus on changes in the mean as

presented in Section 5.1 and study the following aspects:

Section B.1: The influence of the actual change point locations on the power.

Section B.2: Other choices of the factor T , that controls the monitoring window length.

B.1 Influence of change point locations

In this section we report simulation results for the situation considered in Figure 2 except

for the change point locations, for which we consider rather early and late locations. Figure

8 displays the power of the non self-normalized procedures for the different choices of the

model and the threshold considered in Section 5.1, where the change occurs already at

observation X120 and a historical training data ending at X100. This can be considered as

a situation of an early change and the displayed plots can be explained as follows. In all

combinations, the detection scheme based on D̂ still has a slightly larger power compared

to the methods based on P̂ and Q̂, while P̂ slightly outperforms Q̂. Compared to Figure

2 the differences with respect to the different schemes are considerably smaller. These

observations may be explained by the different constructions of the detection schemes,
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that are described at the end of Section 2. In particular the performance of the monitoring

schemes based on Q̂ and P̂ improves if the change occurs closer to the monitoring start,

see also the discussion at the end of Section 2.

In Figure 9 we report the power for a change located close to the end of the monitoring

period. Here the break occurs at observation X180, while the monitoring window ends with

observation X200. Concerning the small number of 20 observations after the change, such an

event is certainly harder to detect. Consequently, all schemes perform inferior compared to

the situations considered in Figure 2 and 8. However, the power superiority of the methods

based on the statistics D̂ over P̂ and Q̂ is even more significant now. These results support

our initial conjecture: While all schemes behave more or less equivalent for changes close

to the start, D̂ offers better characteristics, if changes are located closer to the end.
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Figure 8: Empirical rejection probabilities of the sequential tests for a change in the mean

based on the statistics D̂ (solid line), P̂ (dashed line) , Q̂ (dotted line). The initial and

total sample size are m = 100 and m(T + 1) = 200, respectively, and the change occurs

at observation 120. The level is α = 0.05. Different rows correspond to different threshold

functions, while different columns correspond to different models.
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Figure 9: Empirical rejection probabilities of the sequential tests for a change in the mean

based on the statistics D̂ (solid line), P̂ (dashed line), Q̂ (dotted line). The initial and

total sample size are m = 100 and m(T + 1) = 200, respectively, and the change occurs

at observation 180. The level is α = 0.05. Different rows correspond to different models,

while different columns correspond to different threshold functions.
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B.2 Larger monitoring windows

In this section we report simulations with the same settings as in Figure 2 but with a

larger monitoring window. More precisely, we operate again with a set of m = 100 stable

observations, while the factor T is set to 2 and 3 for the simulations in Figure 10 and 11,

respectively. The change point is again located at the middle of the monitoring period.

The obtained results are similar to those for the case T = 1 given in Section 5.1 and for

this reason we omit a detailed discussion here.
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Figure 10: Empirical rejection probabilities of the sequential tests for a change in the mean

based on the statistics D̂ (solid line), P̂ (dashed line), Q̂ (dotted line). The initial and

total sample size are m = 100 and m(T + 1) = 300, respectively, and the change occurs

at observation 200. The level is α = 0.05. Different rows correspond to different models,

while different columns correspond to different threshold functions.
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Figure 11: Empirical rejection probabilities of the sequential tests for a change in the mean

based on the statistics D̂ (solid line), P̂ (dashed line) , Q̂ (dotted line). The initial and

total sample size are m = 100 and m(T + 1) = 400, respectively, and the change occurs

at observation 250. The level is α = 0.05. Different rows correspond to different models,

while different columns correspond to different threshold functions.
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