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Introduction

In Supplemental Appendix A, we provide additional discussion surrounding the DY and CM dis-
tributions introduced in the main text. In Supplemental Appendix B, we provide the proofs of the
results, propositions, and theorems stated in the main text. Details surrounding the collapsed Gibbs
sampler are provided in Supplemental Appendix C. Additional simulation results are presented in

Supplemental Appendix D.
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Appendix A: Additional Discussion on the DY and CM Distribu-

tion

Appendix A.i: Example Univariate Distributions

In Table 1, we give examples of y, EF(Y;y), and K (o, k).

Data Model Natural Parameter Log Partition Function (i.e., y and b) Normalizing Constant How to Simulate From the DY Dis-
tribution
Gamma(a, k)
f(Zla, k)= WEXP(*Z//() yi(Y) =log (—4) "
a>0,k>0,Z>0 Negative Reciprocal: Y = —%. b=a K(o,x) = % Let W ~ Gamma(x + 1,1/0), where
a >0, and x > 0. Then, —W ~
DY (a,x; y1).
Bin(z, p)
f(@le.p) = (3)p*(1=p)~* ya(Y) =log (1+exp(Y)) .

O<p<lt=12,...,Z=0,....1 Logil:Y:log(%) b=t K(a‘K):W(KK)—a) Let W ~ Beta(o, k — o), where k >
o > 0 and “Beta(a, Kk — o) is a short-
hand for the beta distribution with
shape parameter ¢ and scale param-

W
eter K — . Then, log (W) ~
DY (a, k; y2).
NegBin(z, p)
F(2ltp) = (1)) p#(1—p) va(Y) =log (1 +exp(Y)) o

0<p<I1,t=12,...,Z=0,1,..., Logi[:Yzlog(ﬁ) b=t+Z K(a‘K):W(Kx)—a) Let W ~ Beta(a,k — @), there
k> a >0. Then, log(%) ~
DY (e, k; y2).

Pois(u)
. Zexp(—
flzip) == vs(¥) =exp(Y) .

HeR"Z=0,1,2,... Log Y =log(u) b=1 K(a.;c):l_’(‘a) Let W ~ Gamma(ct, 1/x), where o >
0 and k > 0. Then, log(W) ~
DY (a, & y3).

Norm(u, s)
1/2 (Zeu)?

1@ls) = (522) exp (~=542) w(Y) =12 /

HeERseERT,ZER Linear: Y = % b :% K(o, k) = (%)1/“exp(—j’f; Let W be a normal random variable
with mean % and variance TIK Then,
W ~DY (o, k; ).

Table 1: Univariate Distributions: The first column has the data model, the second column has
the natural parameter, the third column contains quantities that define the log partition function,
the fourth column has the normalizing constant, and the fifth column has instructions on how to
simulate from the DY random variable with the corresponding y. Let R™ = {x:x > 0}.



Appendix A.ii: A Metropolis-Hastings Approach to the Conditional CM dis-

tribution

To use the affine transformation (i.e., q = (H'H)~'H'w) as a means to generate from a pdf pro-
portional to CM,, one does not necessarily have to marginalize across f. This is because the
unnormalized CM distribution is proportional to the marginal distribution from an improper exten-
sion of q. Specifically, let p be an unnormalized CM distribution with mean Vi and covariance
parameter V~! = [H, GizQz], where Q) is the n x (n — r) orthonormal basis for the null space of H.
Then we introduce a latent (n — r)-dimensional random vector q, and augment the distribution of

q with,

p(q,qle=Vp,V,a,x) =exp{a'Hq—x'y(Hq—p)}

= g((I|[J,V, a, K)g<q2’”‘7va a, K)’

where

g(qy|p,V,a, k) =exp{a@'Hq— 'y (Hq— )} < f(q;|qy = 0,—,1, 14, H, &, K) (A1)

g(q(n,V,a,x)=1. (A.2)

Thus, the Metropolis-Hastings ratio with update q = (H' H)_IH’ w is one in the limit. That is, the

following Metropolis-Hastings ratio approaches one as o, increases,

exp{a'Hq" — K'y(Hq* — p)} exp {a/Hq[m] + oLza/qu[zm] o K’l//(Hq[’"] + crLzqu[zm] B “)}
exp {a/Hq[m} — x'y(Hql" — ﬂ)} exp {a/Hq* + GLza/QZqS — k'y(Hq* + G%qu; _ #>}

where q" and g3 are a proposed values of q and q,, and q[’"] and qgn] are the previous values in the
Markov chain. The argument in (A.1)) and (A.2)) is very similar to a result in Bradley et al.| (2018,

cf. Theorem 2), which was clarified in the rejoinder of Bradley et al.| (2018)). Although the CM, is



proper, it is crucial that we recognize that q follows an unnormalized CM, and is extended by an
improper (,. This improper extension results in a lack of Kolmogorov consistency (Daniell, |1919;
Kolmogorov, 1933} Bradley et al., 2018)). However, proper extensions of the CM distribution are

Kolmogorov consistent (see Theorem 4).

Appendix B: Proofs

In this appendix we provide proofs for the technical results stated in the paper.

Proof of Theorem 1(i): From (2) of the main text we see that the distribution of the random

vector w in (7) is given by,

(ﬁK(O"" Ki)) exp{a@'w—K'y(w)}: weR"
i=1

The inverse of the transform of (7) is given by w = V~!(Y — u), and the Jacobian is given by
|det(V~!)|. Then, by a change-of-variables (e.g., see (Casella and Berger, 2002), we have that the
pdf of Y is given by,

det(V™1) <ﬁK(a,-, K',')) exp[@V I (Y—p)—ky{V(Y-p)}]; Ye.u"
i=1

This completes the proof of Theorem 1(i).

