Supplement to “Statistical Inference on Panel Data
Models: A Kernel Ridge Regression Method”

This supplement document contains proofs and other relevant results that were not included
in the main text and appendix. In Section S.1, we prove Lemmas A.1 and A.2, Propositions
A.2 and A.3. In Section S.2, we prove Lemmas A.3, A4, A5 A.6, A.7 and A.8. We also
provide additional Lemmas S.1, S.2 and S.3 as well as their proofs. Lemmas S.1 and S.2
give mild conditions to guarantee the validity of Assumption A4; Lemma S.3 is useful for

proving Lemma A 4.

S.1 Additional Proofs or Other Relevant Results for

Heterogeneous Model

Proof of Lemma A.1. For any 0,0, = (6k, gx) € ©; for k = 1,2, it holds from (A.1) that

(DS?r, (0)61,6),
= (E{DSiny(0)01},02);

T
1
= T Z E ((RUy,01)i(R;Uyt, 62);) + (Pi01, 02);

= LS B (X + 80 (02(X) + Zi5)) o)

= F ((_gl(Xl) + Z'81)(92(Xi) + Z'Ba)) + 191, g2) m,
= (01, 02)i,

which implies that DS, () = id, the identity operator on ©;. O

Proof of Lemma A.2. Tt follows by Proposition A.1 that
| R Uy |7 = K(i)(Xm Xit) + (Zy — Ai(Xa)) (i + 50) (2 — Ai( X))
By (3.6) and (A;, 9)x; = Vi(Gi, g) (see Section 3.2),

Ai(z) = <Az,Ki>H=V(Gz=K§i)>

= Z 2l Vi(Gi, o).
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()

It follows by Assumption A3 that Cy; = sup,>; sup,cy, ()] < co. Then we have

) v (X, 2
KO X)) = Y0 ey

Az(th)/(Qz + Ez)_lAz(th) < Cl_lAz(th) Az(th)

el |80v (i)
S Z 1 ’L) Z V 79 SDV ’l GZ’ (py )
v>1 L+ mipw v>1
< G 1OZ,iOGihi 17

ZtI<Qz =+ Zi)let S c;lZéZt,

where C3, = 3 -, Vi(G, gpl(,i))‘/;(Gi, go,(f)) By Assumption A2, Cg is a finite positive con-
stant. Then (A.1) holds for C} = max{CZ,,2¢;'C2,CZ , 2¢;'}.
To show (A.2), first notice that, for any 6 = (3, g) € ©;,

||0||i,sup - sup |g((L’) +Z/5|‘
CEEXZ',”ZHQ:l

The “>” is obvious. To show “<”, note that for any x € X;, choose z, = sign(g(x))5/||3]2-
Then

l9() + 2,81 = [g()] + 18]z

Therefore,

sup  |g(z) 4+ 2'B] > sup |g(x) + z,6] = sup |g(z)| + ||Bll2 = 10]]s,sup-

ZL‘EX,L',HZ”Q:l CEEX,L' CEEX,L'

Following Proposition A.1 and the proof of (A.1), for u = (z, z) with x € X; and ||z]|s = 1,
l9(2) + /8] = [{Riw, 0)i| < | Raullil|0]: < CilL + k)|l

This proves (A.2). O

Proof of Proposition A.2. Since fi¢, for, vir and € all have finite ath moments, it follows by
(2.2) that X;; and Z; both have finite ath moments, i.e., E(||X;||§) < oo and E(||Z]|$) < oo
Define

Cr(§) = inf{z|TP(]| Z]ls > z) <&}, £>0.

By Markov inequality,

1

P (12l > [TE(|Z|I3)/€)'*) <



therefore,

Cr(§) < (W)w'

Thanks to the ¢-mixing condition (see Assumption A1), it follows by O’Brien (1974, Theorem
1) that for any & > 0,

liminf P ( ma
T—o0

X
1<t<T

12l < GT@) — exp(—b6),

where b > 0 is a constant. For arbitrary € > 0, choose £ > 0 such that 1 — exp(—b) < €/2.
Then, as T approaches infinity,

P (max 12l < CT<§>) > exp(—b€) — /2.

1<t<T

leading to that

P (max | Zil2 > CT(£)> <1—exp(—bf)+e/2<e.

1<t<T
This proves that
max |22 = Op(Cr(€)) = Op(TV).

1<t<T

Proof of Proposition A.5. For notation simplicity, denote

F; o= F, jelT]

Fo = trivial o-algebra consisting only of the empty set and full sample space.

