
Detecting strong signals in gene perturbation experiments: An
adaptive approach with power guarantee and FDR control

In this supplement contains proofs, descriptions of methods and simulations not in-
cluded in the main context. Section A contains proofs to Theorems 2.5, 2.7, 2.8 and 2.10.
In section C, we give detailed description of the truncated MLE method and the central
moment matching(CM) method. Simulations comparing the ITEB method with them are
given in section D. In section E, we provide more details on how the knock-down experiment
data is generated.

A Proof of Theorem 2.5, Theorem 2.7, Theorem 2.10

and Theorem 2.8

Let ∆1 :=
√

logN
N

(τ 2+C), and let tl := max( log2 N
N

,min(2α2,
l
N

)), ∆2,l := 3(τ 2+C)tl log 1
tl
, τ 2

l :=

[τ 2 − ∆1 − ∆2,l]+ for all l = 0, 1, . . . , |A1|. Let the oracle estimator be defined as τ 2
∗ =∑

i∈A0
x2
i−σ̂2

i

|A0| . Let pi,l = F̃ (
x2
i

τ2
l +σ̂2

i
) be the p-values calculated using τ 2

l and let p(i),l be the

ordered null p-values from small to large. Let B1,l = {i ∈ A0 : pi,l ≤ p(s0),l}, where

s0 = max{s : p(s),l ≤ (s+l)α1

N
}, and B2,l = {i ∈ A0 : pi,l ≤ α2}. Lemma A.1 contains the

deterministic relationships we will use later.

Lemma A.1. Suppose 0 < α1 <
1
2e

to be fixed and α2 → 0 at a slow rate (α2
N

log2N
is

bounded away from 0). Under Assumption 2.1, the following statements hold:

(1)λ( lα1

N
) . (N

l
)

2
5 , ∆1

τ2+1
λ(α1

N
)→ 0, supl≥1

∆2,l

τ2+1
λ( lα1

N
)→ 0, supl≥0

∆2,l

τ2+1
λ(α2)→ 0

(2)limN→∞ supi∈A0
supl≥0 sup

α≥min
(
α2,

(l∨1)α1
N

) P (pi,l≤α)

α
= 1

(3)The estimate τ̂ 2
Sk

is non-increasing in the iteration number k in the ITEB procedure.

Proof of A.1 is deferred to section B.

Proof of Theorem 2.5

Proof. Let Ek,l := {τ̂ 2
Sk
≥ τ 2

l }. Because ∪|A1|
l=0 {RK = l} is a partition of the full space, to

prove the statement, we show the following:

P (∪|A1|
l=0 {RK = l, Ec

K,l}) ≤ P (∪|A1|
l=0 {RK ≤ l, Ec

K,l})→ 0
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Define Rk := |Jk ∩ A1| for each iteration k. We also let R0 = 0, and Rk−1 ≤ Rk as
a consequence of Lemma A.1, part (3). We prove it by showing that the events {Rk ≤
l, Ec

k,l, Ek−1,l} and {Ec
0,l} do not happen on a properly chosen event M which itself happens

with probability approaching 1. The existence of such M is sufficient for our argument:

|A1|∑
l=0

P ({RK ≤ l, Ec
K,l,M}) ≤

|A1|∑
l=0

P (RK ≤ l, Ec
K,l, EK−1,l,M) +

|A1|∑
l=0

P (RK ≤ l, Ec
K−1,l,M)

≤
|A1|∑
l=0

P (RK−1 ≤ l, Ec
K−1,l,M) ≤ . . . ≤

|A1|∑
l=0

P (Ec
0,l,M) = 0

Then P (∪|A1|
l=0 {RK ≤ l, Ec

K,l}) ≤ P (∪|A1|
l=0 {RK ≤ l, Ec

K,l,M}) + P (M c)→ 0. We now find M
which contradicts {Rk ≤ l, Ec

k,l, Ek−1,l} and {Ec
0,l}. Let S0

k = A0 ∩ Sk and S1
k = A1 ∩ Sk

be the set of nulls and non-nulls remaining at iteration k. The relationship below always
holds:

τ̂ 2
Sk
≥

[|A0|τ 2
∗ −

∑
i∈A0\S0

k
x2
i +

∑
i∈S1

k
(x2

i − σ̂2
i )]+

|S0
k |+ |S1

k |
(1)

In other words,

{Ec
k,l, Ek−1,l, Rk ≤ l} ⊆ {

[|A0|τ 2
∗ −

∑
i∈A0\S0

k
x2
i +

∑
i∈S1

k
(x2

i − σ̂2
i )]+

|S0
k |+ |S1

k |
< τ 2

l , Ek−1,l, Rk ≤ l}

If τ 2
l ≤ 0, the above event will never happen, hence,

{Ec
k,l, Ek−1,l, Rk ≤ l}

⊆{|A0|τ 2
∗ −

∑
i∈A0\S0

k

(x2
i − τ 2

l ) +
∑
i∈S1

k

(x2
i − σ̂2

i − τ 2
l ) < τ 2

l |A0|, τ 2
l > 0, Ek−1,l, Rk ≤ l}

When Ek−1,l happens and when Rk ≤ l, the removed nulls A0 \ S0
k must be in the set

Bl := B1,l ∩ B2,l for the following reasons. A0 \ S0
k ⊆ B2,l by definition. Now, we let

p∗ :=
|J1
k |α1

N
be the cut-off for the rejected p-values for the set J1

k . There are two possibilities
: p∗ ≤ α2 or p∗ > α2. We discuss them separately.

1. If p∗ ≤ α2, the rejected set from ITEB will be the set J1
k and J1

k contains at most
l non-null hypothesis. Suppose J1

k contains exactly s0 null hypotheses. In order for

any null hypothesis i to be rejected, it must satisfy pi ≤ (s0+l)α1

N
, and we know there
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are s0 of them. As a result, we know s0 = |{i ∈ A0 : pi ≤ (s0+l)α1

N
}|. When Ek−1,l

happens, we have pi ≥ pi,l, thus s0 ≤ |{i ∈ A0 : pi,l ≤ (s0+l)α1

N
}| or p(s0),l ≤ (s0+l)α1

N
.

As a result, we have s0 ≤ arg max{s : p(s),l ≤ s+l
N
α1} and A0 \ S0

k ⊆ B1,l. Hence,
A0 \ S0

k ⊆ Bl.

2. If p∗ > α2, the rejected set from ITEB will be the set J2
k . In this case, we can show

that B2,l ⊆ B1,l. Because pi,l ≤ pi, everything in J1
k will again be rejected if we

replace pi with pi,l, in other words, |B1,l| ≥ |J1
k |. As a result, p∗∗, the new cut-off

p-value for B1,l, will be larger than α2: p∗∗ ≥
|J1
k |α1

N
> α2, which in turns lead to the

fact that B2,l ⊆ B1,l and Bl = B2,l. Hence, A0 \ S0
k ⊆ Bl.

Let Ã1,l := {i ∈ A1 : pi,l ≥ α2}. When Ek−1,l holds, Ã1,l ⊆ S1
k , and for any i ∈ Bl or

i ∈ A1 \ Ã1,l, we have x2
i ≥ F̃i(α2)(τ 2

l + σ̂2
i ), thus (x2

i − σ̂2
i ) > τ 2

l , and

{Ec
k,l, Ek−1,l, Rk ≤ l} ⊆ {|A0|τ 2

∗ −
∑
i∈Bl

(x2
i − τ 2

l ) +
∑
i∈Ã1,l

(x2
i − σ̂2

i − τ 2
l ) < τ 2

l |A0|, τ 2
l > 0}

We can construct M based on the equation above. We define the following six events:

M1 = {∀l = 0, 1, . . . , |A1| : |B1,l| ≤
(log2N ∨ l)

N
|A0|}

M2 = {∀l = 0, 1, . . . , |A1| : |B2,l| ≤ 2α2|A0|}

M3 = {∀l = 0, 1, . . . , |A1| : ( max
Aα⊆A0:|Aα|≤tl|A0|

∑
i∈Aα

x2
i ) ≤ 2.5(τ 2 + C)tl|A0| log

1

tl
}

M4 = {∀l = 0, 1, . . . , |A1| :
∑
i∈Ã1,l

(x2
i − σ̂2

i − τ 2
l ) ≥ −(τ 2 + 1)(1− γ)

√
|A1| logN}

M5 = {
∑
i∈A1

(x2
i − σ̂2

i − τ 2) ≥ −(τ 2 + 1)(1− γ)
√
|A1| logN}

M0 = {|τ 2 − τ 2
∗ | ≤ (1−√γ)∆1}

Let M = ∩5
j=0Mj. Lemma A.2 states that M happens with probability approaching 1,

whose proof is deferred to section B.

