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Appendix A: Additional Discussion on the DY and CM Distribu-

tion

Appendix A.i: Example Univariate Distributions

In Table 1, we give examples of ψ , EF(Y ;ψ), and K(α,κ).

Data Model Natural Parameter Log Partition Function (i.e., ψ and b) Normalizing Constant How to Simulate From the DY Dis-
tribution

Gamma(a,k)
f (Z|α,κ) = 1

Γ(a)ka exp(−Z/k)

a > 0,k > 0,Z > 0 Negative Reciprocal: Y =−1
k .

ψ1(Y ) = log
(
− 1

Y

)
b = a K(α,κ) = ακ+1

Γ(κ+1) Let W ∼ Gamma(κ + 1,1/α), where
α > 0, and κ > 0. Then, −W ∼
DY(α,κ; ψ1).

Bin(t, p)
f (Z|t, p) =

( t
Z

)
pZ(1− p)t−Z

0 < p < 1, t = 1,2, . . . ,Z = 0, . . . , t Logit: Y = log
(

p
1−p

) ψ2(Y ) = log(1+ exp(Y ))
b = t K(α,κ) = Γ(κ)

Γ(α)Γ(κ−α) Let W ∼ Beta(α,κ − α), where κ >
α > 0 and “Beta(α,κ−α)” is a short-
hand for the beta distribution with
shape parameter α and scale param-
eter κ − α . Then, log

( W
1−W

)
∼

DY(α,κ; ψ2).

NegBin(t, p)
f (Z|t, p) =

(Z+t−1
Z

)
pZ(1− p)t

0≤ p≤ 1, t = 1,2, . . . ,Z = 0,1, . . . , Logit: Y = log
(

p
1−p

) ψ2(Y ) = log(1+ exp(Y ))
b = t +Z K(α,κ) = Γ(κ)

Γ(α)Γ(κ−α) Let W ∼ Beta(α,κ − α), where
κ > α > 0. Then, log

( W
1−W

)
∼

DY(α,κ; ψ2).

Pois(µ)

f (Z|µ) = µZexp(−µ)
Z!

µ ∈ R+,Z = 0,1,2, . . . Log Y = log(µ)
ψ3(Y ) = exp(Y )

b = 1 K(α,κ) = κα

Γ(α) Let W ∼ Gamma(α,1/κ), where α >
0 and κ > 0. Then, log(W ) ∼
DY(α,κ; ψ3).

Norm(µ,s)

f (Z|µ,s) =
(

1
2πs2

)1/2
exp
(
−−(Z−µ)2

2s2

)
µ ∈ R,s ∈ R+,Z ∈ R Linear: Y = µ

s2

ψ4(Y ) = Y 2

b = s2

2 K(α,κ) =
(

κ

π

)1/2 exp(−α2

4κ
) Let W be a normal random variable

with mean α

2κ
and variance 1

2κ
. Then,

W ∼ DY(α,κ; ψ4).

Table 1: Univariate Distributions: The first column has the data model, the second column has
the natural parameter, the third column contains quantities that define the log partition function,
the fourth column has the normalizing constant, and the fifth column has instructions on how to
simulate from the DY random variable with the corresponding ψ . Let R+ = {x : x > 0}.
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Appendix A.ii: A Metropolis-Hastings Approach to the Conditional CM dis-

tribution

To use the affine transformation (i.e., q = (H′H)−1H′w) as a means to generate from a pdf pro-

portional to CMc, one does not necessarily have to marginalize across µµµ . This is because the

unnormalized CM distribution is proportional to the marginal distribution from an improper exten-

sion of q. Specifically, let ρ be an unnormalized CM distribution with mean Vµµµ and covariance

parameter V−1 = [H, 1
σ2

Q2], where Q2 is the n× (n− r) orthonormal basis for the null space of H.

Then we introduce a latent (n− r)-dimensional random vector q2 and augment the distribution of

q with,

ρ(q,q2|c = Vµµµ,V,ααα,κκκ) = exp
{

ααα
′Hq−κκκ

′
ψ(Hq−µµµ)

}
= g(q|µµµ,V,ααα,κκκ)g(q2|µµµ,V,ααα,κκκ),

where

g(q1|µµµ,V,ααα,κκκ) = exp
{

ααα
′Hq−κκκ

′
ψ(Hq−µµµ)

}
∝ f (q1|q2 = 000n−r,1,µµµ,H,ααα,κκκ) (A.1)

g(q2|µµµ,V,ααα,κκκ) = 1. (A.2)

Thus, the Metropolis-Hastings ratio with update q = (H′H)−1H′w is one in the limit. That is, the

following Metropolis-Hastings ratio approaches one as σ2 increases,

exp{ααα ′Hq∗−κκκ ′ψ(Hq∗−µµµ)}
exp
{

ααα ′Hq[m]−κκκ ′ψ(Hq[m]−µµµ)
} exp

{
ααα ′Hq[m]+ 1

σ2
ααα ′Q2q[m]

2 −κκκ ′ψ(Hq[m]+ 1
σ2

Q2q[m]
2 −µµµ)

}
exp
{

ααα ′Hq∗+ 1
σ2

ααα ′Q2q∗2−κκκ ′ψ(Hq∗+ 1
σ2

Q2q∗2−µµµ)
} ,

where q∗ and q∗2 are a proposed values of q and q2, and q[m] and q[m]
2 are the previous values in the

Markov chain. The argument in (A.1) and (A.2) is very similar to a result in Bradley et al. (2018,

cf. Theorem 2), which was clarified in the rejoinder of Bradley et al. (2018). Although the CMc is
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proper, it is crucial that we recognize that q follows an unnormalized CMc and is extended by an

improper q2. This improper extension results in a lack of Kolmogorov consistency (Daniell, 1919;

Kolmogorov, 1933; Bradley et al., 2018). However, proper extensions of the CM distribution are

Kolmogorov consistent (see Theorem 4).

Appendix B: Proofs

In this appendix we provide proofs for the technical results stated in the paper.

Proof of Theorem 1(i): From (2) of the main text we see that the distribution of the random

vector w in (7) is given by,

(
n

∏
i=1

K(αi,κi)

)
exp
{

ααα
′w−κκκ

′
ψ(w)

}
; w ∈ Rn.

The inverse of the transform of (7) is given by w = V−1(Y− µµµ), and the Jacobian is given by

|det(V−1)|. Then, by a change-of-variables (e.g., see Casella and Berger, 2002), we have that the

pdf of Y is given by,

det(V−1)

(
n

∏
i=1

K(αi,κi)

)
exp
[
ααα
′V−1(Y−µµµ)−κκκ

′
ψ
{

V−1(Y−µµµ)
}]

; Y ∈M n.

This completes the proof of Theorem 1(i).

