
Supplement to “Statistical Inference on Panel Data
Models: A Kernel Ridge Regression Method”

This supplement document contains proofs and other relevant results that were not included

in the main text and appendix. In Section S.1, we prove Lemmas A.1 and A.2, Propositions

A.2 and A.3. In Section S.2, we prove Lemmas A.3, A.4, A.5 A.6, A.7 and A.8. We also

provide additional Lemmas S.1, S.2 and S.3 as well as their proofs. Lemmas S.1 and S.2

give mild conditions to guarantee the validity of Assumption A4; Lemma S.3 is useful for

proving Lemma A.4.

S.1 Additional Proofs or Other Relevant Results for

Heterogeneous Model

Proof of Lemma A.1. For any θ, θk = (βk, gk) ∈ Θi for k = 1, 2, it holds from (A.1) that

〈DS?i,M,ηi
(θ)θ1, θ2〉i

= 〈E{DSi,M,ηi(θ)θ1}, θ2〉i

=
1

T

T∑
t=1

E (〈RiUit, θ1〉i〈RiUit, θ2〉i) + 〈Piθ1, θ2〉i

=
1

T

T∑
t=1

E ((g1(Xit) + Z ′tβ1)(g2(Xit) + Z ′tβ2)) + ηi〈g1, g2〉Hi

= E ((g1(Xi) + Z ′β1)(g2(Xi) + Z ′β2)) + ηi〈g1, g2〉Hi
= 〈θ1, θ2〉i,

which implies that DS?i,M,ηi
(θ) = id, the identity operator on Θi.

Proof of Lemma A.2. It follows by Proposition A.1 that

‖RiUit‖2
i = K(i)(Xit, Xit) + (Zt − Ai(Xit))

′ (Ωi + Σi)
−1(Zt − Ai(Xit)).

By (3.6) and 〈Ai, g〉?,i = Vi(Gi, g) (see Section 3.2),

Ai(x) = 〈Ai, K(i)
x 〉?,i = Vi(Gi, K

(i)
x )

=
∞∑
ν=1

ϕ
(i)
ν (x)

1 + ηiρ
(i)
ν

Vi(Gi, ϕ
(i)
ν ).
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It follows by Assumption A3 that Cϕ,i ≡ supν≥1 supx∈Xi |ϕ
(i)
ν (x)| <∞. Then we have

K(i)(Xit, Xit) =
∑
ν≥1

|ϕ(i)
ν (Xit)|2

1 + ηiρ
(i)
ν

≤ C2
ϕ,ih

−1
i ,

Ai(Xit)
′(Ωi + Σi)

−1Ai(Xit) ≤ c−1
1 Ai(Xit)

′Ai(Xit)

≤ c−1
1

∑
ν≥1

|ϕ(i)
ν (Xi)|2

(1 + ηiρ
(i)
ν )2

∑
ν≥1

Vi(G
′
i, ϕ

(i)
ν )Vi(Gi, ϕ

(i)
ν )

≤ c−1
1 C2

ϕ,iC
2
Gi
h−1
i ,

Z ′t(Ωi + Σi)
−1Zt ≤ c−1

1 Z ′tZt,

where C2
Gi

=
∑

ν≥1 Vi(G
′
i, ϕ

(i)
ν )Vi(Gi, ϕ

(i)
ν ). By Assumption A2, C2

Gi
is a finite positive con-

stant. Then (A.1) holds for C2
i = max{C2

ϕ,i, 2c
−1
1 C2

ϕ,iC
2
Gi
, 2c−1

1 }.
To show (A.2), first notice that, for any θ = (β, g) ∈ Θi,

‖θ‖i,sup = sup
x∈Xi,‖z‖2=1

|g(x) + z′β|.

The “≥” is obvious. To show “≤”, note that for any x ∈ Xi, choose zx = sign(g(x))β/‖β‖2.

Then

|g(x) + z′xβ| = |g(x)|+ ‖β‖2.

Therefore,

sup
x∈Xi,‖z‖2=1

|g(x) + z′β| ≥ sup
x∈Xi
|g(x) + z′xβ| = sup

x∈Xi
|g(x)|+ ‖β‖2 = ‖θ‖i,sup.

Following Proposition A.1 and the proof of (A.1), for u = (x, z) with x ∈ Xi and ‖z‖2 = 1,

|g(x) + z′β| = |〈Riu, θ〉i| ≤ ‖Riu‖i‖θ‖i ≤ Ci(1 + h
−1/2
i )‖θ‖i.

This proves (A.2).

Proof of Proposition A.2. Since f1t, f2t, vit and εit all have finite αth moments, it follows by

(2.2) that Xit and Zt both have finite αth moments, i.e., E(‖Xi‖α2 ) <∞ and E(‖Z‖α2 ) <∞.

Define

CT (ξ) = inf{x|TP (‖Z‖2 > x) ≤ ξ}, ξ > 0.