For any 91, 92 S 61’7 define lit = (wi,M,t(Uit; 61) — wi,M,t<Uit; 92))RzUzt First of all, we will

prove the following concentration inequality: for any r > 0,

P ( > [l — E(ly)]

where Cy = Y2, #(t). It follows by Assumption Al that Cy is finite. Clearly, (S.1) holds
for 6, = 05 since both sides are equal to zero. In what follows, we assume 6, # 0s.
Define My = 21, lir, and fir; = E(Myp|F;) — E(Myp|F;_1), j € [T]. Tt is easy to see

[ 7,Sup

7‘2
> <2 — 1
= T> S zexp < 32TC(;25||‘91 . 92“2 ) ’ (S )



that

Mr — E(Myr) = ZfiTj»
frj = Y (E(lulF;) = E(lu| Fj-1)) - (S.2)

t=j

Clearly, fir; is F;-measurable. For k € [T], define N;py, = Zle firj and N9 = 0. Then
Ny = Nirg—1 + firg. For A > 0, let uk,1($) = >\HNiTk71 + xfiTkHi; T E [0, 1]. Define

or—1(x) = E (cosh (ug_1(x)) | Fr_1), x € [0,1].
It is easy to see that

or-1(1) = E(cosh (A||Nizw|i) | Fr-1)
¢r-1(0) = E(cosh (A|Nizp_1lls) | Fr-1) -

By the proof of Pinelis (1994, Theorem 3.2) and direct calculations, it can be shown that

Or1(x) = E (sinh(up_y(2)u)_(2)|Fez),
Yia(x) = E(cosh(up_1)(uj_y(2))* + sinh(w_ (2))ug_y ()| Fi1)
< E (cosh(ug_1)(u)_y () + cosh(up_1(x))yup—1 (z)uf_ (2)| Fr1)

DO | —

E (cosh(ug_1(z)
N E (cosh(uy_1(z

up-1(2)?)"| Fi-1)
I firn |71 Fe-1) - (S.3)

)
)
Next we will show that || firx||? is almost surely bounded. We will first examine the terms
E(lit|Fx) — E(l;) for t > k. Arbitrarily choose A € Fj and 6 € ©; with ||6||; = 1. Define
X = (ly,0);. Write X = X* — X~ where X+ and X~ represent the positive and negative
parts of X, respectively. Clearly, | X| < ||lx]l:[|0]l; = ||li]|; implying that both X and X~
belong to [0, ||l;]|;]. Note that the X is F°-measurable. Therefore,

el
E(XT|A) — B(X*)| = /0 [P(XT > 0]A) = P(XF > v)]dv

1Zsell
< / P(XF > o] A) — P(X* > 0)[dv < ]t — k).
0



Similarly, one can show that |E(X~|A) — E(X )| < |[ly]|i¢(t — k). Therefore,
|E(X]A) = E(X)] < 2||lullip(t = k).

By the arbitrariness of A € F}, and by taking supremum over 6 € ©; with ||f||; = 1, one gets
that
[E (] Fr) = Eli) i < 20[Liellio(t — k), t = k. (S.4)

Similar arguments lead to
| E(Lit| Frm1) — E(li) [l < 2[[lallip(t — k + 1), t > k.
Therefore, for t > k,
1E il Fi) = E(lie] Fr-1)li < 2/[laelli(@(¢ — k) + ot — k +1)).

Using (S.2) and the assumption ||l;¢||; < [|61 — 62]]; sup, it can be shown that

T
frwlls <D NEWlFr) — Bl Fir)l
t=~k

IN

> 2lulli(@(t — k) + ot — k+ 1)

T

< 20001 — Oollisup D (St — k) + St — k + 1))
t=~k
S 4C¢H91 - 02Hi,sup‘

Therefore, it follows by (S.3) that
Pioi () < 16X CEJI01 — 637 uppn—1(@).

Meanwhile, note that N;7,_q is Fj_;-measurable, so we have

sinh(\||N;rr—1ll;
o _1(0) = H<NH T’“H 1 )E(<Nm_1,fm>irfk_1> =0, k>2,
iTk—1||7

where the last equality follows from E( f;7x|Fr—1) = 0. Directly using (S.3) one also has that
©p(0) = 0. So ¢),_1(0) =0 for all k£ € [T]. By Dudley et al. (1992, pp. 133, Lemma 3) we



have for k € [T7,

pr-1(7) < pr-1(0) exp (BN*CZ[101 — 027 gupa®) s x € [0,1].
In particular,
wr-1(1) < wip1(0) exp (A2 CF||01 — Oa[7 ) -

Taking expectations on both sides leading to that

E (cosh (A[|[Nizy||:)) < exp (8X*CZ[|01 — b2

7 sup)

By repeatedly using (S.5) and the convention N;7o = 0, and by (S.2), we have

T

E (cosh ()\ [l — E(lit)] )) = E (cosh (A|Nyrr|l;))

E it T 2t

S exp (8T)\2O2H91 - 92stup)
Therefore,
T T
P ( > [l — E))|| > 7’) = P <cosh <)\ > [l — E(l)] ) > cosh()vr))
t=1 i t=1 (

T

th_

1
cosh(Ar) (COSh <

< eexp(—)\'r’+8T)\zC¢||91 0|

i sup)

Then (S.1) follows by choosing

r

16T C3[01 — Of?