Proof of Theorem 2: It follows from Proposition 1(i) that the conditional distribution is

given by



Y|V, K)ly,—g
F(Y1[Y2,u,V, @, k) = [[f(Y|u,V, e, K')dY1]Y2:d7

Y

/ Y / Y, -1
o« exp |a' (H B) —-xy(¢(HB) -V u
d d

o exp{a/HY| — k'y (HY; +Bd—V 'nu)},
= exp{a@'HY, —K'y(HY, —pu*)}; Y, eR",

which proves the result. The normalizing constant can be found using a change of variables

_ det(V"Y{IT K(at, ) }exp (a/Bd — &'V~ )

. B.1
[ff(Ylﬂ,V, a, K)le]Yzzd ( )

Although we do not find the expression of the integral [[ f(Y|u,V, @, K)dY1]y,_4, and conse-
quently M, we know that M is non-zero and finite. To see this, let 41 = {Y2: [[ f(Y|1,V, &, K)dY1]y, =
0}; then, by the definition of the CM distribution for Y € .#Z" and Y, € .4

Y
f ln,V,a,x | >0.
Y>
Taking the integral with respect to Y on both sides of the inequality gives 0 > 0, which is a false
statement. Thus, we have that [[ f(Y|p,V, @, k)dY1]y,_q is non-zero, and hence, M is finite.
Similarly, let A4 = {Y2: [[ f(Y|W,V, @, K)dY]y, = oo} be non-empty, and let .4, denote the set

complement of .45. Then, if w ~ CM(0, 1,1I,,, @&, k), a change of variables within the integral (see



Proposition 1) gives,

L= [ £ Wl =001,V =L@, k)dw= [ f(Y|n.V..K)aY = [ [ f(¥|n.V, @ K)aY1dY>

=/ /f(Y|u,V,a,K)dY1de+/ /f(Y\/.t,V,a,x)lede
M M

= o
Y

which is a contradiction. Thus, we have that the conditional distribution of Y|Y2,1,V, e, K is

proper.

"

Proof of Theorem 3: Consider the transformation Q = (W, ©

1/2
al/ 2w, where W follows
v (0)

an unnormalized DY (a, ﬁ; w) . Then we have that

RO o MO
o ex vy 12 & y ) ~1/2
ourmen(59) "are o (410" gl]

and using the Taylor Series expansion of y(x) we have

f(Qlot,x)
- v (0) o2
€xXp (W//()) Q
o o (YO 0 (VO
Ve o Q*‘””(W)“ z*o(m‘” Q)

where “O(-)” is the “Big-O” notation (e.g., see Lehmann, |1999, among others). Then, letting @ go

to infinity yields,

2

Olci_rgof(Q\oc, K) o< exp (—%) o< Normal(0, 1).



Thus, Q converges in distribution to a standard normal distribution as & goes to infinity. Now

suppose W = (w1,....,w,)’ follows an unnormalized CM (On, al/?, aJn,bW/L(O)Jn,l; 1//). Then
1/2
it follows from the result above that <q/i(0)> w converges to a standard multivariate Gaussian

distribution. Now, define the transformation Y = g + V(a'/?w). It follows from Theorem 5.1.8
of [Lehmann| (1999)), and the fact that O‘ w converges to a standard Gaussian distribution, that Y

v (0)

converges in distribution to a multivariate normal distribution with mean @ and covariance matrix

\A%

Proof of Theorem 4: In the main-text we stated that the CM distribution is Kolmogorov
consistent. We now prove that result. To prove Kolmogorov consistency we need to show the

following:

1. For any finite set {1,...,n} and for a generic permutation {iy,...,i,}, we have

A1) e Ve, = F{(N,....7) [e,V, e, x}.

2. Let {ji,...,jn} be a generic permutation of {1,...,n} and let m < n. Then we have that the

marginal densr[yf( . ij\c,V,a,K‘) =[Sy fM,. Yle,V,a x)dYj, ...dY;

Jm+1°

exists.

Note that the conditions of the Kolmogorov extension theorem do not require that probability
density functions exist. However, from Proposition 1(i), we have an expression of the pdf of
Y, which will be useful in our proof; hence, we can simplify the conditions of the Kolmogorov
extension theorem to the setting where the joint probability density function exists.

For Item 1, define a n x n permutation matrix IT such that (Y;,, ---;Yi,,)/ =Y,; =IIY. Recall
that permutation matrices have the following properties: IIIT = IT'TI = I, and II"! = IT". From

Equation (7) of the main text we have that,
Y, =IIc+IIVw, (B.2)

where w consist of mutually independent DY random variables with respective shape and scale

parameters organized into the n-dimensional vectors & and K.



From Proposition 1(i),

f(Yzle,V,a, k)
= det(V™h) (ﬁK(oq, m) exp[a'V T (Y, —e) — 'y {V I (Y, —c)}]
i=1

= f(Y|e,V,a,x),

where the last equality holds since IT'TI = I, and IT'Y; = IT'TIY = Y. Thus, permutation holds.
We now need to show that the marginal distribution stays the same regardless of what the
“extended” proper joint distribution is defined as. Without loss of generality (due to Item 1) set
P), = [Ln, 0 n—m] where 0y, n—p, is @ m x (n —m) matrix of zeros. Then define V = [M,C]’, M’
to be a m X n is a real-valued matrix, C to be any n x (n — m) real-valued matrix such that V is
invertible, Y € R", Y = ¢+ Vw = (Y, Y5)’, Y} is m-dimensional, and Y is (n —m)-dimensional.
The joint distribution is determined by V = [M, C], ¢, &, and k. Thus, we need to show that
joint probability density functions with different values of C and ¢ results in the same marginal
probability density function upon integrating the joint probability density function. Let C; denote
a generic real-valued matrix such that Vi = [M, C;]’ is invertible and C # C;. Let ¢; € R". Define
YD =¢ +Viw= (Ygl)/,Yéw)’, where Ygl) is m-dimensional, and Yg]) is (n — m)-dimensional.