By Markov inequality,

P
(
‖Z‖2 > [TE(‖Z‖α2 )/ξ]1/α

)
≤ ξ

T
,
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therefore,

CT (ξ) ≤
(
TE(‖Z‖α2 )

ξ

)1/α

.

Thanks to the φ-mixing condition (see Assumption A1), it follows by O’Brien (1974, Theorem

1) that for any ξ > 0,

lim inf
T→∞

P

(
max

1≤t≤T
‖Zt‖2 ≤ CT (ξ)

)
= exp(−bξ),

where b > 0 is a constant. For arbitrary ε > 0, choose ξ > 0 such that 1− exp(−bξ) < ε/2.

Then, as T approaches infinity,

P

(
max

1≤t≤T
‖Zt‖2 ≤ CT (ξ)

)
≥ exp(−bξ)− ε/2,

leading to that

P

(
max

1≤t≤T
‖Zt‖2 > CT (ξ)

)
≤ 1− exp(−bξ) + ε/2 ≤ ε.

This proves that

max
1≤t≤T

‖Zt‖2 = OP (CT (ξ)) = OP (T 1/α).

Proof of Proposition A.3. For notation simplicity, denote

Fj = F j1 , j ∈ [T ],

F0 = trivial σ-algebra consisting only of the empty set and full sample space.

For any θ1, θ2 ∈ Θi, define lit = (ψi,M,t(Uit; θ1)− ψi,M,t(Uit; θ2))RiUit. First of all, we will

prove the following concentration inequality: for any r > 0,

P

(∥∥∥∥ T∑
t=1

[lit − E(lit)]

∥∥∥∥
i

≥ r

)
≤ 2 exp

(
− r2

32TC2
φ‖θ1 − θ2‖2

i,sup

)
, (S.1)

where Cφ ≡
∑∞

t=0 φ(t). It follows by Assumption A1 that Cφ is finite. Clearly, (S.1) holds

for θ1 = θ2 since both sides are equal to zero. In what follows, we assume θ1 6= θ2.

Define MiT =
∑T

t=1 lit, and fiT j = E(MiT |Fj) − E(MiT |Fj−1), j ∈ [T ]. It is easy to see
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that

MiT − E(MiT ) =
T∑
j=1

fiT j,

fiT j =
T∑
t=j

(E(lit|Fj)− E(lit|Fj−1)) . (S.2)

Clearly, fiT j is Fj-measurable. For k ∈ [T ], define NiTk =
∑k

j=1 fiT j and NiT0 ≡ 0. Then

NiTk = NiTk−1 + fiTk. For λ > 0, let uk−1(x) = λ‖NiTk−1 + xfiTk‖i, x ∈ [0, 1]. Define

ϕk−1(x) = E (cosh (uk−1(x)) |Fk−1) , x ∈ [0, 1].

It is easy to see that

ϕk−1(1) = E (cosh (λ‖NiTk‖i) |Fk−1)

ϕk−1(0) = E (cosh (λ‖NiTk−1‖i) |Fk−1) .

By the proof of Pinelis (1994, Theorem 3.2) and direct calculations, it can be shown that

ϕ′k−1(x) = E
(
sinh(uk−1(x))u′k−1(x)|Fk−1

)
,

ϕ′′k−1(x) = E
(
cosh(uk−1)(u′k−1(x))2 + sinh(uk−1(x))u′′k−1(x)|Fk−1

)
≤ E

(
cosh(uk−1)(u′k−1(x))2 + cosh(uk−1(x))uk−1(x)u′′k−1(x)|Fk−1

)
=

1

2
E
(
cosh(uk−1(x))(uk−1(x)2)′′|Fk−1

)
= λ2E

(
cosh(uk−1(x))‖fiTk‖2

i |Fk−1

)
. (S.3)

Next we will show that ‖fiTk‖2
i is almost surely bounded. We will first examine the terms

E(lit|Fk) − E(lit) for t ≥ k. Arbitrarily choose A ∈ Fk and θ ∈ Θi with ‖θ‖i = 1. Define

X = 〈lit, θ〉i. Write X = X+ −X−, where X+ and X− represent the positive and negative

parts of X, respectively. Clearly, |X| ≤ ‖lit‖i‖θ‖i = ‖lit‖i implying that both X+ and X−

belong to [0, ‖lit‖i]. Note that the X+ is F∞t -measurable. Therefore,

|E(X+|A)− E(X+)| =

∣∣∣∣ ∫ ‖lit‖i
0

[P (X+ > v|A)− P (X+ > v)]dv

∣∣∣∣
≤

∫ ‖lit‖i
0

|P (X+ > v|A)− P (X+ > v)|dv ≤ ‖lit‖iφ(t− k).
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Similarly, one can show that |E(X−|A)− E(X−)| ≤ ‖lit‖iφ(t− k). Therefore,

|E(X|A)− E(X)| ≤ 2‖lit‖iφ(t− k).