%,5up

The rest of the proof follows by the chaining argument. Let 19(z) = exp(x

follows by (S.1) and Kosorok (2008, Theorem 8.1) that for any 6,6, € O,

< \/%C¢||91 - QQHi,sup-

HHZz‘M(@l) — Zing (02)]]s
P2

(cosh (A[Nyzg—1]]s)) -

af))

H—1. It

It follows by Kosorok (2008, Theorem 8.4) that there exists a universal constant C' > 0,



which only depends on Cy, such that for any 6 > 0,

l

sup | Zine (01) — Zine (02) |3
01,02€G;(p;)
lel 92 |7, sup<6

(/ vy ' (Di(e, Gipa); I Mlisup)) de + 085" (Di(9, Gilpi), | IIi,sup)Z)) = CJi(pi, 9)-

P2

Therefore,

sup || Zin (0)]):
0€G;(pi)
1011,5up <0

< CJi(pi,9).
P2

It follows again from Kosorok (2008, Lemma 8.1) that for all § > 0,s > 0,

82
P sup Zi(0)]|; > s | < 2exp <——) . S.6
(oegapi),ei,sup«s” u@l ) C?Ji(pi, 6)° (56)

It is easy to see that for any 6 € G;(p;), ||0|lisup < 1. Let \/TJi(pi, 1) =¢! and Q. =
—loge — 1. Let 7 = 3C/log N + loglog(T'J;(p;,1)). Then it can be checked that

7_2

N(Q5+2)6Xp (-m) —>0, N—) Q0.

Since J;(p;, d) is strictly increasing in d, the function J;(§) = J;(p;, 0) has inverse denoted by



J; ', Then we have

» ( VT Zis O )

max SsSu e
i€V 0eG(pi) VT J;(|0]isup) + 1

N
T\ Zip (0)|]:
<y (r . VIIZ @)l _
P 10smap<a—t-172) VI Ti (0]l sup) + 1
Qe
T Z;in (0)]];
+ZP< sup VT Zin (9)] Z))
1=0 I T2 exp() <0l man <= (T2 exp(t1)) VT Ti([10]]isup) + 1
N
< (P sip [ Zan(@)l; = T
=1 “0“i,sup§J;1(T71/2)
Qe
+ZP ( Sup 1 Zine ()i = T_l/zTexp(l)>>
=0 ||0Hi,sup§<]i_1(T_l/2EXp(l+1))
N Qe
< Z <2 exp (—7%/C?) + Z 2exp (—77/(C? exp(2)))>
i=1 1=0
-2
= 2N(Q+2)exp |~ ro ) = 00 as N = oo S.7
(Qe + )exp( C2exp(2)) — 0, as N — o0 (S.7)
This proves the desirable conclusion with Cy = 3C. O

S.2 Additional Proofs or Other Relevant Results for

Homogeneous Model

The following lemma gives mild conditions that guarantee Assumption A4. Before stating
the lemma, we borrow the concept of complete continuity from Weinberger (1974, page 50).
A bilinear functional A(-,-) on H x H is said to be completely continuous w.r.t another
bilinear functional B(,-) if for any € > 0, there exists finite number of functionals [y, s, ..., [y
on H such that [;(g) = 0,i = 1,2, .., k, implies A(g, g) < eB(g,9).

Let U be an open subset of X and UNT = U x U x --- x U. Let C(X) be the set of all

~
NT items

continuous functions on X and # C C(X). Let x denote the NT-vector (z11,...,Z17, ..., TN1, - -

Lemma S.1. Suppose 1 ¢ H, and p(x|FL) > 0 for x € UNT, where p(x|FL) is the joint
conditional density of X11, X129, ..., Xnr given FL. If V(f,g) =0 for all f € H, then g = 0.

Proof of Lemma S.1. For simplicity, we assume that fi;, X;; are both univariate. By as-

. ,ZENT).



sumption, 0 = V(g,9) = Zf\;l E{(r:9)'P(ig)|F{} /(NT). Hence it follows that

0= /(9(1'2'1),9(%2), o 9(air) ) P(g(xin), 9(232), ., g(air)) p(X| F] )dx, for all i € [N].
(S.1)
Since the integrand in (S.1) is continuous and nonnegative, it holds that, for all i € [N] and
x with p(x|F) > 0,

(9(xa), 9(wi2), - g(2ir)) P(9(2i1), g(wi2), .., g(@ir))" = 0. (S.2)

By definition, P is a projection matrix whose image is the orthogonal space of the linear

space spanned by Fy and X. Therefore, it yields that

(9(zi), 9(wi2), ..., g(wir)) = 6(fur, fizs oy fir) + Bi(Z1, To, ..., Tr), (S.3)

for some (679 ﬁz € R. Consider x = (xu, X12, -3 TN, T—1, ZL’NT) and X = (1‘11, X12y -y TN, T—1, gNT) c
UNT with 7 # Tyt and p(x|FL) > 0,p(X|FL) > 0, i.e., the two points differ only on the
last element. Applying (S.2) to point X, we have

(9(xi1), 9(2i2), oo 9(Fir)) = @l fr1, fray oo, frr) + Bil@1, Tay ooy Tr), (S.4)

for some &'i,,@ € R. Comparing (S.3) and (S.4), and by the fact T' > ¢; + d = 2, it holds

that a; = @y, 8; = B; = 0. Hence (g(xi1), 9(xi2), ..., g(xi7)) € span((fi1, fi2, .., fir)) for all
p(x|FL) > 0,i € [N], and it happens if and only if g = 0. O

Lemma S.2. Suppose X is compact. Furthermore if V(f,g) = 0 for all f € H implies
g =0, then Assumption A4 is valid.

Remark S.2.1. The compactness of X can be relaxed by Mercer’s theorem; see Sun (2005).