Proof of Theorem 2: It follows from Proposition 1(i) that the conditional distribution is

given by
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f (Y1|Y2,µµµ,V,ααα,κκκ) =
[ f (Y|µµµ,V,ααα,κκκ)]Y2=d

[
∫

f (Y|µµµ,V,ααα,κκκ)dY1]Y2=d
,

∝ exp

ααα
′ (H B)

Y1

d

−κκκ
′
ψ

(H B)

Y1

d

−V−1
µµµ


 ,

∝ exp
{

ααα
′HY1−κκκ

′
ψ
(
HY1 +Bd−V−1

µµµ
)}

,

= exp
{

ααα
′HY1−κκκ

′
ψ (HY1−µµµ

∗)
}

; Y1 ∈ Rn,

which proves the result. The normalizing constant can be found using a change of variables

M =
det(V−1){∏n

i=1 K(αi,κi)}exp
(
ααα ′Bd−ααα ′V−1

µµµ
)

[
∫

f (Y|µµµ,V,ααα,κκκ)dY1]Y2=d
. (B.1)

Although we do not find the expression of the integral [
∫

f (Y|µµµ,V,ααα,κκκ)dY1]Y2=d, and conse-

quently M, we know that M is non-zero and finite. To see this, let N1 = {Y2 : [
∫

f (Y|µµµ,V,ααα,κκκ)dY1]Y2
=

0}; then, by the definition of the CM distribution for Y ∈M n and Y2 ∈N1

f

 Y1

Y2

 |µµµ,V,ααα,κκκ

> 0.

Taking the integral with respect to Y1 on both sides of the inequality gives 0 > 0, which is a false

statement. Thus, we have that [
∫

f (Y|µµµ,V,ααα,κκκ)dY1]Y2=d is non-zero, and hence, M is finite.

Similarly, let N2 = {Y2 : [
∫

f (Y|µµµ,V,ααα,κκκ)dY1]Y2
= ∞} be non-empty, and let N c

2 denote the set

complement of N2. Then, if w∼ CM(000n,1,In,ααα,κκκ), a change of variables within the integral (see
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Proposition 1) gives,

1 =
∫

f (w|µµµ = 000n,1,V = In,ααα,κκκ)dw =
∫

f (Y|µµµ,V,ααα,κκκ)dY =
∫ ∫

f (Y|µµµ,V,ααα,κκκ)dY1dY2

=
∫
N2

∫
f (Y|µµµ,V,ααα,κκκ)dY1dY2 +

∫
N c

2

∫
f (Y|µµµ,V,ααα,κκκ)dY1dY2

= ∞,

which is a contradiction. Thus, we have that the conditional distribution of Y1|Y2,µµµ,V,ααα,κκκ is

proper.

Proof of Theorem 3: Consider the transformation Q=

(
ψ
′′
(0)

ψ
′
(0)

)1/2

α1/2W , where W follows

an unnormalized DY
(

α, α

ψ ′(0) ; ψ

)
. Then we have that

f (Q|α,κ) ∝ exp

(ψ
′
(0)

ψ
′′
(0)

)1/2

α
1/2Q− α

ψ ′(0)
ψ


(

ψ
′
(0)

ψ
′′
(0)

)1/2

α
−1/2Q


 ,

and using the Taylor Series expansion of ψ(x) we have

f (Q|α,κ)

∝ exp

(ψ
′
(0)

ψ
′′
(0)

)1/2

α
1/2Q

− α

ψ ′(0)

ψ
′
(0)

(
ψ
′
(0)

ψ
′′
(0)

)1/2

α
−1/2Q+ψ

′′
(0)

(
ψ
′
(0)

ψ
′′
(0)

)
α
−1 Q2

2
+O

(
ψ
′
(0)3/2

ψ
′′
(0)3/2 α

−3/2Q3

)
 ,

where “O(·)” is the “Big-O” notation (e.g., see Lehmann, 1999, among others). Then, letting α go

to infinity yields,

lim
α→∞

f (Q|α,κ) ∝ exp
(
−Q2

2

)
∝ Normal(0,1).
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Thus, Q converges in distribution to a standard normal distribution as α goes to infinity. Now

suppose w = (w1, . . . .,wn)
′ follows an unnormalized CM

(
000n,α

1/2In,αJn,1,
α

ψ
′
(0)

Jn,1; ψ

)
. Then

it follows from the result above that
(

α

ψ
′
(0)

)1/2
w converges to a standard multivariate Gaussian

distribution. Now, define the transformation Y = µµµ +V(α1/2w). It follows from Theorem 5.1.8

of Lehmann (1999), and the fact that α1/2

ψ
′
(0)

w converges to a standard Gaussian distribution, that Y

converges in distribution to a multivariate normal distribution with mean µµµ and covariance matrix

VV′.

Proof of Theorem 4: In the main-text we stated that the CM distribution is Kolmogorov

consistent. We now prove that result. To prove Kolmogorov consistency we need to show the

following:

1. For any finite set {1, ...,n} and for a generic permutation {i1, ..., in}, we have

f
{
(Yi1, ...,Yin)

′ |c,V,ααα,κκκ
}
= f

{
(Y1, ...,Yn)

′ |c,V,ααα,κκκ
}

.

2. Let { j1, . . . , jn} be a generic permutation of {1, ...,n} and let m < n. Then we have that the

marginal density f
(
Y j1, ...,Yjm |c,V,ααα,κκκ

)
=
∫
M . . .

∫
M f (Y1, ...,Yn|c,V,ααα,κκκ)dYjm+1 . . .dYjn

exists.

Note that the conditions of the Kolmogorov extension theorem do not require that probability

density functions exist. However, from Proposition 1(i), we have an expression of the pdf of

Y, which will be useful in our proof; hence, we can simplify the conditions of the Kolmogorov

extension theorem to the setting where the joint probability density function exists.

For Item 1, define a n× n permutation matrix ΠΠΠ such that (Yi1, ...,Yin)
′ ≡ Yπ = ΠΠΠY. Recall

that permutation matrices have the following properties: ΠΠΠΠΠΠ
′ = ΠΠΠ

′
ΠΠΠ = In and ΠΠΠ

−1 = ΠΠΠ
′. From

Equation (7) of the main text we have that,

Yπ = ΠΠΠccc+ΠΠΠVw, (B.2)

where w consist of mutually independent DY random variables with respective shape and scale

parameters organized into the n-dimensional vectors ααα and κκκ .
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From Proposition 1(i),

f (Yπ |ccc,VVV ,ααα,κκκ)

= det(V−1)

(
n

∏
i=1

K(αi,κi)

)
exp[ααα ′VVV−1

ΠΠΠ
′(Yπ −ΠΠΠc)−κκκ

′
ψ{VVV−1

ΠΠΠ
′(Yπ −ΠΠΠc)}]

= f (Y|ccc,VVV ,ααα,κκκ),

where the last equality holds since ΠΠΠ
′
ΠΠΠ = In and ΠΠΠ

′Yπ = ΠΠΠ
′
ΠΠΠY = Y. Thus, permutation holds.

We now need to show that the marginal distribution stays the same regardless of what the

“extended” proper joint distribution is defined as. Without loss of generality (due to Item 1) set

P′m = [Im,000m,n−m] where 000m,n−m is a m× (n−m) matrix of zeros. Then define V = [M,C]′, M′

to be a m× n is a real-valued matrix, C to be any n× (n−m) real-valued matrix such that V is

invertible, Y ∈Rn, Y = c+Vw = (Y′1,Y
′
2)
′, Y′1 is m-dimensional, and Y2 is (n−m)-dimensional.

The joint distribution is determined by V = [M,C], c, ααα , and κκκ . Thus, we need to show that

joint probability density functions with different values of C and c results in the same marginal

probability density function upon integrating the joint probability density function. Let C1 denote

a generic real-valued matrix such that V1 = [M,C1]
′ is invertible and C 6= C1. Let c1 ∈Rn. Define

Y(1) = c1 +V1w = (Y(1)′
1 ,Y(1)′

2 )′, where Y(1)
1 is m-dimensional, and Y(1)

2 is (n−m)-dimensional.

