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In this section we provide proofs.
Before going through the main steps, the following norm inequality is used in all of the
proofs. Take a px p generic matrix: M, and a generic p x 1 vector z. Note that M represents

1 X p, jth row vector in M, and M; is p x 1 vector (i.e. transpose of M, or column version
of M)
J

[Mally = [Miz|+ [Myz]+ - + [Myz]
< Mullallzlloe + [[Malli][€]loo + - - + | Mp]l1 1]

3 184

< pmax||Mlsflfle, (A.1)

where we use Holders inequality to get each inequality.

Next to use one of the results in Chang et al. (2019), we need the following notation.
These are defined at the beginning of the Appendix at Chang et al. (2019). Let p; =
25, + = it =25 + S s = S 4+ S+ S5 prt = max{pyt, p5 '} + E7. Then
¢ = min{p1, p2, p3, pa}. So they restrict the S mixing behaviour of data. In addition we
assume, 0 < ¢ < 1, which shapes the relation between n and logp in the next statement
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of the Theorem. To give an example: with Z; = 1,2, = 2,Z3 = 2, which provides p; ' =
2,050 =2,p3' =2,p;' = 3. These imply ¢ = 1/3.

Next we provide a result that will be useful for subsequent proofs.

Theorem A.1.Under Assumptions 1-3, with logp = o(n)

(i).
_ [logp
max 1e; - Ojll = Op(54/ = =)
R logp
I~ il = 04222,

max [|0,]; = O(V3).

1<j<p

(ii).
(iii).

Remark. Note that proof is based on Chang et al. (2019) and Caner and Kock (2018).
This is basically extending the iid proof in (B.45)-(B.55) in Caner and Kock (2018) to
stationary [ mixing case benefiting from Lemma 1 and equation (23) of Chang et al. (2019).

Proof of Theorem A.1. First, to ease the notation a bit, we take the constant 0 < { < 2
in Lemma 1 of Chang et al. (2019) between 0 < ¢ < 1 so that we have logp = o(n). Constant
( is related to 8 mixing condition.

(i). Note that Chang et al. (2019) provide results in /; norm of the nodewise regression
estimates in time series context for the first time in the literature. Their section 3 and
equations (5)-(8), via their Assumptions 1-3 justify nodewise regression. They also demean
the data by time series average. Specifically, nodewise regression estimate &; in their equation
(7) of their paper is equivalent to negative of ours: &; = —(%;1,---,1,---,7%;p) where 1 is
in j th position in p x 1 vector, 4; is defined in equation (2.1). Then equation (23) of Chang
et al. (2019) provides, under Assumptions 1-3, and logp = o(n)

_ [logp
max [l — a5y = max [|; — il = Oy (S\/ T) : (A.2)

To derive the limit for the rows of the nodewise regression based estimate for the precision
matrix, we need more than (A.2). A key result that we need to derive is the limit of the
term 72 in equation (2.2). This will help us understand the behavior of the denominator in
(2.3). By (5) and p.6 of Chang et al. (2019), for j =1,--- |p

T =1y +nj, (A.3)

and
Enr*_; = 0. (A4)

Also Lemma 1 of Chang et al. (2019) provide the following results, under Assumptions
1-3, with logp = o(n),



" logp

max [r*_;/nllo = O,/ ), (A5)
W ()09

max |22 — 72 = 0,(1/ ). (A.6)

These are the fourth and second results in the statement of Lemma 1 of Chang et al.
(2019), respectively. Now we provide a formula for the estimator 77 from (C.101) of Caner
and Kock (2018).