Proof of Lemma S.2. Define bilinear functionals W(g,§) = S0, F {(ri9) (rig)| 7L} /(NT),
and J(g,9) = (9,9)n. Clearly, V(g,9) < W(g,g). Let u be a measure such that

Hence, [ g?dp = W(g,g). By Mercer’s theorem, the kernel K of H follows the expansion:

K(z,y) = Z Aiei(z)ei(y).



where )\; is a non-increasing positive sequence converging to zero and {e;}2; forms an or-
thonormal basis of Ly(p), so that W(e;, e;) = 6;;. Moreover, {v/\;e;}2, is also an orthonor-
mal basis of H, which is proved in Cucker and Smale (2001). As a consequence, any g € H

simultaneously admits the following expansions:

g= Z W(g, ei)eia g = Z J(g, \/A_iei)\/A_iei
i=1 i=1

with 377, W2(g,e;) < oo and Y2, J*(g, v/ Aie;) < oo. This implies W (g, e;) = NiJ(g, ;).
For any € > 0, choose integer k large enough so that \; < e for ¢ > k. Define functionals
li(g) = Wi(g,e;),i =1,2,...,k. By direct examinations, if /;(g) =0 for i = 1,2, ..., k, then

g)= > Wge)= Y NT(g.e)<e Y NJ(g.e) =¢€J(g,9).
i=k+1 i=k+1 i—lit1

Since V(g,9) < W(g,9) < €J(g,9), V is completely continuous w.r.t J. By Weinberger
(1974, Theorem 3.1, page 52), there are positive eigenvalues {«;}$°, converging to zero and

eigenfunctions {@;}2, € H such that V(;, ¢;) = a;dij, J(pi, ¢;) = d;; and

g=">_J(g,:)@:, forall g € H.

i=1

The above implies V (g, ¢;) = o J (g, ¢;). Take ¢; = ¢;/\/a; and p; = 1/a;, then {¢;}2, and
{pi}2, will satisfy Assumption A4. O

Proof of Lemma A.3. Throughout we let ||A||p = 1/ Tr(AA’) be the Frobenius norm. Clearly,

T
~ 0 o --- 0 ~ .
7 = ( _ B ) s Z*Z, = <O(q1+d)><q17 E Zt 'U;) .
fUl UQ o UT =1

By direct examinations we have
77 - 7,7, = 7.7 +7'7.+77 = R. (S.5)

By independence of v;; and Z;, it can be shown that

E(HZZ?U,?H%) ZTT E((2)'Z1)) = O(T/N),

t,l=1

E (HZZ'HZ;) <E <Tr (ZZ’ZZ')) — O(T?/N?). (S.6)

10



Hence,

2(1ZZ)3) = E(HZZ;@;H%)=0<T/N>,
E(|R|}) < SE(|Z.Z|}) +2E(|ZZ|}) = O(T/N + (T/N)?). (5.7)
Since

NZZ) ™ = (ZZE) Hlop = I(ZZ) ™ R(ZZ) " lop
< NZZE) ™ ol Rllop [1(ZZ) ™ o,

it follows by Assumption A5 and (S.5) and Hélder inequality that

E((Z2) 7" = (ZZ) oy ) = O(TPN) =2 4 (TN) =0+, (5.8)

op

where w = (¢ — 4)/(C 4+ 4). Note that E(Z'Z) = o2lr and ETr(Z'Z) = O(T/N), where

02 = E(vlv;) is a constant. By direct examinations

P.—P
= 7' ((zz) — (Z.Z)™) 2+ Z(Z.Z,) L + Z/(Z.Z.) ‘2, + Z(Z.Z,)"'Z.

It follows by (S.6), (S.7) and (S.8) and Holder inequality that

E(IIP = Pelop)

< B (122 o l(Z2Z) " = (ZZ) o) + 2B (|2 Z2)  Zllop) + E (/22 2) T op)
— — w\ 1/ (1+w) w) Jw\ W/ (1+w)

< BE(|@z) = (ZZ) o) T E (122 5)

20 (|22 o) B (T () + B (122 o) 2 (T (22))
O((T*N)™'2 4+ (TN)™ )T + O(T*\/T/N) + O(T~(T/N)) = O(N /2.

(S.9)
This proves (A.20). Next we show (A.21). For any i € [V],

E{y; Fy(P — P,)Kx,|F'}
= E{nBZ(ZZ)" - (ZZ) ZKx|FI} + By B2 Z,) LK x| F{'}
+E{yy P32 (L.Z) " LK | FI } + E{ny FyZ (Z.Z,) " LK, | FT ).

11



By direct calculations it can be examined that

and

IN

IN

E(|Z'[(2Z) " = (Z.Z,) M ZFs|op)
< E(IZ2) = ZaZ) lop X 122 op X || Fslop)
S E( ZZ/ Z Z/) 1H1+w)1/(1+"-’)

< E (HZZ/HQ 1+w)/w)W/(2(1+w (HF H2 (1+w) /w)w/(2(1+w))
= O((T3N)™ V24 (TN)™H)T3? = O(N~V2 + TY2/N),
E (|1Z.(Z.2.) " ZF: o)
E (|@.2,) YT BLZR,)"?)