Then we have that
f(Y(ll) |c17V17 a, K) = /f(Y(l) |C1,V1, a, K)dqél)a (BS)
and a change of variables Y = VVI’IY(I) — VVflcl + ¢ within (B.3) gives,

FOYWler, Vi, 0, k) = / FOYWler, Vi, )aYy) = / F(Yle,V, &, K)dY>

= f(Yile,V,a, k).

This completes the proof.



Proof of Theorem 5: The distribution of q is equal to CM.(¢ = —Bq, + 4,V = (H,B) !, a, k)
h(qy|,V=(H,B)~! a, k), where recall we have reparameterized ¢ = —Bq, + &t and f(q,|u,V =
(H,B)"!, &, k) o 1. Thus,

f(a;, 9|1, V, k) <exp{a'Hq, + 'Bq, — &'y — 'y (Hq, +Bq, — ) }
—exp{a@'V ' (q—Vp)—x'y (V' (q—Vn)}.

Integrating out q, we obtain,

fla |1, V, e, x) oc/eXP {a'V ' (q—Vp)— 'y (V(q—Vpu)}dq,. (B.4)

Thus, q; is the marginal random vector associated with CM(Vy,V = (H,B)~! &, k). Thus, we
are left to show that q; = (H'H)~'"H'w is a sample from this marginal distribution.

Denote the QR decomposition of H = QR, where the M x r matrix Q satisfies Q'Q = I, and
R is a r X r upper triangular matrix. Now recall the definition of the M x (M — r) matrix B, which

satisfies B'B = Iy_, and B'Q = 0p_,,. Then V! can be written as

vi=|[q B] R Our (B.5)

OMfr.,r IMfra

It follows that

v R—l Or,Mfr Q/ (H*/H*)—IH*/
OM—r,r IM—r; Bla B/ ’

where the last equality in the above can be verified by substituting H = QR into (H'H)_lH'.Then,
q is distributed according to CM(Vu,V = (H,B)~! @&, k) and can be written as
q (HH) 'H'w

= ) (B.6)
q B'w



where the n-dimensional random vector w is distributed according to CM(u,V = I, &, k). Mul-

tiplying both sides of by [I+,0,0—,] we have
q, = (HH) 'H'w, (B.7)

and hence the distribution associated with (H'H)~'H'w is the marginal distribution associated with

CM(Vu,V = (H,B)! &, k) as desired.

Appendix C: The Collapsed Gibbs Sampler

Adding a small number to the data to avoid zero counts changes the priors in the LCM stated
in Section 5, and results in a considerable amount of bookkeeping. In Appendices C.i and C.ii,
we give these technical details. While the model structure is complicated, it’s implementation is
computationally straightforward. In Appendix C.iii, we outline the steps involved for the collapsed

Gibbs sampler for the model in Appendix C.i.

10



Appendix C.i: Adding a Small Number to Zero Counts

The version of the LCM model that allows for zero counts, can be written as the product of the

following conditional and marginal distributions:

ind

Data Model : Z;|B,n,&,b '~ EF (X;ﬁ +¢'n+ §i+bk’iq[3 +b, 4, +b%,iq5; l//j) Cp(ap)Cn(dn)Ce(qe);
Process Model 1: N[V, o, ky ~ CM. (—Bnqn,M,an,Kn; Vi) s

Process Model 2: §|ag, kz ~ CM, (—Béqg,Mg,ag,K‘g; Vi)

Parameter Model 1: b|oy, K, ~ CM (0, 1, 04, Kp; Wi) (b > 0)

Parameter Model 2: B|ag, kg ~ CMc (—Bﬁqﬁ,Mﬁ,aIB,Kﬁ; Vi)

Parameter Model 3 : c|o, k. ~ CM (0,1, 0, Ke; Wi) s

Parameter Model 4 : cg|0, ke ~ CM (0,1, 0, K3 W)

Parameter Model 5 : cg|at, ke ~ CM (0,1, 0, K5 W) ;

Parameter Model 6: v; ™ CM(0, 6,T;_1, 06 J;— 1.1, K5 Jim1.1: W) i =2,...,rk =1,2,3,4;

1
Parameter Model 7: f(og,Kg|¥s.1,Y5,2,Pp) o €xp [yﬁylaﬁ + Vg 2Kn —pBlog{—}] :
K (g, %)

1
Parameter Model 8 : f(ot, &n|¥y,1, ¥n,2,Pn) o< €xp {Vn71an,m+7’n72’fn,m_PnIOg{—H ;
K(an,nnxn,m)

1
Parameter Model 9: f(0, K¢ Ve 1, Ve 2, P¢ ) < exp [yvloc + Ve 2Ke — P log{—} :
S REIIG, 15782 P8 S AHE T IS2R8e —FE K(OCg,K‘g)

K (agp,xp)

| -
Parameter Model 10: f(a, k|1, %2, Pv) o< €Xp [7[3,10% + Vg2 Ky —pﬁlog{—} :