2 _ :
and we define 75 = Enn;:

o (5 =10 5)']
J .

n

Next using (A.3) in the formula above, and by triangle inequality or by (B.45) of Caner and
Kock (2018),

/ .
max |72 — 77| < max |w — Tf\ + max |n§-r*_j(% —7;)/n|
1<j<p

1<j<p 7 T 1< n
*/ *
+ o max [ty /n] 4 max (5 — ) (A7)
1<j<p 0T T 1<<p' 7 n b

Consider the second term in (A.7)

fr* (A — s < fe* S
max [ir”—;(%; —y;)/nl < max fr—;/nlle max |35 — 1

= 0,/ )0,/ ) = 0,s), (ag)

by (A.5) and (A.2). Given (A.3)(A.4), via Assumption 2, and using the analysis in (B.48)
of Caner and Kock (2018) we have

1l = O(V3). (A.9)
Now we consider the third term in (A.7)

max |nir*_;v;/n| < max [lgrt;/n)le max ||y

1<j<p 1<j<p 1<j<p

= 0,/ ")0,(v3) = 0,452, (A10)

by (A.5) and (A.9). Next consider the fourth term in (A.7). Before that there is a simplifi-
cation due to first order conditions in nodewise regression as in (B.49)-(B.50) of Caner and



Kock (2018)

*/ *
r A

—Jj- ] A < * .
max [|— (% — )l < max fr"_;m;/nllec + max A;.

Then using the above inequality

o [ 5~ < max [yl max [ (3 — )l
1<j<p' 7 n e Db I PP 20 n J o 13/llee
lo lo
= 0RO,/ =5) = O,(1[50), (A1)

where we use (A.9) and (A.5) with the algebraic analysis in (B.50) of Caner and Kock (2018)
and with \; = O(1/%2) for all j = 1, -+ ,p. Combine (A.6) (A.8)-(A.11) in (A.7) to have

logp
222y _togp
gﬁﬁ};m le Op( 8 n )

(A.12)

After this, given the rates in (A.2) and (A.12), via the definition of ©;, by repeating the
same analysis in (B.51)-(B.53) of Caner and Kock (2018), we have

A _ [logp
max [|8; — 6,1 = O,(54/ = =).
Q.E.D.

(ii). The analysis in Lemma 1 of Chang et al. (2019) provides the desired result.Q.E.D.

(iii). Given (A.3)-(A.4), Assumption 2, and the analysis in (B.55) of Caner and Kock
(2018) provides the result. Q.E.D.

The following Lemma A.1 is useful for the proof of Theorem 3.1. We define A= 1;)(:)11, /D,
also note that A = 1,01, /p, where the population quantity © = ¥l

Lemma A.1. Under Assumptions 1-4, uniformly in j € {1,--- p},

Proof of Lemma A.1. First, see that

A—A=(1061,-1061,)/p=(1,(6 - 0)1,)/p. (A.13)

p



Now consider the the right side of (A.13)

1O -0)Ll/p < [[(6-0)1L)1Lllx/p
lngly‘%H@j — 041

— 0,(5\/logp/n) = o,(1), (A.14)

where Holders inequality is used in the first inequality, and (A.1) is used for the second in-
equality and the last equality is obtained by using Theorem A.1(i), and imposing Assumption
4. Q.E.D.

Before the proof of main theorem, below, we show a property of ©. Take a p X 1 vector
d # 0 (all constants) then following exactly the same proof as in Lemma A.1 above

IN

6’66 /p — §'S7'5/p| = 0,(1), (A.15)

uniformly in j = 1,---p, and © = ((;)’1, e ,(:);-, e ,(:);,). We provide a proof by contradic-
tion. Assume that there exists § # 0 such that 6’604 /p < 0, then (A.15) shows that we should
have had §’%716/p < 0, with probability approaching one, but by Assumption © = X! is
positive definite then ¢’ ©6 < 0 is not possible with probability approaching one.

Proof of Theorem 3.1. We consider

A—l

A~ A
Al '

—1l = _
Al

(A.16)

First, use Assumption 2 to have, (where Cy = Eigmin(X~!) > 0,Cj is a positive constant,
and it represents the minimal eigenvalue of © = ¥71)

A=1%"1,/p>Cy>0,

which shows

By Lemma A.1 and its proof we have |A — A| = O,(5+/logp/n) = 0,(1). Then use this last
equation for the numerator in (A.16)

-1

N

0p(1)

B0

= 0,(1), (A.18)

—_

s

where the denominator is bounded away from zero by A being bounded away from zero as
shown in (A.17). Also use A = A + 0,(1) by Lemma A.1 to get the denominator’s rate and
the result. Q.E.D.