IN—1 1/2 = 1/2
E (|Z.2) o) " E (T{(BZZE,))
E ((ZZ) o) * E (Tr(F3F5)) > O(NV2)
_ 1/2 _ _

E((Z.Z)op) / E (|| FyFallop) > O(N~Y?) = O(N~V2).

For any g € H with ||g|| = 1 (implying |g(z)| < c¢,h~/? for any x), we have

| EAFZi (2. 2) " Zrig| Fy o < |FSZ(ZLZ) ™ lop | EAZ7ig| F{ Hl2 = Op (| E{Z7ig| F }|2)-

On the other hand, by direct examinations we have

T
1Zmgll; = ) vimg(wu)g(wa).

ti=1

Meanwhile, for any t # [, v,g(zy) and 0;g(xy) are independent conditional on F[', and

Blag(ea)l F1} = - Bloag(ea)lF -+ 3 Blowg(en)lF = 1 Blvng(ea) 7}

ki

The last equality holds because vy and g(z;) are conditional independent (on F7) for k # i

12



and the former has mean zero. This leads us to that

T
E{|Zrgl3|F} = ZE{@Q@tg(fitﬂ]ﬁT} + ZE{@@ZQ(%t)Q(%l)U:lT}

t=1 t£l
= ZE{vtvtg(xn) FIY > E{wg(wa) | F Y E{og(wa) | F}
t#l

= ZE{vtvth(l’n) F+ ZE{%Q (i) [FY } E{vag(wa) | F{ }

t=1 £l

Therefore,

| E{FyZ,(Z.Z,) " Zrig| F{ |2 = Op (\/ d Ni—)

where the Op term is free of g.

Similarly, we can show that

E (|1Z(2.2.) " ZF )
1/2

< p(1Z213) " B (@) 1,) " B (FELR)
— O(JT/N)O(1/T)O(/T/N) = O(1/N). (S.10)

Combining the above, we get that

T T
E{v3;F3(P — P)Kx,|F[} =O0p | \/| =+ —= | ,
H {’Ym 2( ) Xz’ 1}H P( Nh N\/E)

where the Op is free of i € [N]. Proof is completed. O

Lemma S.3. Suppose that Assumptions A1, AJ and A5 hold. Let ) satisfy the conditions
in Lemma A.J. Then

fHZw Xi,9)'(P = P.)Kx,|| = Op (1),

||9||sup<1

and

sup %H DB (9%0) (P = PR |FT) [ = 0 (1)

llgllsup<1

13



Proof of Lemma S.3. For any g, g satisfying ||g||lsup < 1 and ||g]] < 1, the former implies that
14(Xi, g)ll2 < L/h/T for each i € [N], and the latter implies that ||g]lsup < c,h™Y2, by
(A.20) we have

N N
1 1
= Xi7 ,P—P*TZ'~§— Xi, Ti~ P—P*O :O ].,
N ZZIM 9)( )7ig m;‘nw( Ill2l7gll2l lop = Op (1)
and
R
i Y E WX g) (P = PImig|FI) | < LegVNE ([P = Po|op| ) = Op(1).
NI
Proof is completed. O

Proof of Lemma A.j. It follows by Lemma S.3 that we only need to consider the process
Zir(9) = o Ll (X, 9) PKx, — E{(X, ) Pk, | F'}] for g € M where the items in
summation are independent conditional on F]. Let K; = [K (X, Xi))i<ti<r, a T X T
matrix. By Assumption A4 it follows that K; < ¢Zh~'TIp. For any g1, 9, € H,

2

||<¢(X27 gl) - w(XM 92>>/P*KX1'
= (VX 1) — V(Xi, 92)) PK P (9(Xi, 1) — (X, g2))
< (LQPHP*HopHgl — 92||sur>>2 = (LC¢||91 - 92||sup)2~

The last equation follows by ||Ps|lop = 1 since P, is idempotent. Notice that {X;; : i €
[N],t € [T]} are conditional independent given Fi. It follows by Pinelis (1994, Theorem
3.5) that for any r > 0,

P (Hzmgn  Z)] =

7,,2
.FT) < 2exp <— ) )
! 8[/2030”91 - 92||gup

It follows by Kosorok (2008, Lemma 8.1) that

S 5LC<PHgl - QZHSupa

Huzmgl) — Z4a)l
f{ﬂb

where ||-|| zr ,, denotes the Orlicz-norm conditional on FI with respect to 1(s) = exp(s®)—1.

14



This in turn leads to, by Kosorok (2008, Theorem 8.4), that for any § > 0,

sup (| Z3,(g1) = Zi(g2)

91,92€G(p) FT b
lg1—92lsup <
d
< C {/0 w;l (D(&Q(P), H . ||sup)) de + 5¢;1 (D(5,Q(p), H . Hsup)2)
= CJ(p,9)

where C' > 0 is a constant depending on L, ¢, only. Then we have

< CJ(p,0).
FLapa

sup (| Z3,(9)l
9€G(p)
lgllsup <

It follows again from Kosorok (2008, Lemma 8.1) that for all 6 > 0,7 > 0,

7a2
Pl sup [|Zy(g)l > 7| F | <2exp (——) : (S.11)
Se9) . ' C2J(p,6)?
gllsup <

Let Qn = log(N'2J(p,1)) — 1. It follows from the proof of (S.7) that

p ( sup \/NHZX/[(Q)H >C /1810g(QN) ]:lT
9€g

®» VNI, llgllsup) +1

LATURAPRES
C?exp(2) - Q%

N———

< 2(Qn +2)exp (— (S5.12)

Taking expectation on both sides of (S.12), we get that

“ VN Zy (9)|l
p
9 VNI (P, ||9]lsup) + 1

>C 1810g(QN)) =o(1), as N — oc.