Lemma A.2. Under Assumption 2.1 and Assumption 2.2, with α1 <
1
2e

being a positive
constant and α2 → 0 at a slow rate (α2

N
log2N

is bounded away from 0), M0, M1, M2, M3,

M4 and M5 happen with probability approaching 1.
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When M1 and M2 hold, we have |Bl| = |Bl,1 ∩ B2,l| ≤ tl|A0|, and if M3 also holds, we
have ∑

i∈Bl

x2
i ≤ max

Aα∈A0,|Aα|≤tl|A0|

∑
i∈Aα

x2
i ≤ 2.5(τ 2 + C)|A0|tl log(

1

tl
) ≤ 5

6
|A0|∆2,l

When M5 holds, we have
∑

i∈Ã1,l
(x2

i − σ̂2
i − τ 2

l ) ≥ −√γ|A0|∆1. Therefore, the following is
true,

{Ec
k, Ek−1, Rk ≤ l,M} ⊆ {|A0|(τ 2 − (1−√γ)∆1)− 5

6
|A0|∆2,l −

√
γ|A0|∆1 < |A0|τ 2

l , τ
2
l > 0}

= {(τ 2 − (1−√γ)∆1)− 5

6
∆2,l −

√
γ∆1 < (τ 2 −∆1 −∆2,l)}

= {5

6
∆2,l > ∆2,l} = ∅

In the step 0, we use all points to estimate τ̂ 2
S0

=
|A0|τ2

∗+
∑
i∈A1

(x2
i−σ̂2

i )

N
. When M0 holds, we

have |A0|τ 2
∗ ≥ |A0|(τ 2 − (1 − √γ)∆1); when M5 holds, we have

∑
i∈A1

(x2
i − σ̂2

i − τ 2) ≥
−|A0|

√
γ∆1, thus we have {Ec

0,l,M} = {τ̂ 2
S0
< [τ 2 −∆1 −∆2,0]+,M} = ∅.

Remark A.3. When δ > 0, we need to replace σ̂2
i with (1 + δ)σ̂2

i , and correspondingly, σ2
i

with (1+δ)σ2
i at several places. For example, we will modify equation (1) into the following

τ̂ 2
Sk
≥

[|A0|τ 2
∗ −

∑
i∈A0\S0

k
x2
i +

∑
i∈S1

k
(x2

i − (1 + δ)σ̂2
i )]+

|S0
k |+ |S1

k |

However, this will not change our final results when δ is of order O(1/
√
N), hence, we

leave out δ in our analysis for convenience.

Proof of Theorem 2.7

Proof. As τ̂ 2
Sk

is non-increasing, and in order for a point to be removed at any iteration

k, it must be greater than τ̂ 2
SK

: x2
i ≥ F̃−1

i (α2)(τ̂ 2
Sk

+ σ̂2
i ) ⇒ x2

i − σ̂2
i > τ̂ 2

Sk
≥ τ̂ 2

SK
. Let

S0
K = SK ∩ A0, we have ∑

i∈S0
K

(x2
i − σ̂2

i ) ≤ |A0|τ 2
∗ − (|A0| − |S0

K |)τ̂ 2
SK

For a point i ∈ A1, in order for it to not be removed, it need to satisfy the following
criterion:

x2
i ≤ F̃−1

i (α2)(σ̂2
i + τ̂ 2

Sk
) or x2

i ≤ F̃−1
i (

liα1

N
)(σ̂2

i + τ̂ 2
Sk

)
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where li is the order of the p-value of x2
i . As a result, at the last iteration K, we have

τ̂ 2
SK
≤ [
|A0|τ 2

∗ − (|A0| − |SK0|)τ̂ 2
SK

|SK |
+

∑
i∈A1

λ(( li
N
α1) ∧ α2)(σ̂2

i + τ̂ 2
SK

)

|SK |
]+

If τ̂ 2
SK

= 0, we have proved our statement; otherwise, the term insider the positive operator
is positive, hence, for τ̂ 2

SK
> 0, we have

(|A0| −
∑
i∈A1

λ((
li
N
α1) ∧ α2))τ̂ 2

SK
≤ |A0|τ 2

∗ +
∑
i∈A1

λ((
li
N
α1) ∧ α2)σ̂2

i (2)

We know that σ̂2
i is χ2

m

m
σ2
i -distributed with mean at most C and the variance at most C

m
.

Apply the the Chebyshev’s inequality to the quantity
∑

i∈i∈A aiσ̂
2
i for set A and coefficient

sequence {ai} we have

P (
∑
i∈A1

aiσ̂
2
i ≤ C(

∑
i∈A1

ai +

√∑
i∈A1

a2
i logN

m
))→ 1 (3)

Based on Lemma A.1, there is a constant c large enough such that for all l = 1, 2, . . . , |A1|,
we have λ( lα1

N
) ≤ c( N

α1l
)

2
5 , and

|A1|∑
l=1

λ(
lα1

N
) ≤ c

|A1|∑
l=1

(
N

lα1

)
2
5 ≤ c(

N

α1

)
2
5

∫ Nγ

0

l−
2
5dl =

5c

3α
2
5
1

Nγ
3
5

|A1|∑
l=1

λ2(
lα1

N
) ≤ c2

|A1|∑
l=1

(
N

lα1

)
4
5 ≤ c2(

N

α1

)
4
5

∫ Nγ

0

l−
4
5dl =

5c2

α
4
5
1

Nγ
1
5

Combine the above inequality with equation (3), we have

P

∑
i∈A1

λ((
li
N
α1) ∨ α2)σ̂2

i < C

 5c

3α
2
5
1

Nγ
3
5 + γNλ(α2) +

√
(5c2α

− 4
5

1 Nγ
1
5 +Nγλ2(α2))

m
logN

→ 1

Let c1 := C

(
5c

3α
2
5
1

Nγ
3
5 + γNλ(α2) +

√
(5c2α

− 4
5

1 Nγ
1
5 +Nγλ2(α2))

m
logN

)
. Recall that M0 =

{|τ 2 − τ 2
∗ | ≤ (1 − √γ)∆1} happens with probability approaching 1 from Lemma A.2.

For any δ > 0, we have

lim
N→∞

P (τ̂ 2 ≤ τ 2 + δ(τ 2 + C),M0)

5



≤ lim
N→∞

P (
(1− γ)(τ 2 + ∆1) + c1

1− γλ(α2)− 5a
3
γ

3
5α
− 2

5
1

< τ 2 + δ(τ 2 + C))− lim
N→∞

P (M c
0)− lim

N→∞
P (
∑
i∈A1

λ((
li
N
α1) ∨ α2)σ̂2

i > c1)

= lim
N→∞

P (
(1− γ)(τ 2 + ∆1) + c1

1− γλ(α2)− 5a
3
γ

3
5α
− 2

5
1

< τ 2 + δ(τ 2 + C))

= lim
N→∞

P (
(γλ(α2) + 5a

3
γ

3
5α
− 2

5
1 − γ)τ 2 + (1− γ)∆1 + c1

1− γλ(α2)− 5a
3
γ

3
5α
− 2

5
1

< δ(τ 2 + C)) = 1

Proof of Theorem 2.8

Proof. Let R0 and R1 be the number of rejected nulls and non-nulls using level α1(note
that R1 is the R1

K in Theorem 2.5). Define Vi = 1{Hi rejected} for each i ∈ A0, pi be the p
values calculated using τ̂ 2. We can express the FDR as

FDR =

|A1|∑
l=0

|A0|∑
l0=1

E[1R1=l1R0=l0

∑
i∈A0

Vi

l + l0
] =

|A1|∑
l=0

|A0|∑
l0=1

E[1R1=l1R0=l0

∑
i∈A0

1
pi≤(

l+l0
N

α1)∧α2

l + l0
]