Before the next Lemma, we define B = 1;@/1/]), and B = 1,0u/p.



Lemma A.2. Under Assumptions 1-4, uniformly in j € {1,--- ,p}

|B — B| = 0,(1).

Proof of Lemma A.2. We can decompose B by simple addition and subtraction into

~ ~

B—-B = [1,0-06)(i—u)l/p (A.19)
+ [1,(0 —O)ul/p (A.20)
+ [1L,9(—p)l/p (A.21)

Now we analyze each of the terms above. Since i =n"1> [

15O =0)(a—ml/p < 10 =0)Llhlli—ul/p
< [max [|©; = O[]l = plle

— 0,(sv/lop/n)0,(/lozp/m), (A22)

where we use Holder’s inequality in the first inequality, and the norm inequality in (A.1) with
M=06-0,z= 1, in the second inequality above, and the rate is by Theorem A.1(i)-(ii).

So we consider (A.20) above. Since we assume in Section 2, ||u]/o < C < 00, where C' is
a positive constant.

1,6 - O)l/p < (6 - O, lillule/p
< Clmax 6, - 6]l

= CO,(5/logp/n), (A.23)

where we use Holder’s inequality in the first inequality, and the norm inequality in (A.1)
with M = © — ©, x = 1, in the second inequality above, and the rate is by Theorem A.1(i).
Now consider (A.21).

11001 — p)|/p 101,114 — pllos/p

[max [0][1][| 2 = plloo

O(V3)0,(+/logp]m). (A.24)

where we use Holder’s inequality in the first inequality, and the norm inequality in (A.1) with
M = 0O, x = 1, in the second inequality above, and the rate is from Theorem A.1(ii)-(iii).
Combine (A.22)(A.23)(A.24) in (A.19)-(A.21), and note that the rate is coming from (A.23).

So use Assumption 4, §1/logp/n = o(1) to have

|B — B| = 0,(5\/logp/n) = 0,(1). (A.25)

IA A



.Q.E.D.
Next, we show the uniform consistency of another term in the estimated optimal weights.

Note that D = 1/Ou/p, and its estimator is D = 'O /p.

Lemma A.3.Under Assumptions 1-4, uniformly in j € {1,--- p}

D-D = [(i—p)(©-0)i—pl/p (A.26)
+ [(a—pw'e(i—p)l/p (A.27)
+ (202 —n)y'Oul/p (A.28)
+ (200 =) (i — u)l/p (A.29)
+ [W(©—0)ul/p (A.30)
We start with (A.26).
(=) (©=0)a—wl/p < (6—-0)(i- PlA = plloo/p
< [lla— Mlloo]Q[me 19, — 65]]]
= O,(logp/n)0,(5+/logp/n)
= Op(s(logp/n)*?), (A.31)

where Holder’s inequality is used for the first inequality above, and the inequality (A.1),
with M = O — © and z = it — p for the second inequality above, and for the rates we use
Theorem A.1(i)-(ii).

We continue with (A.27).

(i — ) (©)(fr — )| /p 1(©) (it — )11l — plloo/p

[l — M||oo]2[mjax 1;111]
O, (logp/n)O(V'5)
O,(V5(logp/n)), (A.32)

IN A

where Holder’s inequality is used for the first inequality above, and the inequality (A.1),
with M = © and x = i — p for the second inequality above, for the rates we use Theorem

A1 (i)- ().