This shows that, with probability approaching one,

VNI Z3 (9)ll
sup < C/18log(Qn).
9e6() VNI (D, [|gllsup) + 1

Since ||g|lsup < 1 for any g € G and J(p,0) is increasing in J, the above inequality implies

15



that, with probability approaching one,

sup 11239l < C/T81og(@n)(J (p, 1) + N2,

9€G(p)

Combining with Lemma S.3, we get that

sup [[Zu(g)ll < sup [|Zm(9) — Z3 (@)l + sap (| Z3,(9)ll
9€G(p) 9€G(p) 9€G(p)

— Op (1 + /loglog (NJ(p, 1)) (J(p, 1) + N‘l/Q)) .

Proof is completed. [

Proof of Lemma A.5. By (2.5), we have e} = €, — Ay, 0 = €, — A(X — T\ F| — T,F}) and

(Yi - Tign>,PKXi = [Ti(go - gn) + Zlﬁi + ei],PKXi
= [1i(90 — gn) + €] PKx,
= [Ti(gO - gn) + €+ szzA;],PKXi- (8-13)

By the definition of g, in the proof Theorem 4.1 and (S.13), we get that

SM,??(QH) = SM,n(gn) _Sj*w,n(gn) =T +T,—T5+Wygy —E(annlff) =T +Ty—Ts, (5.14)

where
N
_ / / T
Tl - ﬁ ;[EszXz - E(eszXz Fl )]7
1 N

T =<7 > [AFPKy, — E(AFyPKy | F])],
i=1

T3 = K(gn - gO)-

Recall that k is defined in the proof of Theorem 4.1. It is worthwhile to mention that the
terms W,g, and E(W,g,|F{) cancel each other in (S.14) thanks to W,g, € F{. Next, we
will bound T3, T, T5 respectively.

First of all, by (A.23) and (A.24), it yields that

ITall = 0p (Dl — goll = 0p( s+~ + V). (5.15)
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Secondly, the independence of ¢; and X, F, F; tells us that

1 N
T1 == W ZG;PKXZ

i=1

Again by the independence assumption and direct calculations, we have

E(|TP1 7)) =

N

1

N2T2 Z E(e;P < KX«;? KXi > plely"rlT)
=1

N
1
i=1

N
1
= ——= Y Tr(E(PK;P'ec)|F)
N2T? —

2
O T

NT?

E{Tr(K,)|F}
1
- OP(NTh)’

where we are using the facts that K; = [K(Xy, Xg)li<ii<r and Tr(K;) < Telh™" derived

from (A.19). So it follows
1

NTh
Lastly, we will handle T3 as follows. Since FyP, = 0 (see Section A.3), it follows that

I3[ = O (

) (S.16)

N

1 , ,

=1

By the proof and notation in Lemma A.3, it can be shown that

P, —P
= 7' ((zz)" - (2.Z,)") 2+ Z,(2.2,) 'L + Z/(Z.Z,) "' L. + Z (Z.Z,) L.

17



Consequently, 75 has following decomposition:

15

~ P LA (B2) — (B2 D), ~ BRI (2) ~ (B.E)) D7)

N
1 i~ e
NT ZZI[MQ’Z;(Z*ZQ LKy, — E(AFZ(LZ,) " LK, | F])]
1 & ~ ~
T LISFE (L) 2K, — B2 2K )
1 & . - _ _
+57 Z[AiFQ’Z’(Z*Z;)*ZKXi — B(AFYZ(2,7.) Y 2Ky, | FL)]

=1
To1 + Too + Toz + Toa.

The rest of the proof proceeds to bound the terms Ty;,7 = 1,2, 3,4. By (S.9) in the proof of

Lemma A.3, we obtain the following:

E(|F/z (22) — (ZZ) ) Zllo) = ONT2+TY2/N),
E(|FRZ(Z.Z) ' Z.lop) = O(NT?),
E(|FZ/(2.2,) " Zllo) = O(1/N).

Therefore, it follows that

N
\\E(ﬁ S AFZ ((Z22)™ - (ZZ,)7Y) ZKy | FT)|
1 N =1
< —T;E(HAiFQ’Z’((ZZ’)1—(Z*Z'*) 1) ZKy, || FD)
1 N T
< _TZHAzHQE |FZ ((ZZ') " — (Z,Z,) ™)) Zlop Z||KX“||2|]:1T
1 l; t=1
S N7 121 1Al E (”FQIZ, (zz')' = (z.Z)™)) ZHop\/WUiT)
= %1335 1Ail2\ /2R E(|F'Z (ZZ) ™ = (Z.Z)™") Zlopl )
1 1
= OP(\/N—M+N\/E)'