Then we have that

f (Y(1)
1 |c1,V1,ααα,κκκ) =

∫
f (Y(1)|c1,V1,ααα,κκκ)dq(1)

2 , (B.3)

and a change of variables Y = VV−1
1 Y(1)−VV−1

1 c1 + c within (B.3) gives,

f (Y(1)
1 |c1,V1,ααα,κκκ) =

∫
f (Y(1)|c1,V1,ααα,κκκ)dY(1)

2 =
∫

f (Y|c,V,ααα,κκκ)dY2

= f (Y1|c,V,ααα,κκκ).

This completes the proof.
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Proof of Theorem 5: The distribution of q is equal to CMc(c=−Bq2+µµµ,V=(H,B)−1,ααα,κκκ)

h(q2|µµµ,V=(H,B)−1,ααα,κκκ), where recall we have reparameterized c=−Bq2+µµµ and f (q2|µµµ,V=

(H,B)−1,ααα,κκκ) ∝ 1. Thus,

f (q1,q2|µµµ,V,ααα,κκκ) ∝ exp
{

ααα
′Hq1 +ααα

′Bq2−ααα
′
µµµ−κκκ

′
ψ (Hq1 +Bq2−µµµ)

}
= exp

{
ααα
′V−1(q−Vµµµ)−κκκ

′
ψ
(
V−1(q−Vµµµ

)}
.

Integrating out q2 we obtain,

f (q1|µµµ,V,ααα,κκκ) ∝

∫
exp
{

ααα
′V−1(q−Vµµµ)−κκκ

′
ψ
(
V−1(q−Vµµµ

)}
dq2. (B.4)

Thus, q1 is the marginal random vector associated with CM(Vµµµ,V = (H,B)−1,ααα,κκκ). Thus, we

are left to show that q1 = (H′H)−1H′w is a sample from this marginal distribution.

Denote the QR decomposition of H = QR, where the M× r matrix Q satisfies Q′Q = Ir and

R is a r× r upper triangular matrix. Now recall the definition of the M× (M− r) matrix B, which

satisfies B′B = IM−r and B′Q = 000M−r,r. Then V−1 can be written as

V−1 =
[

Q B
] R 000r,M−r

000M−r,r IM−r,

 . (B.5)

It follows that

V =

 R−1 000r,M−r

000M−r,r IM−r,

 Q′

B′,

=

 (H∗′H∗)−1H∗′

B′

 ,
where the last equality in the above can be verified by substituting H = QR into (H′H)−1H′.Then,

q is distributed according to CM(Vµµµ,V = (H,B)−1,ααα,κκκ) and can be written as

 q1

q2

=

 (H′H)−1H′w

B′w

 , (B.6)
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where the n-dimensional random vector w is distributed according to CM(µµµ,V = IM,ααα,κκκ). Mul-

tiplying both sides of (B.6) by [Ir,000r,M−r] we have

q1 = (H′H)−1H′w, (B.7)

and hence the distribution associated with (H′H)−1H′w is the marginal distribution associated with

CM(Vµµµ,V = (H,B)−1,ααα,κκκ) as desired.

Appendix C: The Collapsed Gibbs Sampler

Adding a small number to the data to avoid zero counts changes the priors in the LCM stated

in Section 5, and results in a considerable amount of bookkeeping. In Appendices C.i and C.ii,

we give these technical details. While the model structure is complicated, it’s implementation is

computationally straightforward. In Appendix C.iii, we outline the steps involved for the collapsed

Gibbs sampler for the model in Appendix C.i.
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Appendix C.i: Adding a Small Number to Zero Counts

The version of the LCM model that allows for zero counts, can be written as the product of the

following conditional and marginal distributions:

Data Model : Zi|βββ ,ηηη ,ξi,b
ind∼ EF

(
x′iβββ +φφφ

′
iηηη +ξi +b′

β ,iqβ +b′η ,iqη +b′
ξ ,iqξ ; ψ j

)
ζβ (qβ )ζη(qη)ζξ (qξ );

Process Model 1 : ηηη |V,αη ,κη ∼ CMc
(
−Bηqη ,M,αααη ,κκκη ; ψk

)
;

Process Model 2 : ξξξ |αααξ ,κκκξ ∼ CMc
(
−Bξ qξ ,Mξ ,αααξ ,κκκξ ; ψk

)
;

Parameter Model 1 : b|αb,κb ∼ CM(0,1,αb,κb; ψk) I(b > 0)

Parameter Model 2 : βββ |αβ ,κβ ∼ CMc
(
−Bβ qβ ,Mβ ,αααβ ,κκκβ ; ψk

)
Parameter Model 3 : c|αc,κc ∼ CM(0,1,αc,κc; ψk) ;

Parameter Model 4 : cξ |αc,κc ∼ CM(0,1,αc,κc; ψk) ;

Parameter Model 5 : cβ |αc,κc ∼ CM(0,1,αc,κc; ψk) ;

Parameter Model 6 : vi
ind∼ CM(000,σvIi−1,αvJi−1,1,κvJi−1,1; ψk); i = 2, . . . ,r,k = 1,2,3,4;

Parameter Model 7 : f (αβ ,κβ |γβ ,1,γβ ,2,ρβ ) ∝ exp

[
γβ ,1αβ + γβ ,2κη −ρβ log

{
1

K
(
αβ ,κη

)}] ;

Parameter Model 8 : f (αη ,κη |γη ,1,γη ,2,ρη) ∝ exp
[

γη ,1αη ,m + γη ,2κη ,m−ρη log
{

1
K (αη ,m,κη ,m)

}]
;

Parameter Model 9 : f (αξ ,κξ |γξ ,1,γξ ,2,ρξ ) ∝ exp

[
γξ ,1αξ + γξ ,2κξ −ρξ log

{
1

K
(
αξ ,κξ

)}] ;

Parameter Model 10 : f (αv,κv|γv,1,γv,2,ρv) ∝ exp

[
γβ ,1αβ + γβ ,2κη −ρβ log

{
1

K
(
αβ ,κβ

)}] ;

Parameter Model 11 : f (qβ ) = 1;

Parameter Model 12 : f (qη) = 1;

Parameter Model 13 : f (qξ ) = 1;

Parameter Model 14 : f (qv,i) = 1; i = 1, . . . ,n, j = 1,2,3,4,,
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where ψ j and ψk (for j,k = 1, . . . ,4) are defined in Table 1 and the elements of n-dimensional

vector Z ≡ (Z1, . . . ,Zn)
′ represent data that can be reasonably modeled using a member from

the natural exponential family. Additionally for each i, xi is a known p-dimensional vector

of covariates, βββ = (β1, . . . ,βp)
′ ∈ Rp is an unknown vector interpreted as fixed effects, φφφ i is

a known r-dimensional real-valued vector (see Section 3 for examples), and the r-dimensional

vector ηηη = (η1, . . . ,ηr)
′ and n-dimensional vector ξξξ ≡ (ξ1, . . . ,ξn)

′ are interpreted as real-valued

random effects. The hyperparameters and variance parameters are as follows: define the (n+

p)-dimensional vector αααβ = (εα , . . . ,εα ,αβ ,1, . . . ,αβ ,p)
′, the (n + r)-dimensional vector αααη =

(εα , . . . ,εα ,αη ,1, . . . ,αη ,r)
′, the (2n)-dimensional vector αααξ = (εα , . . . ,εα ,αξ ,1, . . . ,αξ ,n)