Then we consider (A.28), with using |||/« < C,

(=) ©)w)l/p < [1©)(& = w)ll1llulloe/p
< Clllf = plloo]max [©;]1]

— 0,(\/lomp/m)O(V5)
= 0,(V5\/logp/n), (A.33)

where Holder’s inequality is used for the first inequality above, and the inequality (A.1),
with M = © and x = i — p for the second inequality above, for the rates we use Theorem
AL1(i)-(ii).

Then we consider (A.29).

[(1)(© = O) (i =ml/p < 116 =O)ullsllix — le/p
< lilloc max (16 — ;1112 — plloo
< Clmax 195 = O3l (i = 1)lloe

= 0,(5y/1logp/n)0O,(+/logp/n)

= O,(slogp/n), (A.34)

where Holder’s inequality is used for the first inequality above, and the inequality (A.1),
with M = © — O and z = p for the second inequality above, and for the third inequality
above we use |||l < C, and for the rates we use Theorem A.1(i)-(ii).

Then we consider (A.30),

(1) (© = O)(w)|/p < \|(é—@)(ﬂ)||1J!M||oo/p
< [HMHoo]Qm?XH@j — 64/
< C[mfx 16, — ©;]h]

= 0,(5/logp/n), (A.35)

where Holder’s inequality is used for the first inequality above, and the inequality (A.1),
with M = © — © and z = u for the second inequality above, and for the third inequality
above we use ||ul < C, and for the rate we use Theorem A.1(i). Note that the last rate
above in (A.35) derives our result, since it is the largest rate by Assumption 4.

Combine (A.31)-(A.35) in (A.26)-(A.30) and the rate in (A.35) to have

|D — D| = 0,(5\/logp/n) = 0,(1). (A.36)

Q.E.D.
The following lemma establishes orders for the terms in the optimal weight, A, B, D.
Note that both A, D are positive by Assumption 2, and uniformly bounded away from zero.



Lemma A.4.Under Assumption 2

A=0().
1B = O(1).
D =0(1).

Proof of Lemma A.4. We do the proof for term D = p/Opu/p. The proof for A =
1,01, /p is the same.

D = 1/Ou/p < Eigmaz(0)|ul3/p = O(1),

where we use the fact that maximum of p; is a constant as assumed in Section 2, and the
maximal eigenvalue of © = ¥~! is finite by Assumption 2. For term B, the proof can be
obtained by using Cauchy-Schwartz inequality first and the using the same analysis for terms
A and D.Q.E.D.

Next we need the following technical lemma, that provides the limit and the rate for the
denominator in optimal portfolio.

Lemma A.5.Under Assumptions 1-4, uniformly over j in X\; = O(y/logp/n)

(AD — B%) — (AD — B%)| = 0,(1).

Proof of Lemma A.5. Note that by simple adding and subtracting
AD - B*=[(A— A)+ A|[(D - D)+ D] - [(B— B) + B>
Then using this last expression and simplifying, A, D being both positive
(AD = B%) = (AD = BY)| < {|A—A|lD=D|+|A—AD
+ A|D - D|+ (B - B)*+2|B||B — B|}
= 0,(5v/logp/n) = 0,(1), (A.37)

where we use (A.14)(A.25)(A.36), Lemma A.4, and Assumption 4: 54/logp/n = 0(1).Q.E.D.
Proof of Theorem 3.2. Now we define notation to help us in the proof here. First set

&= Ap?—2Bp, + D. (A.38)
x=Ap? —2Bp, + D. (A.39)
j=AD — B (A.40)
y = AD — B2 (A.41)



Then we can write the estimate of the optimal portfolio variance as

~

- 1.2
Vopy =p '[>],
Y
and the optimal portfolio variance is
T
Yopy =p '[=].
Yy

To start the main part of the proof we need a rate for a limit fraction: y/z. Note that
the fraction is positive by Assumptions AD — B? > C} > 0, Ap? — 2Bp, + D > C; > 0.

y AD-B*  _ AD
x Ap? —2Bp1 + D — Ap? —2Bp1 + D
= 0(1), (A.42)

where we use B? > 0 and the assumption Ap? —2Bp; + D > C; > 0 and Lemma A .4.
So we can setup the problem as, by adding and subtracting xy from the numerator, and
y/x > 0 by assumption, and use (A.42) for the second equality below