18



As a consequence, || Ty | = Op((NTh)™Y2 + N='h=1/2). Similarly,

1
NTh

1
NvVTh

FOI} = 0p(

N
1 ~
E{E(5p > AR LZL) T LKy, );
=1

FOI} = Op(

N
1 ~ ~
E{HE(—NT > AFRZ(ZZ,) LKy, ).
=1

So it follows that ||Tbs|| = Op((NTh)~2) and ||Toy| = Op(N~*(Th)~'/?). Finally, we will
handle Tyy. Let W = FyZ.(Z,Z.)~". Tt can be easily seen from (S.10) that W € F{ and
|Wllop = Op(1). To bound T, notice

Oql xT
T —
0 > UnKx,
7 _ axT . T _
ZKXZ - T _ K - Zt:]_ Ut2KX~Lt )
Zt:l Ut Xit .
T _
Zt:l vl x,,

where 9; is the ith element of vector ;. By direct calculations, it follows that

N
1 7, 7 T
|To|l = Hﬁ ;{AiWZKXi — E(AWZKx, |F))Y|
|
7, ~ T
< N7 2 AW LK — E(AWLE 7))
1 X d T
< o DA Wllapy | Y01 (@ukx, — E@aK o, [FD) 2 (S17)
i=1 =1 t=1

By (S.17), it suffices to find the rate of

T

1 L 7 .
N7 2o\ LI R, — Bk,

i=1

FO) 2. (S.18)

Because d is finite and fixed, to simplify our technical arguments, assume d = 1 without loss
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of generality. Direct examinations give the following decomposition:
T
Z ouKx, — E(ouKx,|F))|I°
1
= 7l Z Z (viuKx, — B(vjuKx,
t=1 j=1
5 TN
= 3l Y > (vjuKx, — EuKx,|F)) | + 32 || Z (vin K x,, — E(vinKx,,|FT)) ||

t=1 ji
Too1 + To20.

1) I

When i # j, v;y is independent of X, F{, so it follows that

E{| Y (vjuKx, — B(v; FO)IPIF}

=1 jAi
T
= E{|)_ ) wukx |7}
=1 jAi
T
= E{Z Z vinVye K (Xi, Xiw )| F '}
t,t'=17,5'F#1
= ZZE(U?ﬂ)E(K(XitaXit)}\ff)
=1 jAi

IN

NTE(vfu)cih’l,

As a consequence, Tyy; = Op(T(Nh)™!). To deal with Thyy, by Cauchy inequality, it yields
that

|7}

T T
PIFEY < BD v IKx,
t=1 t=1
T
E() vi)Tch™
t=1

= E(U%uﬂﬂ%hil:

T
E{|> (vuKx,)
t=1

IA

which further implies Thoe = Op(T?(N?h)™'). By Jensen’s inequality and d = 1, it follows

20



that

N T
1
(518) = E| =2 1D (ouKx, — E(aKx, |FT)) |21
' t=1

IA
2‘)—‘
~
&MZ

&

T
(II > (0uKx, — B(@aKx,|F)) ||2|f’1f>

1+1)
N2h

). (S.19)

AN
«
DO

)
S
5
H@[\J
=
~
>

Combining (S.17) and (S.19), it follows that || Ths|| = Op((NTh)~Y2 + (NhY/?)71). As a

consequence, we have

1 1
Tl = O + . S.20
Combining (S.15), (S.16) and (S.20), it yields that
1S3a(g)l = Op(—me + ——) + 0p(y/i)
e 0] .
Mnthn PYNTR - N
Proof is completed. O

Next we will prove Lemmas A.6, A.7 and A.8. For this purpose, let us introduce a set of

notation. Define Vyr., AnTs, VNTmx, ANTmxs HNTms as follows,

N
1 _
Vivr, = 577 3 Ko (an) Puf (an) Awr = Vil
1 N

N
_ Z _ el _ 1 S 4
VNTm* - NT (b <I)'P*(I)i(ﬁmyAANTm* - VNTm*? HNTm* - NT - CDZP*(I)Z

Proof of Lemma A.6. Define

N N
<1>’P<1> ") g 1 <I>’P<I> " g 1
|F Q NZ: z*an_ |F Q NZ_:

Qi* = E(

Notice that, conditioning on F{, ®; are independent. Hence, by Chebyshev’s inequality,
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it follows that

P(|HNTwms — Qullp > €l F))

As a consequence, it follows that,

~ em
P(”HNTm* — Q*HF >

IN

IN

IN

N
1 <, PP,
P+ > = Qi)llr > €| F)

T
1 N p®,
e PATT ([;(T — Qi)] ) |71}

N
1 o, P,®,
s T (125 - u ) 1)
i=1

By taking expectation on both sides, we have

~ em
P(”HNTm* - Q*HF >

Since ¢, = Op(1), we obtain

N
2 N2 ZIE (HT - Qi*HF"Fl )
N
1 OLP.D,
s B (1252 )
i=1
1 N
s O B (191517
i=1
m2(c¢, +1)*
e2N ’
(cp + 1)2 T 1
_r < —.
\/N |‘F1 ) — 62
2

=

| HNTmx — Q*HF = OP(mel/Q)-

22
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By Lemma A.3, we have

N
E(|Hyrm — Hyrmallp|FT) < > B(19(P — Pl p|F)
i=1

T

E([(P = Po)llopll2:ll 51 F7)

1

.
I

A
Z‘H Z‘H 2‘H
~ ~

WE

WE

IN

mTcGE(|(P = Po)lop| 1)

1

.
I

I
X
2l

)- (S.22)

Again by Lemma A.3 and similar calculations, it follows that

N
Q-Qulr = 1By 3 elP = RelF)lr
< LS malp - PelF)
NT —
= 0p(-2). (S.23)

VN
Combining (5.21), (S.22) and (S.23), it yields that

o=

To the end of the proof, we quantify the minimal and maximal eigenvalues of Hyrp,, as

|Hnrim — Inllr = | Hyrm — Qllp = Op(—=) = op(1).

follows.