By the arbitrariness of A ∈ Fk and by taking supremum over θ ∈ Θi with ‖θ‖i = 1, one gets

that

‖E(lit|Fk)− E(lit)‖i ≤ 2‖lit‖iφ(t− k), t ≥ k. (S.4)

Similar arguments lead to

‖E(lit|Fk−1)− E(lit)‖i ≤ 2‖lit‖iφ(t− k + 1), t ≥ k.

Therefore, for t ≥ k,

‖E(lit|Fk)− E(lit|Fk−1)‖i ≤ 2‖lit‖i(φ(t− k) + φ(t− k + 1)).

Using (S.2) and the assumption ‖lit‖i ≤ ‖θ1 − θ2‖i,sup, it can be shown that

‖fiTk‖i ≤
T∑
t=k

‖E(lit|Fk)− E(lit|Fk−1)‖i

≤
T∑
t=k

2‖lit‖i(φ(t− k) + φ(t− k + 1))

≤ 2‖θ1 − θ2‖i,sup

T∑
t=k

(φ(t− k) + φ(t− k + 1))

≤ 4Cφ‖θ1 − θ2‖i,sup.

Therefore, it follows by (S.3) that

ϕ′′k−1(x) ≤ 16λ2C2
φ‖θ1 − θ2‖2

i,supϕk−1(x).

Meanwhile, note that NiTk−1 is Fk−1-measurable, so we have

ϕ′k−1(0) = λ
sinh(λ‖NiTk−1‖i)
‖NiTk−1‖i

E (〈NiTk−1, fiTk〉i|Fk−1) = 0, k ≥ 2,

where the last equality follows from E(fiTk|Fk−1) = 0. Directly using (S.3) one also has that

ϕ′0(0) = 0. So ϕ′k−1(0) = 0 for all k ∈ [T ]. By Dudley et al. (1992, pp. 133, Lemma 3) we
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have for k ∈ [T ],

ϕk−1(x) ≤ ϕk−1(0) exp
(
8λ2C2

φ‖θ1 − θ2‖2
i,supx

2
)
, x ∈ [0, 1].

In particular,

ϕk−1(1) ≤ ϕk−1(0) exp
(
8λ2C2

φ‖θ1 − θ2‖2
i,sup

)
.

Taking expectations on both sides leading to that

E (cosh (λ‖NiTk‖i)) ≤ exp
(
8λ2C2

φ‖θ1 − θ2‖2
i,sup

)
E (cosh (λ‖NiTk−1‖i)) . (S.5)

By repeatedly using (S.5) and the convention NiT0 = 0, and by (S.2), we have

E

(
cosh

(
λ

∥∥∥∥ T∑
t=1

[lit − E(lit)]

∥∥∥∥
i

))
= E (cosh (λ‖NiTT‖i))

≤ exp
(
8Tλ2C2

φ‖θ1 − θ2‖2
i,sup

)
.

Therefore,

P

(∥∥∥∥ T∑
t=1

[lit − E(lit)]

∥∥∥∥
i

≥ r

)
= P

(
cosh

(
λ

∥∥∥∥ T∑
t=1

[lit − E(lit)]

∥∥∥∥
i

)
≥ cosh(λr)

)

≤ 1

cosh(λr)
E

(
cosh

(
λ

∥∥∥∥ T∑
t=1

[lit − E(lit)]

∥∥∥∥
i

))
≤ e exp

(
−λr + 8Tλ2C2

φ‖θ1 − θ2‖2
i,sup

)
.

Then (S.1) follows by choosing

λ =
r

16TC2
φ‖θ1 − θ2‖2

i,sup

.

The rest of the proof follows by the chaining argument. Let ψ2(x) = exp(x2) − 1. It

follows by (S.1) and Kosorok (2008, Theorem 8.1) that for any θ1, θ2 ∈ Θi,∥∥∥∥‖ZiM(θ1)− ZiM(θ2)‖i
∥∥∥∥
ψ2

≤
√

96Cφ‖θ1 − θ2‖i,sup.

It follows by Kosorok (2008, Theorem 8.4) that there exists a universal constant C > 0,
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which only depends on Cψ, such that for any δ > 0,∥∥∥∥ sup
θ1,θ2∈Gi(pi)
‖θ1−θ2‖i,sup≤δ

‖ZiM(θ1)− ZiM(θ2)‖i
∥∥∥∥
ψ2

≤ C

(∫ δ

0

ψ−1
2 (Di(ε,Gi(pi), ‖ · ‖i,sup)) dε+ δψ−1

2

(
Di(δ,Gi(pi), ‖ · ‖i,sup)2

))
= CJi(pi, δ).