Vopy = Wopy| |2 x|y
Yopy g oyl
X i
= 0(1) i
_ |y omytaoy -y o()
yy
_ (@—x)erx(y—z))‘O(l). (A43)
vy

We consider each term in the numerator in (A.43). Via Lemma A.1-A.3, and p; being
bounded, and (A.14)(A.25)(A.36)

|Apt = 2Bpy + D — (Ap} — 2Bpy + D)
< {lA—Alpi +2|B - Blp. +|D - DI}
= 0,(5y/logp/n) = 0,(1), (A.44)

where we use Assumption 4 in the rate above. Now analyze the following term in the
numerator

| — x|

y=AD — B> < AD = O(1), (A.45)

where we use B2 > 0 in the inequality, and Lemma A.4 for the rate result, which is the final

10



equality above in (A.45). Next, consider the following in the numerator
x = Ap{ = 2Bp1 + D < (Ap; +2|B|ps + D) = O(1), (A.46)

where we use A, D being positive, and Lemma A.4, with p; being uniformly bounded away
from infinity. Then Lemma A.5 and (A.37) provides

19—yl = |AD — B2 — (AD — B%)| = O,(s+/logn/n) = 0,(1). (A7)
So the numerator in (A.43) is,
|z — x|y + x|y — y| = O,(5y/logp/n) = 0,(1), (A.48)

where we use (A.44)-(A.47) and = > 0,y > 0.
We consider the denominator in (A.43)

gyl = |5 —vy) +yly|
= (0p<1) + y) Y
> (0p(1) +C1)C1L >0, (A.49)

where we add and subtract y in the first equality, and use Lemma A.5 in the second equality,
and y = (AD — B?) > C; > 0, and (| is a positive constant by assumption. Next, combine
(A.48)(A.49) in (A.43) with Assumption 4 to have

< Op(5+/logp/n)  oy(1)

Uopy — Uopy _ — o,(1)
CF + 0,(1) Ct+o,(1) 7

Vopy

Q.E.D.
Proof of Theorem 3.3. Using (3.3)-(3.4) and via adding and subtracting A©1,/p from
the numerator below

L [(A61,) — (den))p
v (AA)
[(Aélp) — (401,) + (461,) — (A@lp)]/p
(AA) '

Using the above result

1(©-0)1, _ el
ALS=RRL + 14 - At
|AlA

|10y — wy |1 <

(A.50)

Then in (A.50) consider the numerator. To that effect, analyze the terms below.

11



1@ =O)Llh/p < max||©; -6,

= O_p(_gx/logp/n), (A.51)

where we use (A.1) for the inequality, and Theorem A.1(i) for the rate result in (A.51). Now
we analyze

01,1 /p < max [16;]; = O(V3), (A.52)
SISPp

where the inequality is obtained by (A.1), and the rate is by Theorem A.1(iii).
Via Lemma A.4, A = O(1), also by (A.13),(A.14)

|A — Al = 0,(5y/logp/n). (A.53)
By (A.51)-(A.53)

AM9%2£M+M_A¢%ﬂ1= 0(1)0,(3v/Iogp/n)

+ Oy(5\/logp/n)O(v/5)
= 0,((3)°\/logp/n) = 0,(1), (A.54)

where we use sparsity assumption (5)%/2/logp/n = o(1) in the last step. Then for the
denominator in (A.50) from (A.16)-(A.18) we have, for Cjy > 0, is a positive constant,

|A|A > (0,(1) + Co)Cp. (A.55)

Now combine (A.54)(A.55) in (A.50) to have the desired result. Q.E.D.
Proof of Theorem 3.4. Denote w* = [A1(O1,/p) + A2(Op/p)|, where

D—plB
Al_AD—B2’
i plA—B
A2_AD—B2'