. /
/\min<HNTm) = ”n|’|11nluHNTmu
ullo=

> min u'Lyu— min |u'(Hypm — In)ul
flull2=1 [lull2=1

= 1- ||HNTm - Im”Op
= 1 + Op(l),
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and

/
)\max(HNTm) = HnﬁaxluHNTmu
ul|2

< max u'Lyu+ max v (Hyrm — In)ul
flull2=1 [lull2=1

- 1+||HNTm_Im||0p
= 1—|—Op(1)

In the last step, we have used the trivial inequality ||Hnrm—Im|lop < [|[HNnTm—Inl|lr = op(1).
Proof is completed. [

Proof of Lemma A.7. By Lemma A.6, we find a lower bound for Vi, and an upper bound

for Ax7, as follows:

VNTm = ¢/mHNTm¢m > >\m1n<HNTm>||¢m”§ > Amin(HNTm>

Anrm = Vagle <\l (Hyrm) [ 6,]l5" = Op Z an )72 = 0p(1).(5.24)

v=1

Define L;(xy) = Kx,(x¢) — ®;¢,. Then it follows that

o0

1

2 T 4 2 4 M2
E(IL3IFT) < T<§mj ) =TeDn
Directly calculation shows that
Vit — Vivrm| < |—ZL’PKX ZL’PL | = 2|T1| + |T2]. (S.25)

Let Ry, (-) = S0 eelwo)enl)  Notice L; = 7;R,, and E(Ty|FL) = V(K,,, Ry,). Simi-

v=m+1 1+npu
lar to the proof of Lemma A.6, we can show that

E(|Ty = V(Ka, BaIIF{) = Op(

Meanwhile we have the following

e 2
@V(xo) 2
V(Kyy, Ray) = — <D,
PR e AL

As a consequence, it follows that |T7| = Op(D,,).

24



A bound for T5 is given by the following inequality,
| X
E(TIFY) < 7 Z (IL:131F)) = Op(Dy,).

So (S.25) becomes Vyr — Vrm = Op(D,,) = op(1). Hence Ayt = Anrm + op(1) =
Op(1), where the last equality is from (S.24). Proof is completed. O]

Proof of Lemma A.8. The proof of this lemma is based on Lyapunov C.L.T. Let ¢; =
AnTim POy, /(NT). We have

N
/
VNT Angm( NTZ¢ P! Pe;) = le/NTciei.

Since ¢; € D and ¢; is independent of DT, it follows that

N N

E[(> VNTEe)||ID]] = NTo?» cie;

=1 =1

N
5 D I PO,

i=1

1
_ o2 A2
2

= o,.

Let ¢;; be the tth element of ¢;. By direct examinations, it follows that

N N T
Y BIWVNTe)'|ID] = N°T?Y 3 chE(e;)
=1 i=1 t=1
BNTS S Y dd B (5.26)
i=1 t=1 t'#t

Next we are going to find a bound for ¢;;. By direct calculation, we have

1
NTpt ) |

|Cit| = |ANTm

IN

| Arnomlol Zpts "
S >\I_n111{2 HNTm _H Zpts 1,8 ||27

where p;. is the tth row of P, p is the (¢, s)th element of P and @, . is the sth row of ;.
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Meanwhile, pys = 05 — ZL(ZZ') ' Z;, hence

d ZZ’
1Y psislle = @i — ZZ Byl
s=1

77! 1 < 1 <&
< N1®illz + 1262l (=)~ lop TZHZSH% fZH@i,&H%
s=1 s=1

T

1
= 1203 fme

s=1

VA

< m+ 12l (Z) Nop

<\ fmc(1+ 0] Zil2),

where b = H(ZZ/) 1||0p\/%zz:1 | Zs||3 = Op(1) by Assumption A5. So |c;| < a(1+b||Z|2),
where a = A__ }/Q(HNTm)ﬁ\ /mcZ,. By Lemma A.G, we have

min

2

N T N T
m
SN e <Y 8at(1+ b Z13) = OP(@% (S.27)

i=1 t=1 i=1 t=1
and
N N T T
DD IPILZ I INDIP DL NDIP I
i=1 t=1 t/#t i=1 \ t=1 t/#t t=1 't
N T
<Yy
i=1 t=1
2
— op(—N”;Tz). (S-28)

Combining (S.26), (S.27) and (S.28), we have Y.~ | E[(VNT¢,¢;)*||DT] = Op(m?®/N). And
by Lyapunov C.L.T, the result follows. Proof is completed. O
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