Therefore, ∥∥∥∥ sup
θ∈Gi(pi)
‖θ‖i,sup≤δ

‖ZiM(θ)‖i
∥∥∥∥
ψ2

≤ CJi(pi, δ).

It follows again from Kosorok (2008, Lemma 8.1) that for all δ > 0, s > 0,

P

(
sup

θ∈Gi(pi),‖θ‖i,sup≤δ
‖ZiM(θ)‖i > s

)
≤ 2 exp

(
− s2

C2Ji(pi, δ)2

)
. (S.6)

It is easy to see that for any θ ∈ Gi(pi), ‖θ‖i,sup ≤ 1. Let
√
TJi(pi, 1) = ε−1, and Qε =

− log ε− 1. Let τ = 3C
√

logN + log log(TJi(pi, 1)). Then it can be checked that

N(Qε + 2) exp

(
− τ 2

C2 exp(2)

)
→ 0, N →∞.

Since Ji(pi, δ) is strictly increasing in δ, the function Ji(δ) ≡ Ji(pi, δ) has inverse denoted by
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J−1
i . Then we have

P

(
max
i∈[N ]

sup
θ∈Gi(pi)

√
T‖ZiM(θ)‖i√

TJi(‖θ‖i,sup) + 1
≥ τ

)

≤
N∑
i=1

(
P

(
sup

‖θ‖i,sup≤J−1
i (T−1/2)

√
T‖ZiM(θ)‖i√

TJi(‖θ‖i,sup) + 1
≥ τ

)

+

Qε∑
l=0

P

(
sup

J−1
i (T−1/2 exp(l))≤‖θ‖i,sup≤J−1

i (T−1/2 exp(l+1))

√
T‖ZiM(θ)‖i√

TJi(‖θ‖i,sup) + 1
≥ τ

))

≤
N∑
i=1

(
P

(
sup

‖θ‖i,sup≤J−1
i (T−1/2)

‖ZiM(θ)‖i ≥ T−1/2τ

)

+

Qε∑
l=0

P

(
sup

‖θ‖i,sup≤J−1
i (T−1/2 exp(l+1))

‖ZiM(θ)‖i ≥ T−1/2τ exp(l)

))

≤
N∑
i=1

(
2 exp

(
−τ 2/C2

)
+

Qε∑
l=0

2 exp
(
−τ 2/(C2 exp(2))

))

= 2N(Qε + 2) exp

(
− τ 2

C2 exp(2)

)
→ 0, as N →∞. (S.7)

This proves the desirable conclusion with C0 = 3C.

S.2 Additional Proofs or Other Relevant Results for

Homogeneous Model

The following lemma gives mild conditions that guarantee Assumption A4. Before stating

the lemma, we borrow the concept of complete continuity from Weinberger (1974, page 50).

A bilinear functional A(·, ·) on H × H is said to be completely continuous w.r.t another

bilinear functional B(·, ·) if for any ε > 0, there exists finite number of functionals l1, l2, ..., lk

on H such that li(g) = 0, i = 1, 2, .., k, implies A(g, g) ≤ εB(g, g).

Let U be an open subset of X and UNT ≡ U × U × · · · × U︸ ︷︷ ︸
NT items

. Let C(X ) be the set of all

continuous functions on X andH ⊆ C(X ). Let x denote theNT -vector (x11, . . . , x1T , . . . , xN1, . . . , xNT ).

Lemma S.1. Suppose 1 /∈ H, and p(x|FT1 ) > 0 for x ∈ UNT , where p(x|FT1 ) is the joint

conditional density of X11, X12, ..., XNT given FT1 . If V (f, g) = 0 for all f ∈ H, then g = 0.

Proof of Lemma S.1. For simplicity, we assume that f1t, Xit are both univariate. By as-
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sumption, 0 = V (g, g) =
∑N

i=1E
{

(τig)′P (τig)
∣∣FT1 } /(NT ). Hence it follows that

0 =

∫
(g(xi1), g(xi2), ..., g(xiT ))P (g(xi1), g(xi2), ..., g(xiT ))′p(x|FT1 )dx, for all i ∈ [N ].

(S.1)

Since the integrand in (S.1) is continuous and nonnegative, it holds that, for all i ∈ [N ] and

x with p(x|FT1 ) > 0,

(g(xi1), g(xi2), ..., g(xiT ))P (g(xi1), g(xi2), ..., g(xiT ))′ = 0. (S.2)