′, the

(n + p)-dimensional vector κκκβ = (εκ,1, . . . ,εκ,n,κβ ,1, . . . ,κβ ,p)
′, the (n + r)-dimensional vector

κκκη =(εκ,1, . . . ,εκ,n,κη ,1, . . . ,κη ,r)
′, the 2n-dimensional vector κκκξ =(εκ,1, . . . ,εκ,n,κξ ,1, . . . ,κξ ,n)

′,

the (n + p)× p real-valued matrix Mβ = (X′,V′
β
)′, the (n + r)× r real-valued matrix M =

(ΦΦΦ′,V′η)′, the (2n)× n real-valued matrix Mξ = (In,V′ξ )
′, Vβ ∈ Rp×Rp, Vη ∈ Rr ×Rr, and

Vξ ∈ Rn × Rn, where to ensure propriety (see Section 2.5) αβ ,i/κβ ,i ∈ Y , αη , j/κη , j ∈ Y ,

αξ ,k/κξ ,k ∈ Y , κβ ,i > 0, κη , j > 0, and κξ ,k > 0; i = 1, . . . , p, j = 1, . . . ,r, k = 1, . . . ,n.

We have additionally assumed that αβ ,i ≡ αβ , αη ,i ≡ αη , αξ ,i ≡ αξ , κβ ,i ≡ κβ , κη ,i ≡ κη , and

κξ ,i ≡ κξ . Using Theorem 3 from the main text, we argue that large values of αc, αβ ,c, αξ ,c, κb,

κc, κβ ,c, κξ ,c, and κb imply a roughly normal prior on c, cβ , and cξ . Also, in our implementation

we have assumed that Vβ = Ip and Vξ = In, and that Vη is a lower unit triangular matrix with i-th

row vi.

There are two specifications of the vectors bβ ,i, bη ,i, and bξ ,i. The first specification involves

defining a real-valued n×n matrix Bβ ,1 = (b′
β ,1, . . . ,b

′
β ,n)

′, n×n matrix Bη ,1 = (b′
η ,1, . . . ,b

′
η ,n)

′,

and n× n matrix Bξ ,1 = (b′
ξ ,1, . . . ,b

′
ξ ,n)
′. Thus, in this setting qβ is n-dimensional, qη is n-

dimensional, and qξ is n-dimensional. The second specification, increases the row and column

dimensions, and involves defining a real-valued n× (2n) matrix Bβ ,1 = (b′
β ,1, . . . ,b

′
β ,n)

′, n× (2n)

matrix Bη ,1 = (b′
η ,1, . . . ,b

′
η ,n)

′, and n× (2n) matrix Bξ ,1 = (b′
ξ ,1, . . . ,b

′
ξ ,n)
′. In this setting qβ is

(2n)-dimensional, qη is (2n)-dimensional, and qξ is 2n-dimensional. The exact specifications of

Bβ ,1, Bη ,1, and Bξ ,1, will be given in Appendix C.ii. The random vector qv,i is i-dimensional.
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In a similar manner there are two specifications of Bβ , Bη , and Bξ . In the first setting, Bβ has

dimensions (n+ p)×n, Bη has dimension (n+r)×n, and Bξ has dimension (2n)×n. Additionally,

the first n rows of Bβ , Bη , and Bξ are defined to be Bβ ,1, Bη ,1, and Bξ ,1, respectively. In the second

setting, Bβ has dimensions (n+ p)×(2n), Bη has dimension (n+r)×(2n), and Bξ has dimension

(2n)× (2n). The exact specifications of Bβ , Bη , and Bξ , will be given in Appendix C.ii.

The functions ζβ : Rn+p → R, ζη : Rn+r → R, and ζξ : R2n → R are defined in Appendix

C.ii, and have the property that ζβ (000a,1) = 1, ζη(000a,1) = 1, and ζξ (000a,1) = 1, where a = n or 2n

depending on the specifications of Bβ ,1, Bη ,1, Bξ ,1, Bβ , Bη , and Bξ . These functions are needed

so that εα and εκ,i can be introduced and a Collapsed Gibbs sampler, similar to the one outlined

in the Pseudo-Code in the main text, can be used. Recall, the values of εα > 0 and εκ,i > 0

are needed to account for the case where Zi is equal to a boundary value on it’s support (e.g., a

zero Poisson count). Other solutions to this boundary value problem exist in the Poisson setting

(Bradley et al., 2018), however we have found more consistent results using the approach in this

paper. We perform inference using samples from the distribution of βββ , ηηη , and ξξξ given the data Z

and the events qβ = 000a,1, qη = 000a,1, qξ = 000a,1, and qv,i = 000i,1. To simulate from this conditional

distribution we implement a collapsed Gibbs sampler similar to the one outlined in Section 2.5 of

the main text. The derivation of this collapsed Gibbs sampler is given in Appendix C.ii.

Appendix C.ii: Derivation of the Full-Conditional Distributions within a Col-

lapsed Gibbs Sampler

We assume j = k in Appendix C.i and drop the subscript on the log partition function ψ . Let the

n× p matrix X≡ (x1, . . . ,xn)
′, the n× r matrix ΦΦΦ≡ (φφφ 1, . . . ,φφφ n)

′, and ∝
Z

denotes the “proportional

13



to as a function of Z” symbol. It follows that

f (Z|·,qβ ,qη = 000a,1,qξ = 000a,1,qv,i = 000i,1)

∝
βββ

exp
(
Z′Xβββ +Z′Bβ ,1qβ −bJ′n,1ψ

(
Xβββ +Bβ ,1qβ +ΦΦΦηηη +ξξξ

))
ζβ (qβ )h (C.1)

f (Z|·,qβ = 000a,1,qη ,qξ = 000a,1,qv,i = 000i,1)

∝
ηηη

exp
(
Z′ΦΦΦηηη +Z′Bη ,1qη −bJ′n,1ψ

(
ΦΦΦηηη +Bη ,1qη +Xβββ +ξξξ

))
ζη(qη)h (C.2)

f (Z|·,qβ = 000a,1,qη = 000a,1,qξ ,qv,i = 000i,1)

∝
ξξξ

exp
(
Z′ξξξ +Z′Bξ ,1qξ −bJ′n,1ψ

(
ξξξ +Bξ ,1qξ +ΦΦΦηηη +Xβββ

))
ζξ (qξ )h, (C.3)

where h =
{

∏
n
i=1 I(x′iβββ +ψψψ ′iηηη +ξi +b′

β ,iqβ +b′η ,iqη +b′
ξ ,iqξ ∈ Y )

}
, and a = n or 2n depending

on the specifications of Bβ ,1, Bη ,1, Bξ ,1, Bβ , Bη , and Bξ . We have that

f (βββ ,qβ |Vβ ,αααβ ,κκκβ ,qη = 000a,1,qξ = 000a,1,qv,i = 000i,1) (C.4)

∝ exp
{

ααα
′
β

Mβ βββ +ααα
′
β

Bβ qβ −κκκ
′
β

ψ
(
Mβ βββ +Bβ qβ − cβ Jn+p,1

)}
,

f (ηηη ,qη |Vη ,αααη ,κκκη ,qβ = 000a,1,qξ = 000a,1,qv,i = 000i,1) (C.5)