Parameter Model 11: f

(
Parameter Model 12: f (qn) =1;
Parameter Model 13 : f(

(

Parameter Model 14: f(q,;)=1; i=1,...,n,j=1,2,3,4,

11



where y; and y; (for j,k =1,...,4) are defined in Table 1 and the elements of n-dimensional
vector Z = (Z1,...,Z,) represent data that can be reasonably modeled using a member from
the natural exponential family. Additionally for each i, x; is a known p-dimensional vector
of covariates, B = (Bi,...,B,) € R? is an unknown vector interpreted as fixed effects, ¢, is
a known r-dimensional real-valued vector (see Section 3 for examples), and the r-dimensional
vector § = (71,...,7M,) and n-dimensional vector & = (§1,...,&,) are interpreted as real-valued
random effects. The hyperparameters and variance parameters are as follows: define the (n+
p)-dimensional vector ag = (Sa,---,Sa,OC[m,---,OCﬁ,p)/, the (n + r)-dimensional vector @, =
(€xs---+€q, O 1, .., 0n ), the (2n)-dimensional vector oz = (ea,...,ea,a&l,...,aé?n)’, the
(n+ p)-dimensional vector Kg = (&1;---;En, Kg 15+, Kp,p)’s the (n+r)-dimensional vector
Kn= (&1, - En Ky 1,---,Kny,r) , the 2n-dimensional vector K¢ = (&x.1;- -+, €k, Kg 15+ -5 Ke n)'s
the (n+ p) x p real-valued matrix Mg = (X', V)", the (n+r) x r real-valued matrix M =
(@', V), the (2n) x n real-valued matrix Mg = (I, Ve)', Vg € R? xRP, Vy € R” x R’, and
Ve € R" x R”", where to ensure propriety (see Section 2.5) o ;/kg; € ¥, 0y /Ky € ¥,
Qi /Kex €Y Kgi>0,Ky j>0,and K o >0;i=1,...,p, j=1,....,r,k=1,...,n.

We have additionally assumed that Qg = 0, Oy i = Oy, O ; = e, Kg ; = Kg, Kni = Ky, and
Kg i = Ke. Using Theorem 3 from the main text, we argue that large values of o, 0g ¢ Qg ¢ Kp,
Ke, KB.c» Kg o> and Kj, imply a roughly normal prior on ¢, ¢g, and c¢. Also, in our implementation
we have assumed that Vﬁ =1, and Vg = I, and that Vy, is a lower unit triangular matrix with i-th
oW V;.

There are two specifications of the vectors bg ;, by ;, and bg ;. The first specification involves

defining a real-valued n x n matrix Bg ; = (b |,...,bj ), nx n matrix By ; = (by, 1,.... by )",

and n x n matrix Bg ; = ( /571""71’/57;1)/' Thus, in this setting qg is n-dimensional, q,, is n-
dimensional, and qe is n-dimensional. The second specification, increases the row and column
dimensions, and involves defining a real-valued n x (2n) matrix Bg ; = (b/[m . ,b’ﬁ7 2 nx (2n)
matrix By 1 = (by 1,...,by ), and n x (2n) matrix Bg | = (blé,l""7b/§,n)/‘ In this setting qg is
(2n)-dimensional, q,, is (2n)-dimensional, and q¢ is 2n-dimensional. The exact specifications of

Bg 1. By,1, and B¢ |, will be given in Appendix C.ii. The random vector q,,; is i-dimensional.

12



In a similar manner there are two specifications of B B By, and Bg. In the first setting, B B has
dimensions (n+ p) X n, By has dimension (n+r) X n, and B¢ has dimension (2n) x n. Additionally,
the first n rows of B B> B;, and Bé are defined to be B B.1s By 1, and B(g 1 respectively. In the second
setting, Bg has dimensions (n+ p) x (2n), By has dimension (n+r) X (2n), and B¢ has dimension
(2n) x (2n). The exact specifications of Bg, By, and B¢, will be given in Appendix C.ii.

The functions g : R"™? — R, {p : R™" — R, and  : R?" — R are defined in Appendix
C.ii, and have the property that {g(0,,1) = 1, §(04,1) = 1, and ¢ (0,,1) = 1, where a = n or 2n
depending on the specifications of Bg 1, By 1, B¢ 1, Bg, By, and Be. These functions are needed
so that &4 and €& ; can be introduced and a Collapsed Gibbs sampler, similar to the one outlined
in the Pseudo-Code in the main text, can be used. Recall, the values of €, > 0 and &c; > 0
are needed to account for the case where Z; is equal to a boundary value on it’s support (e.g., a
zero Poisson count). Other solutions to this boundary value problem exist in the Poisson setting
(Bradley et al., 2018]), however we have found more consistent results using the approach in this
paper. We perform inference using samples from the distribution of B, 17, and & given the data Z
and the events qs = 0.1, q, = 0.1, q = 04,1, and q,; = 0; 1. To simulate from this conditional
distribution we implement a collapsed Gibbs sampler similar to the one outlined in Section 2.5 of

the main text. The derivation of this collapsed Gibbs sampler is given in Appendix C.ii.