By definition, P is a projection matrix whose image is the orthogonal space of the linear

space spanned by F1 and X̄. Therefore, it yields that

(g(xi1), g(xi2), ..., g(xiT )) = αi(f11, f12, ..., f1T ) + βi(x̄1, x̄2, ..., x̄T ), (S.3)

for some αi, βi ∈ R. Consider x = (x11, x12, ..., xN,T−1, xNT ) and x̃ = (x11, x12, ..., xN,T−1, x̃NT ) ∈
UNT with xNT 6= x̃NT and p(x|FT1 ) > 0, p(x̃|FT1 ) > 0, i.e., the two points differ only on the

last element. Applying (S.2) to point x̃, we have

(g(xi1), g(xi2), ..., g(x̃iT )) = α̃i(f11, f12, ..., f1T ) + β̃i(x̄1, x̄2, ..., ˜̄xT ), (S.4)

for some α̃i, β̃i ∈ R. Comparing (S.3) and (S.4), and by the fact T > q1 + d = 2, it holds

that αi = α̃i, βi = β̃i = 0. Hence (g(xi1), g(xi2), ..., g(xiT )) ∈ span((f11, f12, ..., f1T )) for all

p(x|FT1 ) > 0, i ∈ [N ], and it happens if and only if g = 0.

Lemma S.2. Suppose X is compact. Furthermore if V (f, g) = 0 for all f ∈ H implies

g = 0, then Assumption A4 is valid.

Remark S.2.1. The compactness of X can be relaxed by Mercer’s theorem; see Sun (2005).

Proof of Lemma S.2. Define bilinear functionals W (g, g̃) =
∑N

i=1E
{

(τig)′(τig̃)
∣∣FT1 } /(NT ),

and J(g, g̃) = 〈g, g̃〉H. Clearly, V (g, g) ≤ W (g, g). Let µ be a measure such that

∫
gdµ =

1

NT

N∑
i=1

T∑
t=1

E(g(Xit)|FT1 ).

Hence,
∫
g2dµ = W (g, g). By Mercer’s theorem, the kernel K̄ of H follows the expansion:

K̄(x, y) =
∞∑
i=1

λiei(x)ei(y).
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where λi is a non-increasing positive sequence converging to zero and {ei}∞i=1 forms an or-

thonormal basis of L2(µ), so that W (ei, ej) = δij. Moreover, {
√
λiei}∞i=1 is also an orthonor-

mal basis of H, which is proved in Cucker and Smale (2001). As a consequence, any g ∈ H
simultaneously admits the following expansions:

g =
∞∑
i=1

W (g, ei)ei, g =
∞∑
i=1

J(g,
√
λiei)

√
λiei

with
∑∞

i=1W
2(g, ei) < ∞ and

∑∞
i=1 J

2(g,
√
λiei) < ∞. This implies W (g, ei) = λiJ(g, ei).

For any ε > 0, choose integer k large enough so that λi < ε for i > k. Define functionals

li(g) = W (g, ei), i = 1, 2, ..., k. By direct examinations, if li(g) = 0 for i = 1, 2, ..., k, then

W (g, g) =
∞∑

i=k+1

W 2(g, ei) =
∞∑

i=k+1

λ2
iJ

2(g, ei) ≤ ε
∞∑

i=k+1

λiJ
2(g, ei) = εJ(g, g).

Since V (g, g) ≤ W (g, g) ≤ εJ(g, g), V is completely continuous w.r.t J . By Weinberger

(1974, Theorem 3.1, page 52), there are positive eigenvalues {αi}∞i=1 converging to zero and

eigenfunctions {ϕ̃i}∞i=1 ∈ H such that V (ϕ̃i, ϕ̃j) = αiδij, J(ϕ̃i, ϕ̃j) = δij and

g =
∞∑
i=1

J(g, ϕ̃i)ϕ̃i, for all g ∈ H.

The above implies V (g, ϕ̃i) = αiJ(g, ϕ̃i). Take ϕi = ϕ̃i/
√
αi and ρi = 1/αi, then {ϕi}∞i=1 and

{ρi}∞i=1 will satisfy Assumption A4.

Proof of Lemma A.3. Throughout we let ‖A‖F =
√

Tr(AA′) be the Frobenius norm. Clearly,

Z̃ =

(
0 0 · · · 0

v̄1 v̄2 · · · v̄T

)
, Z?Z̃′ =

(
0(q1+d)×q1 ,

T∑
t=1

Z?
t v̄
′
t

)
.

By direct examinations we have

ZZ′ − Z?Z′? = Z?Z̃′ + Z̃′Z? + Z̃Z̃′ ≡ R. (S.5)

By independence of vit and Z?
t , it can be shown that

E

(
‖

T∑
t=1

Z?
t v̄
′
t‖2
F

)
=

T∑
t,l=1

Tr (E (v̄′tv̄l)E ((Z?
t )′Z?

l )) = O(T/N),

E
(
‖Z̃Z̃′‖2

F

)
≤ E

(
Tr
(
Z̃Z̃′Z̃Z̃′

))
= O(T 2/N2). (S.6)
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Hence,

E
(
‖Z?Z̃′‖2

F

)
= E

(
‖

T∑
t=1

Z?
t v̄
′
t‖2
F

)
= O(T/N),

E(‖R‖2
F ) ≤ 8E(‖Z?Z̃′‖2

F ) + 2E(‖Z̃Z̃′‖2
F ) = O(T/N + (T/N)2). (S.7)