Next, denote @ = [A(61,/p) + Ay(6/i/p)], where Ay, Ay represent estimators for Ay, A,
respectively. We get Ay, Ay by replacing A, B, D, in the formula for A;, Ay with their

12



estimators shown in above Theorems. Next, by adding and subtracting

W — w*

+ 4+ + +

[ Al(élp/p) + Ay ii/p) = Ai(O1,/p) — As(Op/p))
(A=A + AJ[(6-0)+06]1,/p

[(As = As) + A5][(© — ©) + O][(fr — ) + 1 /p

[ (

(%2 —82)O(f — ) /p ‘i‘ (Ay — 22)(© = O)p/p
(B2 = A2)Op/p + A2(0 = O)(4 — ) /p
D2O(ft — p) /p + Da2(O© — O)p/p.

Using (A.56), and since A1, A1, Ay, Ay are all scalars,

| — w* ||y

<
+
+
_I_
+

(A1 = ADII© = ©) 1,11 /p + [(Ar — A)[|O1, ]l /p
!AA1|H(é) —O) L[l /p + 1(As = A)|[[(© = ©) (s — )| /p
(A = M) |0 — )l /p + 1(As = A)[[[(© = ©)palls /p
Ay — 25)[10pll /p + [2:2]1(© = ©) (3 — )11 /p

[ Aol[|©( — ) ]l1/p + [A2]1(© — ©)ul|1/p.

(A.56)

(A.57)

We consider each term above. But rather than analyzing them one by one, we analyze
common elements and then determine the order of each term on the right side of (A.57).
Using the definitions of g,y in (A.40)(A.41) respectively, and adding and subtracting y(D —

p1B) respectively from the numerator, with p; being bounded, y > 0 by assumption

A1 = A

<

Z/(f) - PlB) - ?Q(D - PlB)

gy
y(D = p1B) —y(D = p1B) +y(D — p1B) — §(D — p1 B)
gy

y|(D = D)+ ypi|(B = B)| + |y = §)[|(D — p1B))|

19y

(A.58)

Now we analyze each term in the numerator. By Lemma A.4, with y > 0 by assumption

Next, by (A.25)(A.36)

Y

y=AD— B2 < AD = O(1).

|D — D| +y|pi||B — B| = O,(5/logp/n).

13

(A.59)

(A.60)



Then
ly=9llD = puB| < (JAD = B2 = (AD = B)|) (D + |1l BI) = Oy(5+/Togn/n),  (A.61)

where we use y, ¢ definitions in the inequality, and to get the rate Lemma A.4 with (A.37)
is used. Combine now (A.60)(A.61) in the numerator in (A.58) to have

yD = D]+ yloul|B — Bl + |y — 3lID — Bl = Op(s/logp/m). (A.62)
Then combine (A.49)(A.62) to have
A1 = Ai| = O,(5V/logp/n). (A.63)
Exactly following the same way we derive
1A = Aol = O,/ Togn]n). (A.64)
Consider, by using AD — B2 > C} > 0 by assumption
Ay ’fD__pI; < ‘D_Cle'
B ETATL . (A.65)
Gy

where we use Lemma A.4 to have D = O(1),|B| = O(1), and p; being bounded. In the same
way we obtain

1As] = O(1). (A.66)

Next, we consider the following term:

1©=O)(ia—mlh/p < (i = plle max ;- 6],

1<5<p

= O,(8logp/n), (A.67)

where we use (A.1) for the first inequality, and the rate is derived from Theorem A.1(i).
Then given || < C

16 = O)ulh/p < C max [|6; -6,

= Op(_gx/_ logp/n), (A.68)

where we use (A.1) for the first inequality, and the rate is derived from Theorem A.1(i).
Note that
1©ull/p = O(V5), (A.69)

where we use the same analysis in (A.52).

14



Next,

180G~ wlli/p < Il pllo max 6]
SISPp

= O0p(\/logp/n)O(V5)

= Op(\/g\/ logp/n),

where we use (A.1) for the first inequality and Theorem A.1(ii)-(iii) for rates.