∝ exp
{

ααα
′
ηMηηη +ααα

′
ηBηqη −κκκ

′
ηψ
(
Mηηη +Bηqη − cηJn+r,1

)}
,

f (ξξξ ,qξ |Vξ ,αααξ ,κκκξ ,qη = 000a,1,qβ = 000a,1,qv,i = 000i,1) (C.6)

∝ exp
{

ααα
′
ξ

Mξ ξξξ +ααα
′
ξ

Bξ qξ −κκκ
′
ξ

ψ
(
Mξ ξξξ +Bξ qξ − cξ J2n,1

)}
.
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Using (C.1) and (C.4) we have that

f (βββ ,qβ |·,qη = 000a,1,qξ = 000a,1,qv,i = 000i,1) ∝
βββ

f (Z|·) f (βββ |Vβ ,αααβ ,κκκβ ,cβ ) f (qβ )

∝
βββ

exp
{

Z′Xβββ +Z′Bβ ,1qβ +ααα
′
β

Mβ βββ +ααα
′
β

Bβ qβ

−κκκ
′
β

ψ
(
Mβ βββ +Bβ qβ − cβ Jn+p,1

)
−bJ′n,1ψ

(
Xβββ +Bβ ,1qβ +ΦΦΦηηη +ξξξ

)}
ζβ (qβ )h

= exp
{

Z′Xβββ + εJ′n,1Xβββ +ααα
′
β ,−ε

V−1
β

βββ

−κκκ
′
β

ψ
(
Mβ βββ +Bβ qβ − cβ Jn+p,1

)
−bJ′n,1ψ

(
Xβββ +Bβ ,1qβ +ΦΦΦηηη +ξξξ

)}
ζβ (qβ )ωβ (qβ )h

∝ CMc

{
µµµβ ,V

∗
β
,ααα∗

β
,κκκ∗

β
; ψ

}
h,

where

ωβ (qβ ) = exp(Z′Bβ ,1qβ +ααα
′
β

Bβ qβ )

ζβ (qβ ) =
1

ωβ (q)
exp(ααα∗′

β
Qβ qβ ),

V∗
β
= (Hβ ,Qβ )

−1, Qβ is the null basis for Hβ , αααβ ,−ε =
(
αβ ,1, . . . ,αβ ,p

)′, and µµµβ , Hβ , ααα∗
β

, and

κκκ∗
β

are defined in Table 2.

Recall from Appendix C.i there are two specifications of Bβ and Bβ ,1. When Hβ is (n+ p)× p

(as defined in the first and third columns of Table 2), we use the first specification, and let Bβ ,1 be

the first n rows of Bβ , and Bβ is set equal to the (n+ p)×n matrix Qβ . When Hβ is (2n+ p)× p

(as defined in the second column of Table 2), we use the second specification of Bβ and Bβ ,1, and

let the matrix (B′
β ,1,B

′
β
)′ be set equal to the (2n+ p)×2n matrix Qβ .

In a similar manner to Equations (15) through (17) of the main text, a sample from f (βββ |·,qη =

000a,1,qξ = 000a,1,qv,i = 000i,1) can be easily obtained with,

βββ = (H′
β

Hβ )
−1H′

β
µµµβ +(H′

β
Hβ )

−1H′
β

w, (C.7)

where w∼ CM(000g,1,Ig,ααα
∗
β
,κκκ∗

β
), g is the number of rows in Hβ , and a = n or 2n depending on the
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specifications of Bβ ,1, Bη ,1, Bξ ,1, Bβ , Bη , and Bξ .

We can find the full conditional distributions associated with ηηη and qη , and ξξξ and qξ in a

similar manner. Using (C.2) and (C.5) we have that

f (ηηη ,qη |·,qβ = 000a,1,qξ = 000a,1,qv,i = 000i,1) ∝
ηηη

f (Z|·) f (ηηη |Vη ,αααη ,κκκη ,cη) f (qη)

∝
ηηη

exp
{

Z′ΦΦΦηηη +Z′Bη ,1qη +ααα
′
ηMηηη +ααα

′
ηBηqη

−κκκ
′
ηψ
(
Mηηη +Bηqη − cηJn+r,1

)
−bJ′n,1ψ

(
ΦΦΦηηη +Bη ,1qη +Xβββ +ξξξ

)}
ζη(qη)h

= exp
{

Z′ΦΦΦηηη + εJ′n,1ΦΦΦηηη +ααα
′
η ,−εV−1

η ηηη

−κκκ
′
ηψ
(
Mηηη +Bηqη − cηJn+r,1

)
−bJ′n,1ψ

(
ΦΦΦηηη +Bη ,1qη +Xβββ +ξξξ

)}
ζη(qη)ωη(qη)h

∝ CMc

{
µµµβ ,V

∗
β
,ααα∗

β
,κκκ∗

β
; ψ

}
h,

where

ωη(qη) = exp(Z′Bη ,1qη +ααα
′
ηBηqη)

ζη(qη) =
1

ωη(qη)
exp(ααα∗′η Qηqη),

V∗η = (Hη ,Qη)
−1, Qη is the null basis for Hη , αααη ,−ε =

(
αη ,1, . . . ,αη ,p

)′, and µµµη , Hη , ααα∗η , and

κκκ∗η are defined in Table 2.

Recall from Appendix C.i there are two specifications of Bη and Bη ,1. When Hη is (n+ r)× r

(as defined in the first and third columns of Table 2), we use the first specification, and let Bη ,1 be

the first n rows of Bη , and Bη is set equal to the (n+ r)×n matrix Qη . When Hη is (2n+ r)× r

(as defined in the second column of Table 2), we use the second specification of Bη and Bη ,1, and

let the matrix (B′
η ,1,B

′
η)
′ be set equal to the (2n+ r)×2n matrix Qη .

In a similar manner to Equations (15) through (17) of the main text, a sample from f (ηηη |·,qβ =

000a,1,qξ = 000a,1) can be easily obtained with,

ηηη = (H′ηHη)
−1H′η µµµη +(H′ηHη)

−1H′ηw, (C.8)
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where w∼ CM(000g,1,Ig,ααα
∗
η ,κκκ

∗
η), g is the number of rows in Hη , and a = n or 2n depending on the

specifications of Bβ ,1, Bη ,1, Bξ ,1, Bβ , Bη , and Bξ .

Using (C.3) and (C.6) we have that

f (ξξξ ,qξ |·,qβ = 000a,1,qη = 000a,1,qv,i = 000i,1) ∝
ξξξ

f (Z|·) f (ξξξ |Vξ ,αααξ ,κκκξ ,cξ ) f (qξ )

∝
ξξξ

exp
{

Z′ξξξ +Z′Bξ ,1qξ +ααα
′
ξ

Mξ ξξξ +ααα
′
ξ

Bξ qξ

−κκκ
′
ξ

ψ
(
Mξ ξξξ +Bξ qξ − cξ J2n,1

)
−bJ′n,1ψ

(
ξξξ +ΦΦΦηηη +Bξ ,1qξ +Xβββ

)}
ζξ (qξ )h

= exp
{

Z′ξξξ + εJ′n,1ξξξ +ααα
′
ξ ,−ε

V−1
ξ

ξξξ

−κκκ
′
ξ

ψ
(
Mξ ξξξ +Bξ qξ − cξ J2n,1

)
−bJ′n,1ψ

(
ξξξ +ΦΦΦηηη +Bξ ,1qξ +Xβββ

)}
ζξ (qξ )ωξ (qξ )h

∝ CMc

{
µµµξ ,V

∗
ξ
,ααα∗

ξ
,κκκ∗

ξ
; ψ

}
h,

where

ωξ (qξ ) = exp(Z′Bξ ,1qξ +ααα
′
ξ

Bξ qξ )

ζξ (qξ ) =
1

ωξ (qξ )
exp(ααα∗′

ξ
Qξ qξ ),

V∗
ξ
= (Hξ ,Qξ )

−1, Qξ is the null basis for Hξ , αααξ ,−ε =
(
αξ ,1, . . . ,αξ ,p

)′, and µµµξ , Hξ , ααα∗
ξ

, and κκκ∗
ξ

are defined in Table 2.