We can further decompose the expression for FDR into two parts

FDR =

|A1|∑
l=0

|A0|∑
l0=1

E[1R1=l1R0=l01τ̂2≥τ2
l

∑
i∈A0

1
pi≤(

l+l0
N

α1)∧α2

l + l0
]︸ ︷︷ ︸

I1

+

|A1|∑
l=0

|A0|∑
l0=1

E[1R1=l1R0=l01τ̂2<τ2
l

∑
i∈A0

1
pi≤(

l+l0
N

α1)∧α2

l + l0
]︸ ︷︷ ︸

I2

By Theorem 2.5, we know I2 ≤ P (∪|A1|
l=0 {R1 = l, τ̂ 2 < τ 2

l })→ 0, and we need only to bound
I1. Let Fi = {x2

1, . . . , x
2
i−1, x

2
i+1, . . . , x

2
N , σ̂

2
1, . . . , σ̂

2
i−1, σ̂

2
i+1, . . . , σ̂

2
N}. Notice that

• Let us take x2
i and σ̂2

i and set their value to ∞ and 0, and denote new number of
rejections for the null and non-null by R̃0 and R̃1. If pi is rejected, we know τ̂ 2 is not
calculated using x2

i or σ̂2
i . This new number of rejections is exactly R0 and R1 if we

have rejected hypothesis i:

{R1 = l, R0 = l0, pi ≤
α1(l + l0)

N
∧α2, τ̂

2 ≥ τ 2
l } = {R̃1 = l, R̃0 = l0, pi ≤

α1(l + l0)

N
∧α2, τ̂

2 ≥ τ 2
l }
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We take the expectation conditional on Fi:

I1 =
∑
i∈A0

|A1|∑
l=0

|A0|∑
l0=1

E[1R̃1=l1R̃0=l0
E[
1
pi≤

α1(l+l0)
N

∧α2

(l + l0)
1τ̂2≥τ2

l
|Fi]]

≤
∑
i∈A0

|A1|∑
l=0

|A0|∑
l0=1

E[1R̃1=l1R̃0=l0
E[
1
pi,l≤

α1(l+l0)
N

∧α2

(l + l0)
|Fi]]

=
∑
i∈A0

|A1|∑
l=0

|A0|∑
l0=1

E[1R̃1=l1R̃0=l0
E[
1
pi,l≤

α1(l+l0)
N

∧α2

(l + l0)
]] (4)

By Lemma A.1, part (2), we know limN→∞ supi∈A0
supl≥0 sup

α≥min
(
α2,

(l∨1)α1
N

) P (pi,l≤α)

α
= 1.

As a result, for any δ > 0, there exists a N0 such that for all N > N0, we have

sup
l≥0

sup
l0≥1

P (pi,l ≤ (
l + l0
N

α1) ∧ α2) ≤ (1 + δ)(
l + l0
N

α1) ∧ α2

Rearrange the righthand side of equation (4), we have I1 ≤ (1 + δ)α1 for any δ > 0. Hence
limN→∞ I1,1 ≤ α1 and limN→∞ FDR ≤ α1.

Proof of Theorem 2.10

Proof. From Theorem 2.7, for any δ1 > 0, we know M = {τ̂ 2 ≤ τ 2 + δ1(τ 2 + C)} happens
with probability approaching 1, which leads to the following result:

P (φi,α = 0) ≤P (x2
i ≤ F̃−1

i (α)(τ̂ 2 + σ̂2
i ),M) + P (M c)

≤P (z2
i ≤

F̃−1
i (α)(τ 2 + σ̂2

i + δ1(τ 2 + C))

τ 2
i + σ2

i

)︸ ︷︷ ︸
Ii,α

+P (M c)

We now prove that Ii,α is no much larger than the oracle loss. We know that there exists a

constant fmax ≥ supt
dP (z2

i≤t)
dt

, and for any δ2, there is a constant w large enough such that

sup
δ>0

sup
i∈A1

P (z2
i ≤ w(1 + δ))

P (z2
i ≤ w)(1 + δ)

≤ 1 + δ2

7



For any α, we either have
F̃−1
i (α)(τ2+C)

τ2
i +σ2

i
≤ w√

δ1
or not. If

F̃−1
i (α)(τ2+C)

τ2
i +σ2

i
≤ w√

δ1
, we have

Ii,α ≤ P (φ∗i = 0) + wfmax
√
δ1. If

F̃−1
i (α)(τ2+C)

τ2
i +σ2

i
> w√

δ1
, we have

Ii,α ≤
∫ ∞
√
δ1C

P (z2
i ≤

F̃−1
i (α)(τ 2 + y)

τ 2
i + σ2

i

)(
τ 2 + y + δ1(τ 2 + C)

τ 2 + y
)fσ̂2

i
(y)dy + P (σ̂2

i ≤
√
δ1C) + δ2

≤P (φ∗i,α = 0) +

∫ ∞
0

P (x̄2
i ≤ F̃−1

i (α)(τ 2 + y))
δ1(C + τ 2)

y + τ 2
fσ̂2

i
(y)dy︸ ︷︷ ︸

I1

+P (σ̂2
i ≤ δ1σ

2
i ) + δ2

In the integral I1, because P (x2
i ≤ F̃−1

i (α)(τ 2 + σ̂2
i +y)) is an increasing function in y while

δ1(C+τ2)
y+τ2 is a decreasing function in y, we have

I1 ≤ P (φ∗i = 0)

∫ ∞
0

δ1(C + τ 2)

y + τ 2
fσ̂2

i
(y)dy

σ̂2
i is χ2

m

mσ2
i

distributed, the expectation of its inverse is m
(m−2)

, Recall that minσ2
i = 1:∫ ∞

0

δ1(C + τ 2)

y + τ 2
fσ̂2

i
(y)dy ≤

∫ ∞
0

(
δ1C

y
+ δ1)fσ̂2

i
(y)dy = δ1(1 +

Cm

m− 2
)

As a result, we have

P (φi,α = 0)− P (φ∗i = 0) ≤ max
i∈A1

(
√
δ1wfmax, δ1 + δ1

Cm

m− 2
+ P (σ̂2

i ≤
√
δ1C) + δ2) + P (M c)

The right-hand-side of the above expression does not depend of i or α. For any δ > 0, we
can take N large enough and δ1, δ2 small enough such that

δ1 + δ1
Cm

m− 2
+ max

i∈A1

P (σ̂2
i ≤

√
δ1C) + δ2 + P (M c) < δ,

√
δ1wfmax + P (M c) < δ

Hence, we have
lim
N→∞

sup
i∈A1

sup
α≥0

(P (φi,α = 0)− P (φ∗i,α = 0)) ≤ 0

or
lim
N→∞

inf
i∈A1

inf
α≥0

(P (φi,α = 1)− P (φ∗i,α = 1)) ≥ 0
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B Proof of Lemmas A.1, A.2

Proof of Lemma A.1

Proof. (1) Let 1 − T̃m(.) be the cumulative function of a t distribution with m degree of
freedom and 1− Φ̃(.) be the cumulative function of a normal. Let tm(.) and φ(.) be there
density function. We first show that for any fixed value t ≥ 0, we have

2Φ̃(
√
t) ≤ F̃i(t) ≤ 2T̃m(

√
t) (5)

Let a(τ 2) := P (
x2
i

τ2+σ̂2
i
≥ t) = P (

(τ2+σ2
i )z2

τ2+σ2
i u
≥ t), where z be a random variable with standard

normal distribution and u be a random variable distributed as χ2
m

m
, z and u are independent.