Appendix C.ii: Derivation of the Full-Conditional Distributions within a Col-

lapsed Gibbs Sampler

We assume j = k in Appendix C.i and drop the subscript on the log partition function y. Let the

nx p matrix X = (xq,...,X,) , the n x r matrix ® = (¢,...,9,)’, and o denotes the “proportional

13



to as a function of Z” symbol. It follows that

f(Z]-,q8,97 = 041,9¢ = 04,1,9,; = 0;1)

% P (Z’XB +Z'Bg 1q5 —bJ,, 1 v (XB +Bp 195 + 8N +&)) {p(ap)h (C.1)
f(Z]-,q5 = 04,1,9;,9: = 04,1,9,,; = 0;1)
o< exp (Z'®N +Z'Bn.1dy — T, 1y (PN +By.1ay +XB +£)) Cn(ay)h (C2)

f(Z]-,q5 = 04,1,9; = 04,1,9¢.9,,; = 0;1)
TP (Z'&+7'B; 1qz: —bJ, 1w (& +Be 1q: + PN +XB)) Le(qe)h, (C.3)

where h = { B+ Yn+& +bb7iqﬁ +by .y + b%,iqé eX) } and a = n or 2n depending
on the specifications of Bg 1, By 1, B¢ 1, Bg, By, and B¢. We have that

f(B,qg|Vp,ap,Kp,qy =041,9¢ =041,q,; =0;1) (C.4)
o< eXp {a;}MBB + abBﬁqﬁ — K;}W(Mﬁﬁ +B/3qﬁ _CBJn-l-pJ)} ,

J(M,q,|Vy, @y, %n,q8 =0,1,9: = 04,1,9,; =0;1) (C.5)
o< exp { 0ty MN) + &} By gy, — KW (M1 +Bnd, —cnJuir1) }
f(€,q:|Ve, g, ke, gy = 041,98 =04,1,9,; = 0;1) (C.6)

o< eXp {a’éMéé + a%B§q§ — K%W(Még +B§Q§ — C€J2n71) } .

14



Using (C.1]) and (C.4) we have that

f(B,qgl,qn =041,9; = 0,,1,q,, :Oi,1>‘Ef<Z|')f<ﬁ|Vﬁ>aﬁ»Kﬁvcﬁ)f<(Iﬁ)
?exp{Z/Xﬁ +Z'Bg 145 + €yMgB + aBpag

—Kkg¥ (MpB +Bgag —cpluip1) —bJ, v (XB +Bg 195 +®n +§) } Cp(ap)h
—exp{ZXB +el, XB+ap_.V;'B

k¥ (MgB +Bgag —cpluip1) —bJ, 1 v (XB+Bp 195 +®n +§) } Cp(apg)mp(gp)h
«CMC{uﬁ,V;g,ag,x;;; w}h,

where

wp(qp) = exp(Z'Bg 1q5 + & Bgqp)

1 )
Cplapg) = MGXP(O‘E Qpqp),

~—

VE = (Hﬁ,Qﬁ)*l, Qg is the null basis for Hg, ag _. = (aﬁ,b'"?aﬁ,p)/’ and pg, Hg, aE, and
K;g are defined in Table 2.

Recall from Appendix C.i there are two specifications of Bg and Bg ;. When Hg is (n+ p) x p
(as defined in the first and third columns of Table 2), we use the first specification, and let B B.1 be
the first n rows of Bg, and B is set equal to the (n+ p) x n matrix Qg. When Hg is (2n+ p) X p
(as defined in the second column of Table 2), we use the second specification of Bg and Bg 1, and
let the matrix (Bj; |, Bj;)" be set equal to the (2n+ p) x 2n matrix Qg.

In a similar manner to Equations (15) through (17) of the main text, a sample from f(B|-, q, =

0.1, q: = 0.1, q,; = 0;,1) can be easily obtained with,
B = (HzHg) 'Hpps + (HgHg) 'Hpw, (C.7)

where w ~ CM(0, 1,1, a;;, KE), g is the number of rows in Hg, and a = n or 2n depending on the

15



specifications of BﬁJ, By 1, B&], Bﬁ, B;, and Bg.
We can find the full conditional distributions associated with 7 and ), and & and q: ina
similar manner. Using (C.2) and (C.5) we have that

f(M,4q,1,98 = 041,96 = 04,1,4,; = 0;1) % FZ])f(M|Vn, &y, Ky, cn)f(qy)
o exp {Z'®n +7'By 1q, + a;Mn + o}, Byq,,

—K;]w(Mn +Bnq, — cndngrt) — bJ:lJll/(q’Tl +By1q, +XB + &)} Cn(qn)h

= exp {Z'®n +€J;71<I>n+a;77_gVﬁln

— Kk, ¥ (M0 +Bq, — cpduirt) — b3, v (N +By1a, + XB+&) } &y (ay,) 0 (qy)h
uCMC{uB,VE,aE,KE; w}h,

where

@n(q,) = exp(Z'By,1q, + 0 By qy)

1 x/
Cnlay) = a)n(—qn)eXp(a”Q"q”)’
Vi = (Hy,Qy) ', Qy is the null basis for Hy, @y, ¢ = (O‘n,h---van,p)/’ and p,, Hy, a;, and

K;; are defined in Table 2.

Recall from Appendix C.i there are two specifications of By and By, ;. When Hy, is (n+7) x r
(as defined in the first and third columns of Table 2), we use the first specification, and let By, | be
the first n rows of By, and By, is set equal to the (n+r) x n matrix Q. When Hy, is (2n+7r) x r
(as defined in the second column of Table 2), we use the second specification of By and By 1, and
let the matrix (Bj, |,
In a similar manner to Equations (15) through (17) of the main text, a sample from f(n|-,qg =

B7,)’ be set equal to the (214 r) x 2n matrix Q.

041,9: = 0,,1) can be easily obtained with,

n = (HyHy,) " 'H)u,, + (H Hy) ' Hyw, (C.8)
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where w ~ CM(0, 1,1, a;, KT?), g is the number of rows in Hy, and a = n or 2n depending on the

specifications of B[M, By, Bal, BB, B;, and Bg.