Since

‖(ZZ′)−1 − (Z?Z′?)−1‖op = ‖(Z?Z′?)−1R(ZZ′)−1‖op

≤ ‖(Z?Z′?)−1‖op‖R‖op‖(ZZ′)−1‖op,

it follows by Assumption A5 and (S.5) and Hölder inequality that

E
(
‖(ZZ′)−1 − (Z?Z′?)−1‖1+ω

op

)
= O((T 3N)−(1+ω)/2 + (TN)−(1+ω)), (S.8)

where ω = (ζ − 4)/(ζ + 4). Note that E(Z̃′Z̃) = σ2
vIT and ETr(Z̃′Z̃) = O(T/N), where

σ2
v = E(v′itvit) is a constant. By direct examinations

P? − P

= Z′
(
(ZZ′)−1 − (Z?Z′?)−1

)
Z + Z′?(Z?Z′?)−1Z̃ + Z̃′(Z?Z′?)−1Z? + Z̃′(Z?Z′?)−1Z̃.

It follows by (S.6), (S.7) and (S.8) and Hölder inequality that

E (‖P − P?‖op)

≤ E
(
‖ZZ′‖op‖(ZZ′)−1 − (Z?Z′?)−1‖op

)
+ 2E

(
‖Z̃′(Z?Z′?)−1Z?‖op

)
+ E

(
‖Z̃′(Z?Z′?)−1Z̃‖op

)
≤ E

(
‖(ZZ′)−1 − (Z?Z′?)−1‖1+ω

op

)1/(1+ω)
E
(
‖ZZ′‖(1+ω)/ω

op

)ω/(1+ω)

+2E
(
‖(Z?Z′?)−1‖op

)1/2
E
(

Tr
(
Z̃Z̃′
))1/2

+ E
(
‖(Z?Z′?)−1‖op

)
E
(

Tr
(
Z̃Z̃′
))

= O((T 3N)−1/2 + (TN)−1)T +O(T−1/2
√
T/N) +O(T−1(T/N)) = O(N−1/2).

(S.9)

This proves (A.20). Next we show (A.21). For any i ∈ [N ],

E{γ′2iF ′2(P − P?)KXi |FT1 }

= E{γ′2iF ′2Z′[(ZZ′)−1 − (Z?Z′?)−1]ZKXi |FT1 }+ E{γ′2iF ′2Z′?(Z?Z′?)−1Z̃KXi |FT1 }

+E{γ′2iF ′2Z̃′(Z?Z′?)−1Z?KXi |FT1 }+ E{γ′2iF ′2Z̃′(Z?Z′?)−1Z̃KXi |FT1 }.

11



By direct calculations it can be examined that

E
(
‖Z′[(ZZ′)−1 − (Z?Z′?)−1]ZF2‖op

)
≤ E

(
‖(ZZ′)−1 − (Z?Z′?)−1‖op × ‖ZZ′‖op × ‖F2‖op

)
≤ E

(
‖(ZZ′)−1 − (Z?Z′?)−1‖1+ω

op

)1/(1+ω)

×E
(
‖ZZ′‖2(1+ω)/ω

op

)ω/(2(1+ω))
E
(
‖F2‖2(1+ω)/ω

op

)ω/(2(1+ω))

= O((T 3N)−1/2 + (TN)−1)T 3/2 = O(N−1/2 + T 1/2/N),

and

E
(
‖Z′?(Z?Z′?)−1Z̃F2‖op

)
≤ E

(
‖(Z?Z′?)−1‖1/2

op Tr(F ′2Z̃′Z̃F2)1/2
)

≤ E
(
‖(Z?Z′?)−1‖op

)1/2
E
(

Tr(F ′2Z̃′Z̃F2)
)1/2

= E
(
‖(Z?Z′?)−1‖op

)1/2
E (Tr(F ′2F2))

1/2
O(N−1/2)

= E
(
‖(Z?Z′?)−1‖op

)1/2
E (‖F ′2F2‖op)

1/2
O(N−1/2) = O(N−1/2).

For any g ∈ H with ‖g‖ = 1 (implying |g(x)| ≤ cϕh
−1/2 for any x), we have

‖E{F ′2Z′?(Z?Z′?)−1Z̃τig|FT1 }‖2 ≤ ‖F ′2Z′?(Z?Z′?)−1‖op‖E{Z̃τig|FT1 }‖2 = OP (‖E{Z̃τig|FT1 }‖2).

On the other hand, by direct examinations we have

‖Z̃τig‖2
2 =

T∑
t,l=1

v̄′tv̄lg(xit)g(xil).