Use (A.51)(A.52), (A.63)-(A.70) in (A.57) to have

[ —wlly = Op((5)*logp/n) + Oy((5)**\/logp/n)
+ Op(5v/logp/n) + O,((5)*(logp/n)*/?)
+ 0,((5)**logp/n) + O,((5)*(logp/n))
+ 0,((5)*2/logp/n) + Oy((5)(logp/n))
+ 0,(vV3y/logp/n) + O,((5)\/logp/n)
= 0,((5)*Vlogp/n) = 0,(1),

(A.70)

(A.71)

where we use the fact that (5)3/2y/logp/n is the slowest rate of convergence on the right

hand side terms. Then by 5%2,/logp/n = o(1) we have the last result.Q.E.D

Proof of Theorem 3.5. We consider

[, (2 = D) < dul[F1% — Eo.

In (A.72) we analyze each right side term. First,
[ully < [l = wally =+ [lwallr-

Then from the definition of global minimum variance portfolio

1©1,[1/p

sl =
LOL/p

Apply (A.17)(A.52) in (A.74) to have

ol < 297~ 0(v3)

Then use (A.75) and Theorem 3.3 in (A.73) to have

loull = Oy((5)*2V/logp/n) + O(V5) = 0,(1) + O(V5) =

where we use Assumption that (5%2,/logp/n) = o(1) in the second equality.

(A.72)

(A.73)

(A.74)

(A.75)

(A.76)

Then use Lemma 1 of Chang et al. (2019) to have ||% — ||o = O,(+y/logp/n) and (A.76)
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in (A.72) to have A
[, (X = D)ibu| < Op(5)Op(v/logp/n) = 0p(1), (A.TT)

where we use Assumption that (5)%/2/logp/n = o(1) in the second equality.Q.E.D.
Proof of Theorem 3.6. We consider

[@'(£ = Z)d| < [D]F]E — Z|oe. (A.78)
In (A.78) we analyze each right side term. First,
[@]ly < ([ — w*fly + [lw"[|1. (A.79)

Then from the definition of Markowitz portfolio

* |D—p1B| mA—B
Il < S5 105l /p+ G5 l0ul/p
|D| + |p1l| Bl Ip1||A| + | B
< —ip_p 19Wl/r+ = 5 g Oull/p (A.80)

On the right side of (A.80) above, we use the analysis in (A.52), (A.69) for ||©1,|1/p, [|©wul1/p,
and p; is bounded, and by Lemma A.4 with assumption AD — B? > O} > 0, to have
o) o)

Jw*lly < —=20(V5) + o
1

o O(V/5) = O(V3). (A.81)

The rest of proof follows exactly as in the proof of Theorem 3.5, given the result in Theorem
3.4 to be used in (A.79).Q.E.D.

Supplementary Tables

In this part, we show extra tables that are robustness checks for the Tables in the main
text. The monthly Table 1 (Supplementary) covers a subset of Table 1 in main text. It
starts before the recession of 2008, at August 2006. We provide 4 and 5 year out of sample
forecast. We see Nodewise based estimator has the best SR among the others. Specially
at b year out of sample forecast, the results are striking, with transaction costs, Nodewise
has Sharpe Ratio of 0.4587 in Global Minimum Variance Portfolio and 0.3766 in Markowitz
portfolio compared to 0.1705 and 0.1254 of POET, and 0.2550,-0.2900 of Ledoit-Wolf based
estimator respectively. In daily data we consider periods June 1 2017 to May 31 2018, and
July 7 2016 to May 31 2018 in Table 2 (Supplementary). We analyze out of sample forecasts
for 252 and 126 days respectively. Number of assets, p = 442. So p < n in first part of Table
2 and p > n in the second part of the same Table 2. Both POET and Nodewise do well in
terms of SR with transaction costs, depending on time period.
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Global Minimum Portfolio Markowitz Portfolio