The function a(τ 2) has a non-positive first derivative with respect to τ 2:

da(τ 2)

dτ 2
=

d

dτ 2

∫ ∞
0

∫
z2≥

t(τ2+uσ2
i

)

τ2+σ2
i

φ(z)dzfu(u)du

=

∫ ∞
u=0

fu(u)φ(

√
t(τ 2 + uσ2

i )

τ 2 + σ2
i

)

√
τ 2 + σ2

i

t(τ 2 + uσ2
i )

σ2
i t(u− 1)

(τ 2 + σ2
i )

2
du

∝
∫ ∞
u=0

fu(u)e
− t(τ

2+uσ2
i )

τ2+σ2
i

√
1

τ 2 + uσ2
i

(u− 1)du

The expected value of u is 1:
∫∞
x=0

fu(x)(u− 1) = 0 and e
− t(τ

2+uσ2
i )

τ2+σ2
i

√
1

τ2+uσ2
i

is a decreasing

function of u, thus a(τ 2) has a non-positive first derivative with respect to τ 2. For any
fixed t ≥ 0, we have

a(∞) ≤ P (
x2
i

τ 2 + σ̂2
i

≥ t) ≤ a(0)

We use the fact that a(∞) = 2Φ̃(
√
t) and a(0) = 2T̃m(

√
t) to get equation (5). It is also

easy to check that for any fixed non-negative t, T̃m(t) is non-increasing in m because when
m1 < m2, the density ratio between the t-distribution with degree of freedom m1 and that
with degree of freedom m2 is non-decreasing in the positive part and non-increasing in the
negative part. As a result, T̃m(t) is non-increasing in m for any fixed t and F̃i(t) ≤ 2T̃5(

√
t).

Apply the Mill’s ratio result for the t-distribution(Soms (1976)):

T̃m(t) <
tm(t)

t
(1 +

t2

m
) (6)

9



we have

F̃ (t) ≤
2Γ(m+1

2
)

√
πmtΓ(m

2
)
(1 +

t

m
)−

m−1
2 <

√
2

π
(
t

m
)−

m
2 → λ(

lα1

N
) . (

N

lα1

)
2
5

As a direct result, we have ∆1

τ2+1
λ(α1

N
)→ 0. Because ∆2,l ≤ α2 log( 1

α2
), we have λ(α2)α2 log 1

α2
→

0, hence supl≥0 ∆2,lλ(λ2)→ 0. The result supl≥1
∆2,l

τ2+1
λ( lα1

N
)→ 0 also holds because

• If l
N

is a positive constant,
∆2,l

τ2+1
→ 0 because α2 → 0.

• If l
N
→ 0 and l

N
& log2 N

N
,

∆2,l

τ2+1
. l

N
log N

l
, λ( lα1

N
)

∆2,l

τ2+1
→ 0.

• If l
N

. log2N
N

,
∆2,l

τ2+1
. log2 N

N
log N

log2 N
and N

2
5

∆2,l

τ2+1
→ 0, hence we have λ( lα1

N
)

∆2,l

τ2+1
→ 0.

(2)Based on part (1) and the fact that ∆2,0 ≤ ∆2,1, let α3 = min
(
α2,

(l∨1)α1

N

)
, we have:

sup
l≥0

sup
α≥α3

∆1 + ∆2,l

τ 2 + 1
λ(α)→ 0 (7)

Because τ 2
l ≤ τ 2, we always have

P (pi,l≤α)

α
≥ 1, and we need only to check that, for any

δ > 0,
P (pi,l≤α)

α
≤ 1 + δ holds uniformly for large N . We break the expression in the

statement into two parts:

sup
i,l

sup
α≥α3

P (pi,l ≤ α))/α = sup
i,l,α

∫ ∞
y=0

P (x2
i ≥ (y + τ 2

l )F̃−1
i (α))fσ̂2

i
(y)dy/α = sup

i,l,α
(I1,i,l,α + I2,i,l,α)

where I1,i,l,α =
∫
y+τ2

τ2+C
F̃−1
i (α)> 1

δ

P (x2
i ≥ (y+τ 2

l )F̃−1
i (α))fσ̂2

i
(y)dy/α and I2,i,l,α =

∫
y+τ2

τ2+C
F̃−1
i (α)≤ 1

δ

P (x2
i ≥

(y + τ 2
l )F̃−1

i (α))fσ̂2
i
(y)dy/α, with δ being any positive constant. For I1,i,l,α, we use the fol-

lowing Mill’s result for the normal(Gordon (1941))

t

t2 + 1
φ(t) < Φ̃(t) <

φ(t)

t
(8)

to upper bound P (x2
i ≥ (y+τ 2

l )F̃−1
i (α)) and lower bound P (x2

i ≥ (y+τ 2)F̃−1
i (α)) in terms

of the density:

I1,i,l,α ≤
∫
y+τ2

τ2+C
F̃−1
i (α)> 1

δ

P (x2
i ≥ (y + τ 2)F̃−1

i (α))
τ 2 + σ2

i + (y + τ 2)F̃−1
i (α)

(y + τ 2
l )F̃−1

i (α)
e

(∆1+∆2,l)F̃
−1
i

(α)

2(τ2+σ2
i

) fσ̂2
i
(y)dy/α

10



≤
∫
y+τ2

τ2+C
F̃−1
i (α)> 1

δ

P (x2
i ≥ (y + τ 2)F̃−1

i (α))(1 +
τ 2 + σ2

i + (∆1 + ∆2,l)F̃
−1
i (α)

(y + τ 2
l )F̃−1

i (α)
)e

(∆1+∆2,l)F̃
−1
i

(α)

2(τ2+σ2
i

) fσ̂2
i
(y)dy/α

For I2,i,l,α:

I2,i,l,α −
∫
y+τ2

τ2+C
F̃−1
i (α)≤ 1

δ

P (x2
i ≥ (y + τ 2)F̃−1

i (α))fσ̂2
i
(y)dy/α

=

∫
y+τ2

τ2+C
F̃−1
i (α)≤ 1

δ

(
P (x2

i ≥ (y + τ 2
l )F̃−1

i (α))− P (x2
i ≥ (y + τ 2)F̃−1

i (α))
)
fσ̂2

i
(y)dy/α

Recall that P (x2
i ≥ (y + τ 2)F̃−1

i (α)) = 2Φ̃(

√
(y+τ2)F̃−1

i (α)

τ2+σ2
i

) and P (x2
i ≥ (y + τ 2

l )F̃−1
i (α)) =

2Φ̃(

√
(y+τ2

l )F̃−1
i (α)

τ2+σ2
i

), we can bound the difference by the product of the difference in the

interval length and the upper bound of the normal density

2Φ̃(

√
(y + τ 2

l )F̃−1
i (α)

τ 2 + σ2
i

)−2Φ̃(

√
(y + τ 2)F̃−1

i (α)

τ 2 + σ2
i

) ≤ 2

√
1

2π
(

√
(y + τ 2)F̃−1

i (α)

τ 2 + σ2
i

−

√
(y + τ 2

l )F̃−1
i (α)

τ 2 + σ2
i

)

We know that for any positive value x, y, we have
√
x+ y ≤

√
x+
√
y, as a result, we have

2Φ̃(

√
(y+τ2

l )F̃−1
i (α)

τ2+σ2
i

)− 2Φ̃(

√
(y+τ2)F̃−1

i (α)

τ2+σ2
i

)

2Φ̃(

√
(y+τ2)F̃−1

i (α)

τ2+σ2
i

)

≤

√
(τ2−τ2

l )F̃−1
i (α)

2π(τ2+σ2
i )

Φ̃(

√
(y+τ2)F̃−1

i (α)

τ2+σ2
i

)

In other words, we have

I2,i,l,α ≤
∫
y+τ2

τ2+C
F̃−1
i (α)≤ 1

δ

P (x2
i ≥ (y + τ 2)F̃−1

i (α))(1 +

√
(τ2−τ2

l )F̃−1
i (α)

2π(τ2+σ2
i )

Φ̃(
√

C
δ

)
)fσ̂2

i
(y)dy/α

Combine them together and apply equation (7), we have

sup
i,l,α

(I1,i,l,α + I2,i,l,α − 1) ≤ sup
i,l,α

(

∫
y+τ2

C+τ2 F̃
−1(α)≤ 1

δ

P (x2
i ≥ (y + τ 2)F̃−1

i (α))

√
(∆1+∆2,l)F̃−1(α)

2π(τ2+C)

Φ̃(
√

C
δ

)
fσ̂2

i
(y)dy/α
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+

∫
y+τ2

C+τ2 F̃
−1
i (α)> 1

δ

P (x2
i ≥ (y + τ 2)F̃−1

i (α))
τ 2 + σ2

i + (∆1 + ∆2,l)F̃
−1
i (α)