Meanwhile, for any t 6= l, v̄′tg(xit) and v̄lg(xil) are independent conditional on FT1 , and

E{v̄lg(xil)|FT1 } =
1

N
E{vilg(xil)|FT1 }+

1

N

∑
k 6=i

E{vklg(xil)|FT1 } =
1

N
E{vilg(xil)|FT1 }.

The last equality holds because vkl and g(xil) are conditional independent (on FT1 ) for k 6= i

12



and the former has mean zero. This leads us to that

E{‖Z̃τig‖2
2|FT1 } =

T∑
t=1

E{v̄′tv̄tg(xit)
2|FT1 }+

∑
t6=l

E{v̄′tv̄lg(xit)g(xil)|FT1 }

=
T∑
t=1

E{v̄′tv̄tg(xit)
2|FT1 }+

∑
t6=l

E{v̄′tg(xit)|FT1 }E{v̄lg(xil)|FT1 }

=
T∑
t=1

E{v̄′tv̄tg(xit)
2|FT1 }+

1

N2

∑
t6=l

E{v′itg(xit)|FT1 }E{vilg(xil)|FT1 }

= OP

(
T

Nh
+

T 2

N2h

)
.

Therefore,

‖E{F ′2Z′?(Z?Z′?)−1Z̃τig|FT1 }‖2 = OP

(√
T

Nh
+

T

N
√
h

)
,

where the OP term is free of g.

Similarly, we can show that

E
(
‖Z̃′(Z?Z′?)−1Z̃F2‖op

)
≤ E

(
‖Z̃Z̃′‖2

op

)1/4

E
(
‖(Z?Z′?)−1‖4

op

)1/4
E
(
F ′2Z̃′Z̃F2

)1/2

= O(
√
T/N)O(1/T )O(

√
T/N) = O(1/N). (S.10)

Combining the above, we get that

‖E{γ′2iF ′2(P − P?)KXi |FT1 }‖ = OP

(√
T

Nh
+

T

N
√
h

)
,

where the OP is free of i ∈ [N ]. Proof is completed.

Lemma S.3. Suppose that Assumptions A1, A4 and A5 hold. Let ψ satisfy the conditions

in Lemma A.4. Then

sup
‖g‖sup≤1

1√
N
‖

N∑
i=1

ψ(Xi, g)′(P − P?)KXi‖ = OP (1) ,

and

sup
‖g‖sup≤1

1√
N
‖

N∑
i=1

E
(
ψ(Xi, g)′(P − P?)KXi

∣∣FT1 ) ‖ = OP (1) .
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Proof of Lemma S.3. For any g, g̃ satisfying ‖g‖sup ≤ 1 and ‖g̃‖ ≤ 1, the former implies that

‖ψ(Xi, g)‖2 ≤ L
√
h/T for each i ∈ [N ], and the latter implies that ‖g̃‖sup ≤ cϕh

−1/2, by

(A.20) we have

1√
N

∣∣∣∣ N∑
i=1

ψ(Xi, g)′(P − P?)τig̃
∣∣∣∣ ≤ 1√

N

N∑
i=1

‖ψ(Xi, g)‖2‖τig̃‖2‖P − P?‖op = OP (1) ,

and

1√
N

∣∣∣∣ N∑
i=1

E
(
ψ(Xi, g)′(P − P?)τig̃

∣∣FT1 ) ∣∣∣∣ ≤ Lcϕ
√
NE

(
‖P − P?‖op

∣∣FT1 ) = OP (1).

Proof is completed.

Proof of Lemma A.4. It follows by Lemma S.3 that we only need to consider the process

Z?
M(g) = 1√

N

∑N
i=1[ψ(Xi, g)′P?KXi − E{ψ(Xi, g)′P?KXi |FT1 }] for g ∈ H where the items in

summation are independent conditional on FT1 . Let Ki = [K(Xit, Xil)]1≤t,l≤T , a T × T

matrix. By Assumption A4 it follows that Ki ≤ c2
ϕh
−1TIT . For any g1, g2 ∈ H,

‖(ψ(Xi, g1)− ψ(Xi, g2))′P?KXi‖2

= (ψ(Xi, g1)− ψ(Xi, g2))′P?KiP?(ψ(Xi, g1)− ψ(Xi, g2))

≤ (Lcϕ‖P?‖op‖g1 − g2‖sup)2 = (Lcϕ‖g1 − g2‖sup)2.

The last equation follows by ‖P?‖op = 1 since P? is idempotent. Notice that {Xit : i ∈
[N ], t ∈ [T ]} are conditional independent given FT1 . It follows by Pinelis (1994, Theorem

3.5) that for any r ≥ 0,

P

(
‖Z?

M(g1)− Z?
M(g2)‖ ≥ r

∣∣∣∣FT1 ) ≤ 2 exp

(
− r2

8L2c2
ϕ‖g1 − g2‖2

sup

)
.

It follows by Kosorok (2008, Lemma 8.1) that∥∥∥∥‖Z?
M(g1)− Z?