Recall from Appendix C.i there are two specifications of Bξ and Bξ ,1. When Hξ is (2n)× n

(as defined in the first and third columns of Table 2), we use the first specification, and let Bξ ,1 be

the first n rows of Bξ , and Bξ is set equal to the (2n)× n matrix Qξ . When Hξ is (3n)× n (as

defined in the second column of Table 2), we use the second specification of Bξ and Bξ ,1, and let

the matrix (B′
ξ ,1,B

′
ξ
)′ be set equal to the (3n)×2n matrix Qξ .

In a similar manner to Equations (15) through (17) of the main text, a sample from f (ξξξ |·,qβ =

000a,1,qξ = 000a,1) can be easily obtained with,

ξξξ = (H′
ξ

Hξ )
−1H′

ξ
µµµξ +(H′

ξ
Hξ )

−1H′
ξ

w, (C.9)
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where w∼ CM(000g,1,Ig,ααα
∗
ξ
,κκκ∗

ξ
), g is the number of rows in Hξ , and a = n or 2n depending on the

specifications of Bβ ,1, Bη ,1, Bξ ,1, Bβ , Bη , and Bξ .

If b is unknown (e.g., the negative-binomial distribution) a prior for b is introduced in Appendix

C.i. The full-conditional distribution is given by,

f (b|·,qβ = 000a,1,qη = 000a,1,qξ = 000a,1,qv,i = 000i,1)

∝ KEF(b,Z)exp
{

αbb−κbψ(b)−bJ′n,1ψ(Xβββ +ΦΦΦηηη +ξξξ )
}

I {b > max(Z)+1} ,

where KEF(b,Z) is the normalizing constant associated with the distribution of Z, and max(Z)

returns the maximum element of the vector Z. A slice sampler can be used to generate from this

full-conditional distribution.

The full-conditional distribution for c is given by,

f (c|·,qβ = 000a,1,qη = 000a,1,qξ = 000a,1,qv,i = 000i,1)

∝
c

f (c) f (ηηη |V,αααβ ,κκκβ ,c)

∝
c

exp
{

αcc+ααα
′
ηMηηη−κκκ

′
ηψ (Mηηηη− cJn+r,1)−κcψ(c)

}
I(c ∈ Y )h

∝ CMc {µµµc,H
∗
c ,ααα

∗
c ,κκκ
∗
c ; ψ} I(c ∈ Y ),

where µµµc, H∗c , ααα∗c , and κκκ∗c are defined in Table 2. The full-conditional distributions for cξ and cβ

are found in a similar way. That is,

f (cβ |·,qβ = 000a,1,qη = 000a,1,qξ = 000a,1,qv,i = 000i,1) ∝ CMc

{
µµµc,β ,H

∗
c,β ,ααα

∗
c,β ,κκκ

∗
c,β ; ψ

}
I(cβ ∈ Y )

f (cξ |·,qβ = 000a,1,qη = 000a,1,qξ = 000a,1,qv,i = 000i,1) ∝ CMc

{
µµµc,ξ ,H

∗
c,ξ ,ααα

∗
c,ξ ,κκκ

∗
c,ξ ; ψ

}
I(cξ ∈ Y ),

where µµµc,β , H∗c,β , ααα∗c,β , κκκ∗c,β , µµµc,ξ , H∗c,ξ , ααα∗c,ξ , and κκκ∗c,ξ are defined in Table 2. One could use the

argument in Appendix A.ii to update c, cβ , and cξ . However, it is rather straightforward to update

these parameters using the slice sampler.
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Quantities Needed for Gibbs Sampling
No Boundary Adjustments ψ2 ψ3

µµµβ = (−ηηη ′ΦΦΦ′−ξξξ
′
,cβ J1,p)

′ µµµβ = (cβ J1,n,−ηηη ′ΦΦΦ′−ξξξ
′
,cβ J1,p)

′ µµµβ = 000n+p,1

µµµη = (−βββ
′X′−ξξξ

′
,cJ1,r)

′ µµµη = (cJ1,n,−βββ
′X′−ξξξ

′
,cJ1,r)

′ µµµη = 000n+r,1

µµµξ = (−βββ
′X′−ηηη ′ΦΦΦ′,cξ J1,n)

′ µµµξ = (cξ J1,n,−βββ
′X′−ηηη ′ΦΦΦ′,cξ J1,n)

′ µµµξ = 0002n,1

µµµγ,i = (ηi,0001,i−1)
′; i = 2, . . . ,r µµµγ,i = (ηi,0001,i−1)

′; i = 2, . . . ,r µµµγ,i = (ηi,0001,i−1)
′; i = 2, . . . ,r

µµµc = (ηηη ′ΦΦΦ′,0)′ µµµc = (ηηη ′ΦΦΦ′,0)′ µµµc = (ηηη ′ΦΦΦ′,0)′

µµµc,ξ = (ξξξ
′
,0)′ µµµc,ξ = (ξξξ

′
,0)′ µµµc,ξ = (ξξξ

′
,0)′

µµµc,β = (βββ ′X′,0)′ µµµc,β = (βββ ′X′,0)′ µµµc,β = (βββ ′X′,0)′

Hβ = (X′,V−1′
β

)′ Hβ = (X′,X′,V−1′
β

)′ Hβ = (X′,V−1′
β

)′

Hη = (ΦΦΦ′,V−1′
η )′ Hη = (ΦΦΦ′,ΦΦΦ′,V−1′

η )′ Hη = (ΦΦΦ′,V−1′
η )′

Hξ = (In,V−1′
ξ

)′ Hξ = (In,In,V−1′
ξ

)′ Hξ = (In,V−1′
ξ

)′

Hγ,i =
{
(η1, . . . ,ηi−1,)

′ ,C′i
}′ ; i = 2, . . . ,r Hγ,i =

{
(η1, . . . ,ηi−1,)

′ ,C′i
}′ ; i = 2, . . . ,r Hγ,i =

{
(η1, . . . ,ηi−1,)

′ ,C′i
}′ ; i = 2, . . . ,r

H∗c =−Jn+r,1 H∗c =−Jn+r,1 H∗c =−Jn+r,1
H∗c,ξ =−J2n,1 H∗c,ξ =−J2n,1 H∗c,ξ =−J2n,1

H∗c,β =−Jn+p,1 H∗c,β =−Jn+p,1 H∗c,β =−Jn+p,1

ααα∗
β
= (Z′,αβ ,1, . . . ,αβ ,p)

′ ααα∗
β
= (1

2Z′+ εα

2 J1,n,
1
2Z′+ εα

2 J1,n,αβ ,1, . . . ,αβ ,p)
′ ααα∗

β
= (Z′+ εαJ1,n,αβ ,1, . . . ,αβ ,p)