(y + τ 2
l )F̃−1

i (α)
e

(∆1+∆2,l)F̃
−1
i

(α)

2(τ2+σ2
i

) fσ̂2
i
(y)dy/α)

→ sup
i,l,α

∫
y+τ2

C+τ2 F̃
−1
i (α)> 1

δ

P (x2
i ≥ (y + τ 2)F̃−1

i (α))
τ 2 + σ2

i

(y + τ 2
l )F̃−1

i (α)
fσ̂2

i
(y)dy/α

≤ sup
i,l,α

∫
y+τ2

C+τ2 F̃
−1
i (α)> 1

δ

P (x2
i ≥ (y + τ 2)F̃−1

i (α))
τ 2 + C

(τ2+C)
δ
− (∆1 + ∆2,l)F̃

−1
i (α)

fσ̂2
i
(y)dy/α

→ sup
i,α

∫
y+τ2

C+τ2 F̃
−1
i (α)> 1

δ

δP (x2
i ≥ (y + τ 2)F̃−1

i (α))fσ̂2
i
(y)dy/α < δ

As it holds for any δ > 0, we have limN→∞ supi∈A0
supl≥0 sup

α≥min
(

(α2∨ log2 N
N

),
(l∨1)α1
N

) P (pi,l≥α)

α
=

1
(3) At k + 1th iteration, for every point we removed, they need to satisfy that x2

i ≥
F̃−1
i (α1)(τ̂ 2

Sk
+ σ̂2

i ). From equation (5), we have(recall that α1 <
1
2e

):

F̃−1(α1) ≥ (Φ̃−1(
α1

2
))2 > 1

as a result, x2
i − σ̂2

i ≥ τ̂ 2
Sk
⇒ the τ 2 estimate is non-increasing.

Proof of Lemma A.2

Proof of M0 happening with probability approaching one: We know that σ̂2
i ∼ σ2

i
χ2
m

m

and x2
i ∼ (τ 2 + σ2

i )χ
2
1. Because σ2

i ≤ C, we have E[x2
i − σ̂2

i ] = τ 2 and V ar[x2
i − σ̂2

i ] ≤
τ 2 + (1 + 1

m
)C. Result follows from the Chebyshev’s inequality.

Proof of M1 happening with probability approaching one: For the event M1, con-
sider the event Ak,l := {|B1,l| = k}. Use Lemma A.1 part (2), and take δ < 1

2eα1
− 1, for

large enough N :

sup
i∈A0

sup
l≥0,k≥1

P (pi,l ≤ (l+k)α1

N
)

(l+k)α1

N

< 1 + δ (9)

Event Ak,l is contained in the event that there are k null p-values at most (l+k)α1

N
, hence,

P (Ak,l) ≤
(
|A0|
k

)
( l+k
N

(1 + δ)α1)k. Let kl := d|A0|max( l
N
, log2N

N
)e, for l = 0, 1, . . . , |A1|,

12



we have

P (M c
1) ≤

|A1|∑
l=0

∑
k≥kl

(
|A0|
k

)
(
l + k

N
(1 + δ)α1)k

Let ak,l =

(
|A0|
k

)
(k+l
N

(1 + δ)α1)k, uk,l = k+l
k

. It is easy to check that uk,l is decreasing

in k and x 7→ xe1/x is increasing on [1,∞]. For k ≥ kl ≥ (1− γ)l, we have that uk,l ≤ 2
1−γ ,

and (1 + 1
k+l

)k ≤ e1/uk,l , as log(1 + 1
k+l

)k = k log(1 + 1
k+l

) ≤ k
k+l

. Hence, for large N and
any l considered, ak,l is non-increasing in k when k ≥ kl:

sup
l,k

ak+1,l

ak,l
= sup

l,k

(|A0| − k)

k + 1

(k + l + 1)(1 + δ)α1

N
(1 +

1

k + l
)k

≤ sup
l,k

(1− γ)(1 + δ)α1uk,le
1

uk,l

≤(1− γ)(1 + δ)α1
2

1− γ
e

1−γ
2 < 2

√
e(1 + δ)α1 < 1

Using sterling’s approximations to upper bound al,kl , the probability of M c
1 can be bounded

as

P (M c
1) ≤

|A1|∑
l=0

|A0|al,dkle ≤
|A1|∑
l=0

|A0|
|A0|kl+|A0|−kl

kkll (|A0| − kl)|A0|−kl
(
kl + l

N
(1 + δ)α1)kl

=

|A1|∑
l=0

|A0|
|A0||A0|−kl

(|A0| − kl)|A0|−kl
(
|A0|
N

)kl(
kl + l

kl
(1 + δ)α1)kl

=

|A1|∑
l=0

|A0| exp(kl log(ukl,l(1− γ)(1 + δ)α1) + (|A0| − kl) log
|A0|
|A0| − kl

)

≤
|A1|∑
l=0

|A0| exp

(
kl log(2(1 + δ)α1) + (|A0| − kl) log

|A0|
|A0| − kl

)
The quantity inside the exponential is a decreasing function of kl, as its derivative is

(log(2(1 + δ)α1) + 1 + log(
|A0| − kl
|A0|

) < 0
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Thus, for all l, it is less than or equal to its value at kl = d log2N
N
|A0|e. For kl = d log2 N

N
|A0|e,

we have (|A0|−kl) log |A0|
|A0|−kl

= kl(o(1)+1), and P (M1) ≥ 1−N2ekl(log(2(1+δ)α1)+1+o(1)) → 1.
Proof of M2 happening with probability approaching one: For the event M2, we
only need to check B2,|A1| because B2,l ⊆ B2,l′ for all l ≤ l′. By Lemma A.1 part (2),

supi supl
P (pi,l≤α2)

α2
≤ (1 + δ). As a result, |B2,|A1|| is at most y ∼Bin(|A0|, (1 + δ)α2).

The variable y has mean (1 + δ)α2|A0| and variance bounded by (1 + δ)α2|A0|. We apply
Chebyshev’s inequality and reach our conclusion P (M2) = P (|B1,Nγ| ≤ 2α2|A0|) ≥ P (y ≤
2α2|A0|) ≥ 1− (1+δ)

(1−δ)2α2|A0| → 1.

Proof of M3 happening with probability approaching one: Let x̃2
α be the upper αth

quantile of {x2
i , i ∈ A0}. It is sufficient to consider Aα, the set of x2

i whose value is no

smaller than x̃α, so |Aα| = dα|A0|e. Let D1 = {∀l = 0, 1, . . . , |A1|,
x̃2
tl

2(τ2+C) log 1
tl

≤ 1}. Let

z be a standard normal variable. For each i ∈ A0, we have P (x2
i ≥ 2(τ 2 + C) log 1

tl
) ≤

P (z2 ≥ 2(τ 2 +C) log 1
tl

) = 2Φ̃(
√

2 log 1
tl

)
eq.(8)

≤ tl√
π log 1

tl

. Because |A0| > cN for some positive

constant c and tl ∈ [ log2N
N

, α2), we apply the sterling’s approximations:

P (Dc
1) ≤ N

|A1|
max
l=0

(
|A0|
d|A0|tle

)
P (x2

i ≥ 2(τ 2 + C) log
1

tl
)d|A0|tle ≤

|A1|
max
l=0

N( tl√
π log 1

tl

)|A0|tl

t
|A0|tl
l (1− tl)|A0|−|A0|tl

As tl goes to 0 in l, for large enough N , we have

1

t
|A0|tl
l (1− tl)|A0|(1−tl)

= exp (−|A0|tl log tl − |A0|(1− tl) log(1− tl)) ≤ exp(−|A0|tl log tl+2|A0|tl)

As tl ≥ log2 N
N

, |A0| > cN , for N large enough, we have P (Dc
1) ≤ N exp(|A0|tl(2 −

1
2

log log 1
tl

))→ 0.