Return Variance Sharpe Turnover Return Variance Sharpe Turnover

In-Sample: Aug 2006-Apr 2014, Out-Of-Sample: May 2014-Apr 2018, n; =93, n —ny = 48
without TC

POET 0.0109 0.00091 0.3622  0.0664 0.0092  0.00095 0.2994 0.1768
NodeWise 0.0102  0.00064 0.4003  0.1651 0.0087  0.00069 0.3313 0.2466
Ledoit-Wolf  0.0098  0.00361 0.1645  0.0812 -0.0300  0.01134 -0.2822 0.1608
with TC
POET 0.0111  0.00093 0.3636 - 0.0091  0.00097 0.2945 -
NodeWise 0.0101  0.00066 0.3957 - 0.0085  0.00071 0.3192 -
Ledoit-Wolf  0.0098  0.00369 0.1628 - -0.0309  0.01160 -0.2873 -

In-Sample: Aug 2006-Apr 2013, Out-Of-Sample: May 2013-Apr 2018 n; =81, n — n; = 60
without TC

POET 0.0086 0.00241 0.1753 0.1786 0.0070  0.00275 0.1334 0.2867
NodeWise 0.0118  0.00066 0.4627 0.1624 0.0107  0.00076 0.3876 0.2572
Ledoit-Wolf  0.0164  0.00414 0.2555 0.0797 -0.0367  0.01652 -0.2861 0.1967
with TC
POET 0.0084 0.00245 0.1705 - 0.0066  0.00280 0.1254 -
NodeWise 0.0118  0.00067 0.4587 - 0.0105  0.00077 0.3766 -
Ledoit-Wolf  0.0165  0.00421 0.2550 - -0.0376  0.01683 -0.2900 -
Table 1: Monthly Returns-Variance-Sharpe Ratio-Turnover
Global Minimum Portfolio Markowitz Portfolio
Return Variance Sharpe Turnover Return Variance  Sharpe Turnover

In-Sample: Jun 1 2017-Nov 28 2017, Out-Of-Sample: Nov 29 2017-May 31 2018, n; = 126, n — n; = 126

without TC
POET 1.218e-04 7.940e-05 0.0136 0.4532 1.684e-04 7.619¢-05 0.0192 0.4224
NodeWise 4.065e-04 8.188e-05 0.0449 0.1542 3.762e-04  7.987e-05 0.0420 0.1753
Ledoit-Wolf  3.479e-04 4.651e-05 0.0510 0.3991 3.955e-04 4.681e-05 0.0578 0.3992
with TC
POET -2.633e-04 8.206e-05 -0.0290 - -1.856e-04 7.850e-05 -0.0209 -
NodeWise 3.192e-04 8.218e-05 0.0352 - 2.678e-04 8.019¢-05 0.0299 -
Ledoit-Wolf  2.383e-06 4.711e-05 0.0003 - 5.006e-05 4.762e-05 0.0072 -

In-Sample: Jul 7 2016-Mar 1 2018, Out-Of-Sample: Mar 2 2018-May 31 2018 n; =437, n —n; = 63
without TC
POET  0.000312 7.650e-05 0.0356 0.0262 0.000272  7.108e-05 0.03227 0.0445
NodeWise  0.000302 7.642e-05 0.0345 0.0956 0.000294 7.376e-05 0.03427 0.1056
Ledoit-Wolf  -0.000242 4.061e-05 -0.0380  0.4483 -0.000168 4.071e-05 -0.0263 0.4550
with TC
POET  0.000443 7.621e-05 0.0508 - 0.000386 7.077e-05 0.0459 -
NodeWise  0.000370 7.596e-05 0.0424 - 0.000353 7.331e-05 0.0412 -
Ledoit-Wolf  -0.000587 4.103e-05 -0.0916 - -0.000511 4.117e-05 -0.0797 -

Table 2: Daily Returns-Variance-Sharpe Ratio-Turnover
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