′

ααα∗η = (Z′,αη ,1, . . . ,αη ,r)
′ ααα∗η = (1

2Z′+ εα

2 J1,n,
1
2Z′+ εα

2 J1,n,αη ,1, . . . ,αη ,r)
′ ααα∗η = (Z′+ εαJ1,n,αη ,1, . . . ,αη ,r)

′

ααα∗
ξ
= (Z′, ,αξ ,1, . . . ,αξ ,n)

′ ααα∗
ξ
= (1

2Z′+ εα

2 J1,n,
1
2Z′+ εα

2 J1,n,αξ ,1, . . . ,αξ ,n)
′ ααα∗

ξ
= (Z′+ εαJ1,n,αξ ,1, . . . ,αξ ,n)

′

αααγ,i = (αη ,i,ααα
′
i)
′; i = 2, . . . ,r αααγ,i = (αη ,i,ααα

′
i)
′; i = 2, . . . ,r αααγ,i = (αη ,i,ααα

′
i)
′; i = 2, . . . ,r

ααα∗c = αcJn+r,1 ααα∗c = αcJn+r,1 ααα∗c = αcJn+r,1
ααα∗c,ξ = αc,ξ J2n,1 ααα∗c,ξ = αc,ξ J2n,1 ααα∗c,ξ = αc,ξ J2n,1

ααα∗c,β = αc,β Jn+p,1 ααα∗c,β = αc,β Jn+p,1 ααα∗c,β = αc,β Jn+p,1

κκκ∗
β
= (b′,κβ ,1, . . . ,κβ ,p)

′ κκκ∗
β
= (b′,b′,κβ ,1, . . . ,κβ ,p)

′ κκκ∗
β
= (exp(ηηη ′ΦΦΦ′+ξξξ

′
)+ εεε ′κ ,κβ ,1, . . . ,κβ ,p)

′

κκκ∗η = (b′,κη ,1, . . . ,κη ,r)
′ κκκ∗η = (b′,b′,κη ,1, . . . ,κη ,r)

′ κκκ∗η = (exp(βββ ′X′+ξξξ
′
)+ εεε ′κ ,κη ,1, . . . ,κη ,r)

′

κκκ∗
ξ
= (b′,κξ ,1, . . . ,κξ ,n)

′ κκκ∗
ξ
= (b′,b′,κξ ,1, . . . ,κξ ,n)

′ κκκ∗
ξ
= (exp(βββ ′X′+ηηη ′ΦΦΦ′)+ εεε ′κ ,κξ ,1, . . . ,κξ ,n)

′

κκκγ,i = (κη ,i,κκκ
′
i)
′; i = 2, . . . ,r κκκγ,i = (κη ,i,κκκ

′
i)
′; i = 2, . . . ,r κκκγ,i = (κη ,i,κκκ

′
i)
′; i = 2, . . . ,r

κκκ∗c = (κκκ ′η ,κc)
′ κκκ∗c = (κκκ ′η ,κc)

′ κκκ∗c = (κκκ ′η ,κc)
′

κκκ∗c,ξ = (κκκ ′
ξ
,κc,ξ )

′ κκκ∗c,ξ = (κκκ ′
ξ
,κc,ξ )

′ κκκ∗c,ξ = (κκκ ′
ξ
,κc,ξ )

′

κκκ∗c,β = (κκκ ′
β
,κc,β )

′ κκκ∗c,β = (κκκ ′
β
,κc,β )

′ κκκ∗c,β = (κκκ ′
β
,κc,β )

′

Table 2: A comprehensive list of matrices, vectors, and constants to define the full-conditional
distributions in Theorem 3. If Zi does not lay on the boundary of it’s support then use the left-hand
column. The other columns should be used when j = k = 2 and j = k = 3 and when there exists
Zi on the boundary of it’s support (i.e., there exists an i such that Zi = 0 or ti for j = k = 2 and
Zi = 0 for j = k = 3). The i-th element of b is the value of b associated with Zi, where we note that
this value is assumed to be the same for all i. In the left-most column εα = εκ,i ≡ 0. In the middle
column εα is chosen to be “small” and (εκ,1, . . . ,εκ,n)

′ = b. In the third column the elements of
εεεκ ≡ (εκ,1, . . . ,εκ,n)

′ and εα are chosen to be “small.” When ψ = ψ3, set c = cη = cξ = 0.
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Using induction we find that,

f (ηηη |cJa,1,M,αααη ,κκκη) ∝
V

exp
[
αηJ′r,1V−1

ηηη−κηJ′r,1ψ
{

V−1
ηηη− cJr,1

}]
∝ exp

[
r

∑
i=2

i−1

∑
j=1

αηvi, jη j−
r

∑
i=2

κηψ

(
i−1

∑
j=1

η jvi, j +ηi− c

)]

=
r

∏
i=2

exp
{

αηΣΣΣivi−κηψ(ΣΣΣivi +Yi− c)
}

where ΣΣΣ
′
i =
(
η j : j = 1, . . . , i−1

)′. Thus, the full conditional distribution is given by

f (v2, . . . ,vr|·) ∝
V

f (ηηη |cJa,V,αααη ,κκκη)
r

∏
i=2

f (vi)

∝
V

r

∏
i=2

exp
[
αηJ′i,1Hγ,ivi−κηJ′i,1ψ

{
Hγ,ivi−µµµγ,i

}]
,

∝
V

n

∏
i=2

CMc

(
µµµγ,i,Hγ,i,αηJi,1,κηJi,1; ψ

)
,

where

Hγ,i ≡

 ΣΣΣi

σνIi−1

 ,
µµµγ,i = (ηi, 0001,i−1)

′ .

The Metropolis-Hasting algorithm in Appendix A.ii provides a way to sample vi from f (vi|·,qβ =

000a,1,qη = 000a,1,qξ = 000a,1) f (qv,i), which leads to the following update for vi,

vi = (H′γ,iHγ,i)
−1H′γ,iµµµγ,i +(H′γ,iHγ,i)

−1H′γ,iw, (C.10)

where w∼ CM(000i,1,Ii,αηJi,1,κηJi,1;ψ).
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Appendix C.iii: Step-by-Step Implementation

The Gibbs sampler associated with (20) of the main text requires one to compute certain quantities.

These values are listed in Table 2. To aid the reader, we provide step-by-step instructions for

implementing the Gibbs sampler associated with (20) of the main text as follows.

1. Initialize βββ , ηηη , ξξξ , c, cβ , cξ , {vi}, αη , αξ , κη , and κξ . Denote these initializations with βββ
[0],

ηηη [0], ξξξ
[0], c[0], c[0]

β
, c[0]

ξ
, {v[0]i }, α

[0]
η , α

[0]
ξ

, κ
[0]
η , and κ

[0]
ξ

. Set m = 1.

2. Set βββ
[m] equal to the right hand side of (C.7). The matrix Hβ and the vector µβ are defined

in Table 2. The r-dimensional vector ηηη is set equal to ηηη [m−1], the n-dimensional vector ξξξ is

set equal to ξξξ
[m−1], αβ is set equal to α

[m−1]
β

, and κβ is set equal to κ
[m−1]
β

.

3. Set ηηη [m] equal to the right hand side of (C.8). The matrix Hη and the vector µη are defined

in Table 2. The p-dimensional vector βββ is set equal to βββ
[m], the n-dimensional vector ξξξ is

set equal to ξξξ
[m−1], αη is set equal to α

[m−1]
η , κη is set equal to κ

[m−1]
η , and for each i the

i-dimensional vector vi is set equal to v[m−1]
i .