Now we show M3 happens high probability. As tl ≥ log2 N
N

and |A0| > cN , for N
large enough, we have 0.3(τ 2 + C)tl|A0| log 1

tl
≥ 8(τ 2 + C) logN . Let M ′

3 = {∀l =

0, 1, . . . , |A1|,
∑

i∈Atl
x2
i ≤ 2.2(τ 2 +C)tl|A0| log 1

tl
+ 8(τ 2 +C) logN}, we have M ′

3 ⊆M3 for

large N . Let Ãtl be nulls such that x2
i ≥ 2(τ 2 + C) log 1

tl
. When D1 is true, if x2

i exceeds

2(τ 2 + C) log 1
tl

, it must also exceeds x̃2
tl
, in other words, Ãtl ⊆ Atl . Since |Atl | = dtl|A0|e

and x2
i − 2.2(τ 2 + C) log 1

tl
< 0 for i 6= Ãtl , for N large enough:

{M ′
2, D1} ={∀l = 0, 1, . . . , |A1|,

∑
i∈Atl

x2
i ≤ 2.2(τ 2 + C)tl|A0| log

1

tl
+ 8(τ 2 + C) logN,D1}
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⊆{∀l = 0, 1, . . . , |A1|,
∑
i∈Ãtl

(x2
i − 2.2(τ 2 + C) log

1

tl
)

︸ ︷︷ ︸
Il

) ≤ 8(τ 2 + C) logN} ∩D1

Let wi = τ2+C
τ2+σ2

i
∈ [1, C], zi = xi√

τ2+σ2
i

∼ N(0, 1) for i ∈ A0. Rearrange Il:

Il =
∑
i∈A0

(x2
i − 2.2(τ 2 + C) log

1

tl
)1x2

i≥2(τ2+C) log 1
tl

= (τ 2 + C)
∑
i∈A0

1

wi
(z2
i − 2.2wi log

1

tl
)1z2

i≥2wi log 1
tl

Let yi := 1
wi

(z2
i −2.2wi log 1

tl
)1z2

i≥2wi log 1
tl

. The moment generating function of yi is(λ < wi
2

):

Myi(λ) = 2

∫
zi≥

√
2wi log 1

tl

exp(
1

wi
(z2
i − 2.2wi log

1

tl
)λ)

1√
2π

exp(−z
2
i

2
)dzi + P (z2

i ≤ 2wi log
1

tl
)

=
2√

1− 2 λ
wi

exp(−2.2λ log
1

tl
)Φ̃(

√
(1− 2

λ

wi
)2wi log

1

tl
) + (1− 2Φ̃(

√
2wi log

1

tl
))

By the Mill’s ratio bound (8), we have

Myi(λ) ≤ 1 + 2twil (
t0.2λl

(1− 2 λ
wi

)
√

4wiπ log 1
tl

−

√
2wi log 1

tl√
2π(1 + 2wi log 1

tl
)
)

Take λ = 1
4
. Because we have tl → 0 over l, for N large enough, we have Myi(

1
4
) ≤ 1.

As a result, for N large enough: P (Il ≥ 8(τ 2 + C) logN) = P (
∑

i∈A0
yi ≥ 8 logN) ≤∏

i∈A0
(Myi (

1
4

))

exp(2 logN)
≤ 1

N2 , and

P (
|A1|

max
l=0

Il ≤ 8(τ 2 + C) logN)→ 1⇒ P (M ′
3)→ 1⇒ P (M3)→ 1

Proof of M4 and M5 happening with probability approaching one: For a small
constant c, we define I1,l =

∑
i∈A1

(x2
i−σ̂2

i −τ 2
l )1σ̂2

i≥c1x2
i≤F̃

−1
i (α2)(τ2

l +σ̂2
i ) and I2,l =

∑
i∈A1

(x2
i−

σ̂2
i − τ 2

l )1σ̂2
i<c

1x2
i≤F̃

−1
i (α2)(τ2

l +σ̂2
i ). We want to show I1,l + I2,l ≥ −(τ 2 + 1)(1− γ)

√
|A1| logN

for all l with high probablity. Let ε and L be the constants in Assumption 2.2. We have
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τ 2
l ≤ τ 2 and for the smallest τ 2

|A1|, we have
τ2−τ2

|A1|
τ2+1

→ 0. As α2 → 0, for large enough N ,

we have (F̃−1
i (α2)− 1− ε)(τ 2

l + 1) > L(τ 2 + 1) and

{x2
i − (1 + ε)σ̂2

i ≤ L(τ 2 + 1)} ∩ {σ̂2
i ≥ c} ⊆ {x2

i ≤ F̃−1
i (α2)(τ 2

l + σ̂2
i )} ∩ {σ̂2

i ≥ c}

If we include any point in {x2
i − (1+ ε)σ̂2

i ≥ L(τ 2 +1)}, we increase I1,l. Using also τ 2 ≥ τ 2
l ,

we have Il,1 ≥
∑

i∈A1
(x2

i − σ̂2
i −τ 2)1σ̂2

i≥c1x2
i−(1+ε)σ̂2

i≤L(τ2+1). If we include any point in {x2
i −

(σ̂2 + τ 2
l ) ≥ 0}, we increase I2. Thus, we have I2 ≥ −(c + τ 2

l )
∑

i∈A1
1σ̂2

i<c
1x2

i−(σ̂2+τ2
l )≤0 ≥

−(c+ τ 2)
∑

i∈A1
1σ̂2

i<c
1x2

i−(1+ε)σ̂2≤L(τ2+1). Hence, we have

I1,l + I2,l ≥
∑
i∈A1

[(x2
i − σ̂2

i − τ 2)1σ̂2
i≥c − (τ 2 + c)1σ̂2

i<c
]1x2

i−(1+ε)σ̂2≤L(τ2+1)

The lower bounds no longer involve l. Let yi = [(x2
i−σ̂2

i−τ 2)1σ̂2
i≥c−(τ 2+c)1σ̂2

i<c
]1x2

i−(1+ε)σ̂2
i≤L(τ2+1)

and let Ã = {i : x2
i − (1 + ε)σ̂2

i ≤ L(τ 2 + 1)}, we have E[yi] = P (Ã)E[(x2
i − σ̂2

i − τ 2)1σ̂2
i≥c−

(τ 2 + c)1σ̂2
i<c
|Ã]. For any y ≥ 0, we have

E[1σ̂2
i<y
|Ã] =

∫
t≥0

P (σ̂2
i ≤ y|(1 + ε)σ̂2

i ≥ t− (L+ 1))dP (x2
i > t)

≤
∫
t≥0

P (σ̂2
i ≤ y)dP (x2

i > t) = P (σ̂2
i ≤ y)

E[σ̂2
i |Ã] =

∫
y≥0

ydP (σ̂2
i > y|Ã) ≥

∫
y≥0

ydP (σ̂2
i > y) = E[σ̂2

i ]

E[x2
i1σ̂2

i<c
|Ã] = P (σ̂2

i < c)

∫ ∞
t=0

E[x2
i |x2

i ≤ (1 + ε)t+ L(τ 2 + 1)]
dP (σ̂2

i < t|σ̂2
i ≤ c)

dP (σ̂2
i < t)

dP (σ̂2
i < t)

Because E[x2
i |x2

i ≤ (1 + ε)t + L(τ 2 + 1)] is non-decreasing in t and
dP (σ̂2

i<t|σ̂2
i≤c)

dP (σ̂2
i<t)

is non-

increasing in t, we have

E[x2
i1σ̂2

i<c
|Ã] ≤ P (σ̂2

i < c)

∫ ∞
t=0

E[x2
i |x2

i ≤ (1+ε)t+L(τ 2+1)]dP (σ̂2
i < t) = P (σ̂2

i < c)E[x2
i |Ã]

We can now lower bound E[(x2
i − σ̂2

i − τ 2)1σ̂2
i≥c|Ã]:

E[(x2
i − σ̂2

i − τ 2)1σ̂2
i≥c|Ã] ≥ E[x2

i − σ̂2
i |Ã]− E[x2

i1σ̂2
i<c
|Ã]− τ 2

≥ E[x2
i − σ̂2

i |Ã]− P (σ̂2
i < c)E[x2

i |Ã]− τ 2
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By Assumption 2.2, we have E[x2
i − (1 + ε)σ̂2

i |Ã] ≥ (1 + ε)τ 2, if we take c small enough
such that maxi∈A1 P (σ̂2

i < c) ≤ ε
2(1+ε)