Using (C.3) and (C.6) we have that

f(§7q§|aqﬁ = Oa,laqn = Oa,lyqvj = Oi,l) cg f(Z|>f(€|V§va§7 Kg,Cg)f(‘]g)

Cg exp {Z/é‘ +Z'B571q5 + a’gMgé + a%ngé

—K: ¥ (Me& +Beqs —cedont) — I, v (6 +@n +Be 19z +XB) } Ce(qe)h
—oxp{Z/E+el, £+ V;'E

—K: ¥ (Me& +Beqg —ceJont) —bJ,, v (6 +®n +Be 19z +XB) } Ce(qe) 0g (qe )h

ocCMC{ué,V’g,az,xz;w}h,

where

©:(q¢) = exp(Z'B¢ 19 + @;:Beqe)

Co(02) = gy 0@ Qse)

VE = (Hé,Qé)*l, Q¢ is the null basis for He, ot o = (aé’l,...,a§7p)/, and pg, He, az, and K‘E
are defined in Table 2.

Recall from Appendix C.i there are two specifications of Bg and Bg ;. When Hg is (2n) xn
(as defined in the first and third columns of Table 2), we use the first specification, and let B¢ | be
the first n rows of B¢, and B is set equal to the (2n) X n matrix Qz. When He is (3n) X n (as
defined in the second column of Table 2), we use the second specification of B‘g and Bgyl, and let
the matrix (B} |, B;)’ be set equal to the (3n) x 2n matrix Q;.

In a similar manner to Equations (15) through (17) of the main text, a sample from f(&|-, qp =

041,9: = 0,,1) can be easily obtained with,
§ = (H.H;) 'Hyp; + (H:H:) 'H.w, (C.9)
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where w ~ CM(0, 1,1, aZ’ KE ), g is the number of rows in H¢, and a = n or 2n depending on the
specifications of Bﬁ,l’ By, Bal, BB, B;, and Bg.
If b is unknown (e.g., the negative-binomial distribution) a prior for b is introduced in Appendix

C.1. The full-conditional distribution is given by,

f(b|7q[3 = Oa,laqu = Od,lqu = Oa,luqv,i = 0i71)
o Kir (b, Z)exp {04 — k() — b, W(XB+ @1 + E) L1 {b > max(Z) + 1},

where Kgr(b,Z) is the normalizing constant associated with the distribution of Z, and max(Z)
returns the maximum element of the vector Z. A slice sampler can be used to generate from this
full-conditional distribution.

The full-conditional distribution for c is given by,

f(cl,a8 = 041,45 = 04,1,9¢ = 04,1,9,; =0i1)
o:f(c)f(nyv7aﬁaxﬁac)
fexp{acc+a/nMn—K;?q/(Mnn—an+r71)—Kcl//(c)}I(c€@/)h

o<« CMc{pu.H.,a., x5 y}i(ce¥),

where ., He, @7, and Kk are defined in Table 2. The full-conditional distributions for c¢ and cg

are found in a similar way. That is,

f(CB|a(Iﬁ = Oa7lvqn = 0a717q§ = Oa,laqv7i = 0i71) o< CMC {”c7ﬁ7H:7ﬁ7 a;ﬁ; K:yﬁ; W} I(Cﬁ S @)

f(c§|7q[3 = Oa,laqu = Oa,lqu = Oa,luqv,i = 0i71) o< CMC {“C7§’H:7§7az7é’ Kig, W}I(C& € @),

where i g, H’ B a’ L K’ pr Mg H’ £ a:.é’ and K‘ig are defined in Table 2. One could use the
argument in Appendix A.ii to update c, cg, and cg. However, it is rather straightforward to update

these parameters using the slice sampler.
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Quantities Needed for Gibbs Sampling

No Boundary Adjustments 123 Y3
pg=(-n'® — & cpliy) Mg = (cpJin —N'Y & cpT1,) Mg =04ip1
=(-BX &) By = (Jin—BX & cl,) By =0uiri
Be=(BX ¥ cedin) Be = (cedin,—BX —0'® ccdin) Me =001
By;=M:,011); i=2,...,r Byi=Mi,011) i=2,...,r Myi=Mi001)5 i=2,...,r
K. =(n'®,0) B =(n'®,0/ B =n'®,0)
(&,0) B =(E,0) Be = (&0
1.5 =(BX,0) B.5=(BX,0) B = (BX,0)
Hﬁ —_ (X’, ‘El/)/ Hﬁ —_ (X/ X/ VE]/)/ Hﬁ —_ (X/ VE]/)/
H, = (®.V,") H, = (@@ V,") H, = (®.V,")
H: = (L, V") He = (L1, V; 1y H: = I,V ")
Hyi={(m,....,ni-1,) ,C}s i=2,....r | Hyi = {(m,.. ,n,-,l,)’,c;}’; =2,...,r Hy={(m,....,m-1,),C}Ys i=2,..r
H: = *Jn-%—rl Hf - *Jn-%—r.l H = *JzH—r,l
H} , = —Jou H . = —Jou, Hfé =—Jon,1
Hjﬁ = _Jn+p 1 Hfﬁ Jn+pl H:ﬁ = _JVH»p,l
a;,(zxaph ‘aﬁJ)) E:(IZ/ E“JLH,%Zl+£7a.]1,m(xﬁ.1,...,(Xﬁ.p)l a%:(Zl+£aJl.n~,aﬁ.17“'vaﬁ,l))/
a;=(Z ay1,...,0n,) =L+ %0, 320+ 5T, ) a,, =(Z' +eadip 01, 00,)
a; =(Z, 0z ,....0¢,) zz(lz/ EaJl,,;z+ G O 1o 0 ) | @ = (2 +Eadin, 01,00 ,)
oy =(ana); i=2,...r oy =(ap,a); i=2,...,r ay=(apal)s i=2,....r
o = e pir O = O piri o =0cJnir
ol = gdon o =0 don o = OcgJon
aj.[g = ac,BJ/H—p,l :B = pﬁJn+[) 1 azﬁ = ac_ﬁJn+[),l
K‘;} =(,K51,....Kp,) ﬁ =V, K51,....55,) Kp = (exp(N'® + &) + € Kp1, - K,
n =, k1., k) n =00, kn1,.... Kn,r) K = (exp( BX +E) e kn s Kns)
K=Ky ke ) k=00 ke ke K‘5 (exp(B'X +0'®") + €, k¢ l..‘.,Kg‘n),
Kyi = (Knis X)) i=2,....r Kyi= (Kni,K)s i=2,...,r Kyi= (Kni,X})s i=2,...,r
e = (K k) K= (k. k) K = (K m,{()
K:éz(’(%ﬁ’(zrf)l K:_gz(’dgv’fc,é)/ K¢ = (K} & Keg)
KTB:(K?} cﬁ) K;ﬁ :(K;%K-C,ﬁ)l Kzﬁ-ﬁ :(K,ﬁvknﬁ),