4. Set ξξξ
[m] equal to the right hand side of (C.9). The matrix Hβ and the vector µβ are defined

in Table 2. The r-dimensional vector ηηη is set equal to ηηη [m], the p-dimensional vector βββ is

set equal to βββ
[m], αξ is set equal to α

[m−1]
ξ

, and κξ is set equal to κ
[m−1]
ξ

.

5. For i = 2, . . . ,r set v[m]
i equal to a value generated to the right hand side of (C.10). The matrix

Hγ,i and the vector µγ,i are defined in Table 2. The r-dimensional vector ηηη is set equal to

ηηη [m].

6. Set c[m] equal to a draw from CMc(µµµc,H∗c ,ααα∗c ,κ∗c ) using a slice sampler, where µµµc, H∗c , ααα∗c ,

and κκκ∗c are computed using Table 2 and the most current values of the remaining parameters.

We have found that c is weakly identifiable, and hence, truncating the support of the prior or

using an informative prior often leads to better results.

7. Set c[m]
β

equal to a draw from CMc(µµµc,β ,H∗c,β ,ααα
∗
c,β ,κ

∗
c,β ) using a slice sampler, where µµµc,β ,

H∗c,β , ααα∗c,β , and κκκ∗c,β are computed using Table 2 and the most current values of the remaining
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parameters. We have found that cβ is weakly identifiable, and hence, truncating the support

of the prior or using an informative prior often leads to better results.

8. Set c[m]
ξ

equal to a draw from CMc(µµµc,ξ ,H∗c,ξ ,ααα
∗
c,ξ ,κ

∗
c,ξ ) using a slice sampler, where µµµc,ξ ,

H∗c,ξ , ααα∗c,ξ , and κκκ∗c,ξ are computed using Table 2 and the most current values of the remaining

parameters. We have found that cξ is weakly identifiable, and hence, truncating the support

of the prior or using an informative prior often leads to better results.

9. Use a slice sampler (or Metropolis) to set α
[m]
β

and κ
[m]
β

to a value generated from the pdf:

f
(
αβ ,κβ |·

)
∝ exp

[
(γβ ,1 +J1,pV[m]−1

β
βββ
[m])αβ +

{
γβ ,2−J1,gψψψ(M[m]

β
βββ
[m]− c[m]

β
Jg,1)

}
κβ

−(ρβ +g)log

{
1

K
(
αβ ,κβ

)}] ,
where g = p if no boundary value update is needed, g = n+ p if ψ = ψ3, and g = 2n+ p if

ψ = ψ2.

10. Use a slice sampler (or Metropolis) to set α
[m]
η and κ

[m]
η to a value generated from the pdf:

f (αη ,κη |·)

∝ exp
[
(γη ,1 +J1,rV[m]−1

ηηη
[m])αη +

{
γη ,2−J1,gψψψ(M[m]

ηηη
[m]− c[m]Jg,1)

}
κη

−(ρη +g)log
{

1
K (αη ,κη)

}]
,

where g = r if no boundary value update is needed, g = n+ r if ψ = ψ3, and g = 2n+ r if

ψ = ψ2.

11. Using a slice sampler (or Metropolis) to set α
[m]
ξ

and κ
[m]
ξ

equal to values generated from the
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pdf:

f
(
αξ ,κξ |·

)
∝ exp

[
(γξ ,1 +J1,nξξξ )αξ +

{
γξ ,2−J1,2nψ(Mξ ξξξ − c[m]

ξ
Jg,1)

}
κξ

−(ρξ +g)log

{
1

K
(
αξ ,κξ

)}] ,
where g = n if no boundary value update is needed, g = 2n if ψ = ψ3, and g = 3n if ψ = ψ2.

12. Set m = m+1.

13. Repeat steps 2 through 12 until convergence of the Gibbs sampler.

It is straightforward to adjust this Gibbs sampler in variety of ways to be more appropriate for

a particular problem. For example, one could consider different hyperparameters, different basis

functions {φφφ j}, update the shape and scale of the prior on V−1, and assume heterogeneous DY

parameters associated with βββ , ηηη , and ξξξ .

It is important to note that many software packages have built in functions to simulate from beta

and gamma distributions, which are needed when j = k = 2 and j = k = 3, respectively. However,

it is common for the Gibbs sampler to produce small values of shape and scale parameters, which

may lead to computational errors when simulating from a beta or a gamma distribution. In this

setting, we simulate beta and gamma random variables using strategies outlined in Devroye (1986,

pgs. 181, 182, and 419). Additionally, if the shape and scale parameters are so small (i.e., close to

zero) that it is not possible to simulate the beta and gamma random variables using the techniques

in Devroye (1986), we reject the proposed sample. However, after a sufficient burn-in period of

the Gibbs sampler, the acceptance rate is approximately equal to one.

Finally, the updates for shape and rate parameters can be simplified in many settings. These

simplifications often require additional assumptions, such as, the shape parameter is assumed to be

integer-valued. We refer the reader to Table 3 to see a list of special cases by log-partition function.
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Appendix D: The ANOVA Table for the Simulation Study in Sec-

tion 3.2 of the Main Text

The ANOVA Table associated with the simulation study in Section 3.2 is given in Table 4. The

assumptions for this ANOVA may not hold, and hence, we interpret large F statistics subjectively.

Source DF SS MS F
Factor 1 1 8.174 8.174 941.13
Factor 2 1 ≈ 0 ≈ 0 0.05
Factor 3 1 0.01 0.007 0.86
Factor 4 2 1487.85 743.926 85649.6
Factor 5 1 ≈ 0 ≈ 0 ≈ 0
Factor 6 1 0.07 0.066 7.63

Factor 1 × Factor 2 1 0.12 0.117 13.51
Factor 1 × Factor 3 1 ≈ 0 ≈ 0 0.01
Factor 1 × Factor 4 2 8.08 4.041 465.24
Factor 1 × Factor 5 1 0.04 0.039 4.53
Factor 1 × Factor 6 1 ≈ 0 0.001 0.16
Factor 2 × Factor 3 1 0.01 0.011 1.25
Factor 2 × Factor 4 2 0.01 0.003 0.3
Factor 2 × Factor 5 1 ≈ 0 ≈ 0 0.01
Factor 2 × Factor 6 1 ≈ 0 ≈ 0 0.01
Factor 3 × Factor 4 2 ≈ 0 0.001 0.17
Factor 3 × Factor 5 1 ≈ 0 ≈ 0 0.04
Factor 3 × Factor 6 1 0.03 0.035 3.99
Factor 4 × Factor 5 2 ≈ 0 ≈ 0 0.04
Factor 4 × Factor 6 2 ≈ 0 0.002 0.28
Factor 5 × Factor 6 1 0.01 0.011 1.31

Residual 925 8.03 0.009

Table 4: Analysis of variance (ANOVA). The response in this experiment is the log total prediction
error in (21) of the main text. The six factors are listed in Section 3.2 of the main text, for up to two-
way interactions. In the table, the column “Source” contains the source of variability; “DF” stands
for degrees of freedom; “SS” denotes the sum of squared error; “MS” stands for mean squared
error; and “F” denotes the F-statistic. There are 96 factor-level combinations each containing 10
replicates. We denote “approximately equal to zero” with “≈ 0.” Large F-statistics are bold.
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