, we have

E[yi] ≥ E[x2
i − σ̂2

i |Ã]− P (σ̂2
i < c)E[x2

i |Ã]− τ 2

≥ (1− ε

2(1 + ε)
)E[x2

i − (1 + ε)σ̂2
i |Ã] +

ε

2
E[σ̂2

i |Ã]− τ 2

≥ (1− ε

2(1 + ε)
)(1 + ε)τ 2 − τ 2 +

ε

2
> 0

We can also bound E[y2
i ]:

E[y2
i ] = E[(x2

i − σ̂2
i − τ 2)2

1σ̂2
i≥c1Ã + (τ 2 + c)2

1σ̂2
i<c

1Ã]

When Ã is true, (x2
i − σ̂2

i − τ 2)2 ≤ max((σ̂2
i + τ 2)2, (L(τ 2 + 1) + εσ̂2

i )
2), therefore, we have

E[y2
i ] ≤ (τ 2 + c)2 + E[(σ̂2

i + τ 2)2] + E[(L(τ 2 + 1) + εσ̂2
i )

2]

≤ (τ 2 + 1)2 + (1 + ε2)E[σ̂4
i ] + (1 + L2)(τ 2 + 1)2 + 2(τ 2 + L(τ 2 + 1))E[σ̂2

i ]

≤ (1 + L2 + (1 + ε2)C2(1 +
1

m
) + 2(L+ 2)C)(τ 2 + 1)2

We apply the Chebyshev’s inequality to
∑

i∈A1
yi:

P (
∑
i∈A1

yi ≥ −(1− γ)
√
|A1| logN(τ 2 + 1))→ 1

As we have I1,l + I2,l ≤
∑

i∈A1
yi holds for all l, hence, P (M4) → 1. For the event M5, we

have
∑

i∈A1
(x2

i − σ̂2
i − τ 2) ≤

∑
i∈A1

(x2
i − σ̂2

i − τ 2)1Ã ≤
∑

i∈A1
yi. Therefore P (M5)→ 1.

C Estimation procedures

In this section, we give the details of the truncated MLE estimate and the CM estimate of
the spreading factor τ 2.
Truncated MLE: Let C be a normalization constant depending on the context, the
likelihood function of the observed points from null distribution with mean level µi in
terms of sufficient statistics x̄i and σ̂2

i (σ̂
2
i = mσ̂2

x̄i
, σ2

i = mσ2
x̄i

) is

f = C
∏
i∈A0

(τ 2)−
1
2σ
−(m−k)
i e−

(x̄i−µi)
2

2τ2 e
− (m−k)σ̂2

i
2σ2
i
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marginalized out µi:

f = C
∏
i∈A0

(τ 2 + σ2
x̄i

)−
1
2σ
−(m−k)
i exp(−(m− k)σ̂2

i

2σ2
i

− x̄2
i

2(τ 2 + σ2
x̄i)

) (10)

For points in A0 with mean difference x̄i in (−δ0, δ0), for a positive value δ0, this truncated
likelihood function is:

ftruncated = C
∏

i∈A0,x̄i∈(−δ0,δ0)

I[x̄i∈(−δ0,δ0)]

H(τ 2, σ2
x̄i)

(τ 2 +σ2
x̄i

)−
1
2σ
−(m−k)
i exp(−(m− k)σ̂2

i

2σ2
i

− x̄2
i

2(τ 2 + σ2
x̄i)

)

where

H(τ, σ2
x̄i

) =

∫
x∈[−δ0,δ0]

1√
2π(τ 2 + σ2

x̄i)
exp(− x2

2(τ 2 + σ2
x̄i)

)

Assuming that the observed {x̄i, ∀i ∈ A1} will not fall into the range (−δ0, δ0), we have

ftruncated = C
∏

x̄i∈(−δ0,δ0)

I[x̄i∈(−δ0,δ0)]

H(τ 2, σ2
x̄i)

(τ 2 + σ2
x̄i

)−
1
2σ
−(m−k)
i exp(−(m− k)σ̂2

i

2σ2
i

− x̄2
i

2(τ 2 + σ2
x̄i)

)

ltruncated = − log ftruncated

= C +
N∑
i=1

I[x̄i∈(−δ0,δ0)](logHi +
log(τ 2 + σ2

x̄i
)

2
+
m− k

2
log σ2

i +
(m− k)σ̂2

i

2σ2
i

+
x̄2
i

2(τ 2 + σ2
x̄i)

)

(11)

We can find the minimizer to the above target function by iteratively updating τ 2 and
{σ2

i : −δ0 ≤ x̄i ≤ δ0}. We start from τ 2 = τ̃ 2 = 0 and do the following,

For τ 2 fixed at τ̃ 2, find solutions to {σ2
i } :

σ̃2
i = arg min

σ2
i

logHi +
log(τ 2 + σ2

x̄i
)

2
+
m− k

2
log σ2

i +
(m− k)σ̂2

i

2σ2
i

+
x̄2
i

2(τ 2 + σ2
x̄i)

For {σ2
i } fixed at {σ̃2

i }, find solution to τ 2 :

τ̃ 2
i = arg min

τ2

N∑
i=1

I[x̄i∈(−δ0,δ0)](logHi +
log(τ 2 + σ2

x̄i
)

2
+

x̄2
i

2(τ 2 + σ2
x̄i)

)
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CM: The marginal density of x̄i(marginalized over the index i) for all genes can be written
as following

f(x|τ) ∼ 1

N

∑
i∈A0

e
− x2

2(σ2
x̄i

+τ2)√
2π(σ2

x̄i + τ 2)
+

1

N

∑
i∈A1

hi(x) (12)

where hi(.) is the density function for x̄i when i ∈ A1, which is gi(µ) convolved with the a

normal distribution describing the noise in x̄i: hi(x) =
∫
gi(µ) 1√

2πσ2
x̄i

e
− (x−µ)2

2σ2
x̄i dµ.

Like in truncated MLE method, we assume that A1’s contribution to the region [−δ0, δ0]
is negeligiable. Doing a first order Taylor expansion of the marginal density function f(x|τ)
and for x ∈ [−δ0, δ0], we have

f(x|τ) ≈ 1

N

∑
i∈A0

1√
2π(σ2

x̄i + τ 2)
(1− x2

2(σ2
x̄i + τ 2)

)

l(x) = log f(x) ≈ C −
∑
i∈A0

x2

2(σ2
x̄i + τ 2)

3
2

∑
i∈A0

1√
σ2
x̄i

+τ2

In other words, let b̂(x) be the observation count at the bin centered at x after binning
observations in [−δ0, δ0]. We can estimate the coefficient before τ 2 simply by the following,

1. Fit the poisson regression model:

b̂(x) ∼ Poisson(µ(x)); log(µ(x)) = l(x) + log(N) = α + βx2

and denote the fitted coefficient to x2 as β̂.

(Such binning and fitting steps are also used by the R function locfdr.)

2. Use the relationships below and do grid search of τ 2:

N∑
i=1

1

2(σ2
x̄i + τ 2)

3
2

∑N
i=1

1√
σ2
x̄i

+τ2

= −β̂

with σ2
x̄i

replaced by σ̂2
x̄i

.

Intuitively, the three procedures are different in several perspectives:
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1. ITEB starts by treating the full data set as null and iteratively removing genes with
large values, it usually ends up estimating using a set of genes much larger than the
other two methods. As a result, it is be able to utilize more information from the
data, but it suffers more from initially overestimating τ 2 when γ is large (We care
about small γ in our case).

2. CM relies on the first order Taylor expansion of the log likelihood around a small
region near 0 if τ 2 is not large enough and needs to plug in variance estimates in the
denominator, which makes it less accurate when τ 2 is not large.

3. Both the truncated MLE method and CM need to know the specific form of the
likelihood for the null distribution, while ITEB uses only the moments, which makes
its application to complicated distributions straightforward.

In Appendix D, we compare performances of the three estimates in different scenarios
and discuss their strengths and weaknesses.