Table 2: A comprehensive list of matrices, vectors, and constants to define the full-conditional
distributions in Theorem 3. If Z; does not lay on the boundary of it’s support then use the left-hand
column. The other columns should be used when j =k =2 and j = k = 3 and when there exists
Z; on the boundary of it’s support (i.e., there exists an i such that Z; = 0 or ¢; for j = k = 2 and
Z; =0 for j = k= 3). The i-th element of b is the value of b associated with Z;, where we note that
this value is assumed to be the same for all i. In the left-most column £y = & ; = 0. In the middle
column &g is chosen to be “small” and (&, ..., 8,<7n)/ = b. In the third column the elements of
&= (8,(71,...,8,(7,,)’ and &y are chosen to be “small.” When y = y3, set c = ¢y = ce = 0
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Using induction we find that,

S(Mlcda1, M, &y, Kn) T EXp [O‘nJlrJV—]Tl —KnJ}.s ‘V{V_]rl —cJr1}]

r

i—1 r i—1
ccexp | Y ) omvin;— ) Kny (Z njvij+ N —C>
L “

i=2 j=1 i=2

=[Iexp {Zivi— cqy(Zivi+Yi—c)}
i=2
where £j = (n;:j=1,...,i— 1)/. Thus, the full conditional distribution is given by

.
f(VZ? s ,Vr|') %c f(ncha>V7 Oy, Kn)Hf(Vi)
i=2
S HGXP [anJg,lH%in’ - KnJg,lVf{H%i"i - I"y,iH 3
i=2
n
b [Tcme <ﬂy,iaH%i7anJi,17 Kndi1s W) ;
i=2
where

L
H')/,l = 5
oyl
Byi= (i 01i1)

The Metropolis-Hasting algorithm in Appendix A.ii provides a way to sample v; from f(vi|-,qg =

0.1, q, = 0,1 N 04,1 )f(qwi)’ which leads to the following update for v;,
vi = (H i)~ HG o+ (HG Hy) TG w, (C.10)

where w ~ CM(0; 1,1;, 00J; 1, K Ji 15 ).
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Appendix C.iii: Step-by-Step Implementation

The Gibbs sampler associated with (20) of the main text requires one to compute certain quantities.
These values are listed in Table 2. To aid the reader, we provide step-by-step instructions for

implementing the Gibbs sampler associated with (20) of the main text as follows.

1. Initialize B, 1, &, c, cg, cg, {Vi}, On, O, Kn, and Kg. Denote these initializations with ﬁ[o},

1, é[O], cl, C%)], c?}, {vl[.o}}, a,%o}, ag)}, K}[]O}, and Kgﬂ. Setm = 1.

2. Set B[m} equal to the right hand side of (C.7). The matrix Hg and the vector piz are defined

in Table 2. The r-dimensional vector 7 is set equal to N m=1]the n-dimensional vector & is

set equal to é[mfu, g is set equal to Otl[gm_”, and kg is set equal to Kl[3m—1]_

3. Set n[m] equal to the right hand side of |D The matrix Hy;, and the vector U, are defined

in Table 2. The p-dimensional vector B is set equal to ﬁ[m], the n-dimensional vector § is

set equal to é[mfl], oy is set equal to Ocr[lm_l], Ky is set equal to K,[{"_”, and for each i the
[m—1]

i-dimensional vector v; is set equal to v;

4. Set g[’”] equal to the right hand side of (C.9). The matrix Hg and the vector ug are defined

in Table 2. The r-dimensional vector 7 is set equal to 11[’"}, the p-dimensional vector B is

set equal to ﬁ[m}, Qg is set equal to aé[mfﬂ, and K is set equal to Kémil].

[m]

5. Fori=2,...,rsetv; ' equal to a value generated to the right hand side of (C.10). The matrix

H,; and the vector u,; are defined in Table 2. The r-dimensional vector 7 is set equal to

*

6. Set ¢! equal to a draw from CM.(p, H:, @, k*) using a slice sampler, where ., H:, &,
and k are computed using Table 2 and the most current values of the remaining parameters.
We have found that ¢ is weakly identifiable, and hence, truncating the support of the prior or

using an informative prior often leads to better results.