D Results with different τ 2-estimation approaches

D.1 Simulation: Estimate of τ 2

For simplicity, we focus on the one-sample setting and generate data under various values
of τ and non-null proportion γ = |A1|

N
. Specifically, we fix N = 15000,m = 10, which

is of the same order as typical knock-down data. For any given τ and γ, where γ =
0, 2%, 5%, 7%, 10% and τ = 0, 0.1, ..., 1, 1.5, 2, 2.5, 3, we generate the data as below.

1. Generate µis: µi ∼
{
N(0, τ 2) ∀i ∈ A0

±U [1,max(3, 10τ)] ∀i ∈ A1

where U [1,max(3, 10τ)] is the uniform distribution between 1 and max(3, 10τ), and
the signs of µis will be half positive and half negative.

2. Generate variances for genes in one of the two settings:

(a) Independently generate σ2
i ∼ χ2

1.

(b) Sample σ2
i from its empirical distribution in the real data set, scaled to have

mean level 1.
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We used the three approaches to estimate τ with (α1, α2) = (0.1, 0.01) for ITEB and leave-
out proportion to be 0.05 both for truncated MLE and CM. Motivated by the ITEB esti-
mation, we can also set this proportion adaptively. For example, a simplest approach will
consist of two-steps: (1) get an initial estimation of τ 2, based on the truncated MLE/CM
estimation with a large left-out proportion, say, 0.2, and (2) let J be the set contains the
rejected null hypotheses as described in the ITEB algorithm with this initial estimation, we
then get the truncated MLE estimation or the CM estimation with the leave-out proportion
being |J |

N
. We also include the adaptive truncated MLE and the adaptive CM estimations

in our results, and the oracle estimation where τ̂ 2 = [
∑
i∈A0

(x̄2
i−σ̂2

x̄i
)

|A0| ]+ with known null set
A0 as a benchmark for better comparison.

We repeat the simulations 100 times and plot the square root of relative mean `2 loss

err =

√∑100
i=1(τ̂2−τ2)2

100
1

(τ2+0.2)
for visualization, results are given in Figure 1. We have also

consider the case where the data is not normal by generating parameters in the same way
but with Laplacian distributed noise (means and variances are matched), results are given
in Figure 2.
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Figure 1: Gaussian noise, with the upper half being setting (a) and the lower half being
setting (b). The curves represent

√
err ∼ τ . TruncatedMLE and CM represent the two

alternative estimation methods with adaptive leave-out proportions while TruncatedMLE5
and CM5 represent the estimations with leave-out proportion being 0.05.
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Figure 2: Laplacian noise, with the upper half being setting (a) and the lower half being
setting (b). The curves represent

√
err ∼ τ . TruncatedMLE and CM represent the two

alternative estimation methods with adaptive leave-out proportions while TruncatedMLE5
and CM5 represent the estimations with leave-out proportion being 0.05.

We can see that

1. The two non-adaptive estimations produce much worse estimations when the non-
null proportion is large. If we set the leave-out proportion to be large, say, 0.1,
although we will suffer less from large γ, we will large variances. The adaptive leave-
out proportion is a solution to this problem. Figure 3 shows the square root of the
standard deviation sd with leave-out proportion being 0.05 and 0.2.
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Figure 3: Laplacian noise, with the upper half being setting (a) and the lower half being
setting (b). The curves represent

√
sd ∼ τ .

2. CM, adaptive or non-adaptive, is not a good approach estimating τ 2 when τ 2 is not
large. It is not surprising as CM is a result of the first order approximation.

3. Both ITEB and the adaptive truncated MLE achieve the adaptive goal successfully
and ITEB’s performance is as good as the adaptiveTruncated MLE, if not better,
across the parameters we have considered. When γ is small, the ITEB estimation is
as good as the oracle estimation and it has quite good performance even with γ as
large as 0.1.

D.2 Real data results with different τ 2-estimation approaches

In this section, we show the real data results using ITEB, adaptive truncated MLE and
adaptive CM. Figure 4 provides quality evaluation of the top K genes in different ranking
lists respectively. The evaluation becomes very volatile when the number of selected genes
is too small and we add an vertical grey line representing where the top 50 genes is.
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Figure 4: Percent of genes with ChIP-seq nearby versus versus selected gene size. The x-
axis is k, the threshold of the ranking on the whole list created with different τ 2 estimation
approaches, and we only consider the top k genes from each ranking list.

We can see that the ITEB, the truncated MLE and CM result in ranking list that
are very similar, and Table 1 shows the overlapping of the top K genes based on the
CM/truncated MLE estimation and the ITEB estimation, for K = 50, 100, 150, 200.

Table 1: Ranking lists overlapping based on ITEB and other estimation approaches

POU5F1 NANOG
K TruncatedMLE CM TruncatedMLE CM
50 0.84 0.88 0.90 0.92

100 0.93 0.95 0.92 0.96
150 0.95 0.96 0.92 0.93
200 0.94 0.96 0.94 0.95

The cut-offs based on FWER and FDR are more sensitive to the τ 2 estimation, and the
ITEB provides more conservative cut-offs.
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Table 2: S0, S1, S2 results with FDR/FWER level set at 0.01

TF size(S0 ) percent(S0) size(S1) percent(S1) size(S2) percent(S2)
FDR POU5F1 87 0.73 271 0.61 198 0.66

NANOG 43 0.81 158 0.77 108 0.78
FWER POU5F1 31 0.74 85 0.74 70 0.75

NANOG 20 0.8 50 0.80 41 0.80

The third, fifth and seventh columns are the percent of genes with Chip-seq+Hi-C support
in the gene sets based on S0 (ITEB), S1 (truncated MLE) and S2 (CM) respectively.

E Materials and Methods for the knock-down exper-

iment

In this section, we provide more details about how the data is generated and justification
of pooling data across days.
Cell Culture: Mouse ES cell line R1 was obtained from Dr. Douglas Melton lab (Harvard
University, MA) and cultured under standard conditions. The cells were maintained on
gelatin-coated dishes in RPMI knockout medium with 15% knockout serum replacement
(KSR), 2 mM L-glutamine, 1 mM non-essential amino acids, 0.55 mM 2-mercaptoethanol
(Invitrogen, CA), and 1000 units/mL murine leukaemia inhibitory factor (Chemicon In-
ternational, CA). Cells were incubated in a 5% CO2–air mixture at 37oC. Cultures were
routinely passaged with 0.25% trypsin-EDTA (Invitrogen, CA) and split 1:8 every 2 days.
Normal karyotype of ESC was routinely confirmed by analysis of chromosome spreads.
RNA Interference: RNA interference (RNAi) experiments were performed with Nucleo-
fector technology. Briefly, 12 µd of plasmid DNA was transfected into 3.5× 106 mouse ES
cells using the Mouse ES cell Nucleofector kit (Lonza, Switzerland). After nucleofection,
the cells were incubated in 500 µl warm ES medium for 15 min. Then, the cells were split
into four gelatin-coated 60-mm tissue culture plates containing 5 ml of warm ES medium.
Puromycin selection was introduced 18 h later at 1 µ g/ml, and the medium was changed
daily. 30 h, 48 h, and 72 h after puromycin selection, the cells were collected for RNA
isolation.
Microarray and Data Processing: Microarray hybridizations were performed on the
MouseRef-8 v2.0 expression beadchip arrays (Illumina, CA). To prepare sample, 200 ng of
total RNA was reverse transcribed, followed by a T7 RNA polymerase-based linear ampli-
fication using the Illumina TotalPrep RNA Amplification kit (Applied Biosystems, CA).
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After amplification, 750 ng of biotin-labeled cRNA was hybridized to gene specific probes
attached to the beads, and the expression levels of transcripts were measured simultane-
ously.

References

Gordon, R. D. (1941). Values of mills’ ratio of area to bounding ordinate and of the
normal probability integral for large values of the argument. The Annals of Mathematical
Statistics 12 (3), 364–366.

Soms, A. P. (1976). An asymptotic expansion for the tail area of the t-distribution. Journal
of the American Statistical Association 71 (355), 728–730.

26


	Proof of Theorem 2.5, Theorem 2.7, Theorem 2.10 and Theorem 2.8
	Proof of Lemmas A.1, A.2 
	Estimation procedures
	Results with different 2-estimation approaches
	Simulation: Estimate of 2
	Real data results with different 2-estimation approaches

	Materials and Methods for the knock-down experiment