7. Set c%n] equal to a draw from CMc(ﬂc,ﬁvHi B a; B Kjﬁ) using a slice sampler, where i g,

Hi B a; B and K‘; p are computed using Table 2 and the most current values of the remaining
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parameters. We have found that cg is weakly identifiable, and hence, truncating the support

of the prior or using an informative prior often leads to better results.

8. Set cém] equal to a draw from CMc (K, ¢, H £ a’ £ K 5) using a slice sampler, where f. ¢,
H £ o’ £ and K g are computed using Table 2 and the most current values of the remaining
parameters. We have found that c¢ is weakly identifiable, and hence, truncating the support

of the prior or using an informative prior often leads to better results.

[m] [m]

9. Use a slice sampler (or Metropolis) to set g and Kg toa value generated from the pdf:

f (g, %)
o< exp [(75,1 +31,V5 B+ {mz — D WM Bl — CE"]Jg,l)} Kp

—(pp +g)log {—K (a;, ) }] :

where g = p if no boundary value update is needed, g =n+pif y = y3,and g =2n+p if
Y =vs.

10. Use a slice sampler (or Metropolis) to set 06,[7’"} and K,%m} to a value generated from the pdf:

f(aT]7 K-Tl|'>
o< eXp (%7-,1 _|_J1’rV[m}*ln[m})an + {’}/7772 _ Jng(M[m}n[m] _ C[m}-]g,l)} Krl

—(pn +8)log {mﬂ :

where g = r if no boundary value update is needed, g =n+rif y = y3, and g =2n+r if
Y=y

11. Using a slice sampler (or Metropolis) to set Ozém} and Kgn] equal to values generated from the
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pdf:

f (aév Ké |>
o eXp [(}/5,1 +J1,n€)a§ + {’}/5,2 _JI,ZnW(Még - c[gm]JgJ)} Ke

1
_(p§ +g)10g{K(OC§,K§) }] )

where g = n if no boundary value update is needed, g =2nif Yy = y3, and g =3nif Yy = y».
12. Setm=m+1.

13. Repeat steps 2 through 12 until convergence of the Gibbs sampler.

It is straightforward to adjust this Gibbs sampler in variety of ways to be more appropriate for
a particular problem. For example, one could consider different hyperparameters, different basis
functions {¢ j}, update the shape and scale of the prior on V™!, and assume heterogeneous DY
parameters associated with 8, 1), and .

It is important to note that many software packages have built in functions to simulate from beta
and gamma distributions, which are needed when j =k =2 and j = k = 3, respectively. However,
it is common for the Gibbs sampler to produce small values of shape and scale parameters, which
may lead to computational errors when simulating from a beta or a gamma distribution. In this
setting, we simulate beta and gamma random variables using strategies outlined in Devroye| (1986,
pgs. 181, 182, and 419). Additionally, if the shape and scale parameters are so small (i.e., close to
zero) that it is not possible to simulate the beta and gamma random variables using the techniques
in Devroye, (1986), we reject the proposed sample. However, after a sufficient burn-in period of
the Gibbs sampler, the acceptance rate is approximately equal to one.

Finally, the updates for shape and rate parameters can be simplified in many settings. These
simplifications often require additional assumptions, such as, the shape parameter is assumed to be

integer-valued. We refer the reader to Table 3 to see a list of special cases by log-partition function.
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Appendix D: The ANOVA Table for the Simulation Study in Sec-
tion 3.2 of the Main Text

The ANOVA Table associated with the simulation study in Section 3.2 is given in Table 4. The

assumptions for this ANOVA may not hold, and hence, we interpret large F statistics subjectively.

Source DF SS MS F
Factor 1 1 8.174 8.174 941.13
Factor 2 1 ~0 ~0 0.05
Factor 3 1 0.01 0.007 0.86
Factor 4 2 1487.85 743926 85649.6
Factor 5 1 ~0 ~0 ~0
Factor 6 1 0.07 0.066 7.63

Factor 1 x Factor2 1 0.12 0.117 13.51

Factor 1 x Factor 3 1 ~0 ~0 0.01

Factor 1 x Factor4 2 8.08 4.041 465.24

Factor 1 x Factor5 1 0.04 0.039 4.53

Factor 1 x Factor6 1 ~0 0.001 0.16

Factor 2 x Factor 3 1 0.01 0.011 1.25

2
1
1
2
1
1
2
2
1

Factor 2 x Factor 4 0.01 0.003 0.3

Factor 2 x Factor 5 ~0 ~0 0.01
Factor 2 x Factor 6 ~0 ~0 0.01
Factor 3 x Factor 4 ~0 0.001 0.17
Factor 3 x Factor 5 ~0 ~0 0.04
Factor 3 x Factor 6 0.03 0.035 3.99
Factor 4 x Factor 5 ~0 ~0 0.04
Factor 4 x Factor 6 ~0 0.002 0.28
Factor 5 x Factor 6 0.01 0.011 1.31

Residual 925 8.03 0.009

Table 4: Analysis of variance (ANOVA). The response in this experiment is the log total prediction
error in (21) of the main text. The six factors are listed in Section 3.2 of the main text, for up to two-
way interactions. In the table, the column “Source” contains the source of variability; “DF” stands
for degrees of freedom; “SS” denotes the sum of squared error; “MS” stands for mean squared
error; and “F” denotes the F-statistic. There are 96 factor-level combinations each containing 10
replicates. We denote “approximately equal to zero” with “~ 0.” Large F-statistics are bold.
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