M(g2)‖
∥∥∥∥
FT1 ,ψ2

≤ 5Lcϕ‖g1 − g2‖sup,

where ‖·‖FT1 ,ψ2
denotes the Orlicz-norm conditional on FT1 with respect to ψ2(s) = exp(s2)−1.

14



This in turn leads to, by Kosorok (2008, Theorem 8.4), that for any δ > 0,∥∥∥∥ sup
g1,g2∈G(p)
‖g1−g2‖sup≤δ

‖Z?
M(g1)− Z?

M(g2)‖
∥∥∥∥
FT1 ,ψ2

≤ C

[∫ δ

0

ψ−1
2 (D(ε,G(p), ‖ · ‖sup)) dε+ δψ−1

2

(
D(δ,G(p), ‖ · ‖sup)2

)]
= CJ(p, δ),

where C > 0 is a constant depending on L, cϕ only. Then we have∥∥∥∥ sup
g∈G(p)
‖g‖sup≤δ

‖Z?
M(g)‖

∥∥∥∥
FT1 ,ψ2

≤ CJ(p, δ).

It follows again from Kosorok (2008, Lemma 8.1) that for all δ > 0, r > 0,

P

 sup
g∈G(p)
‖g‖sup≤δ

‖Z?
M(g)‖ ≥ r

∣∣∣∣FT1
 ≤ 2 exp

(
− r2

C2J(p, δ)2

)
. (S.11)

Let QN = log(N1/2J(p, 1))− 1. It follows from the proof of (S.7) that

P

(
sup
g∈G(p)

√
N‖Z?

M(g)‖√
NJ(p, ‖g‖sup) + 1

≥ C
√

18 log(QN)

∣∣∣∣FT1
)

≤ 2(QN + 2) exp

(
−18C2 log(QN)

C2 exp(2)

)
≤ 2(QN + 2)

Q2
N

. (S.12)

Taking expectation on both sides of (S.12), we get that

P

(
sup
g∈G(p)

√
N‖Z?

M(g)‖√
NJ(p, ‖g‖sup) + 1

≥ C
√

18 log(QN)

)
= o(1), as N →∞.

This shows that, with probability approaching one,

sup
g∈G(p)

√
N‖Z?

M(g)‖√
NJ(p, ‖g‖sup) + 1

≤ C
√

18 log(QN).

Since ‖g‖sup ≤ 1 for any g ∈ G and J(p, δ) is increasing in δ, the above inequality implies
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that, with probability approaching one,

sup
g∈G(p)

‖Z?
M(g)‖ ≤ C

√
18 log(QN)(J(p, 1) +N−1/2).

Combining with Lemma S.3, we get that

sup
g∈G(p)

‖ZM(g)‖ ≤ sup
g∈G(p)

‖ZM(g)− Z?
M(g)‖+ sup

g∈G(p)

‖Z?
M(g)‖

= OP

(
1 +

√
log log (NJ(p, 1))(J(p, 1) +N−1/2)

)
.

Proof is completed.

Proof of Lemma A.5. By (2.5), we have e′i = ε′i −∆i, v̄ = ε′i −∆i(X̄ − Γ̄′1F
′
1 − Γ̄′2F

′
2) and

(Yi − τigη)′PKXi = [τi(g0 − gη) + Z′βi + ei]
′PKXi

= [τi(g0 − gη) + ei]
′PKXi

= [τi(g0 − gη) + εi + F2Γ̄2∆′i]
′PKXi . (S.13)

By the definition of gη in the proof Theorem 4.1 and (S.13), we get that

SM,η(gη) = SM,η(gη)−S?M,η(gη) = T1 +T2−T3 +Wηgη−E(Wηgη|FT1 ) = T1 +T2−T3, (S.14)

where

T1 =
1

NT

N∑
i=1

[ε′iPKXi − E(ε′iPKXi |FT1 )],

T2 =
1

NT

N∑
i=1

[∆iF
′
2PKXi − E(∆iF

′
2PKXi |FT1 )],

T3 = κ(gη − g0).

Recall that κ is defined in the proof of Theorem 4.1. It is worthwhile to mention that the

terms Wηgη and E(Wηgη|FT1 ) cancel each other in (S.14) thanks to Wηgη ∈ FT1 . Next, we

will bound T1, T2, T3 respectively.

First of all, by (A.23) and (A.24), it yields that

‖T3‖ = oP (1)‖gη − g0‖ = oP (
1√
NTh

+
1

N
√
h

+
√
η). (S.15)
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Secondly, the independence of εi and Xi, F1, F2 tells us that

T1 =
1

NT

N∑
i=1

ε′iPKXi .

Again by the independence assumption and direct calculations, we have

E(‖T1‖2|FT1 ) =
1

N2T 2

N∑
i=1

E(ε′iP < KXi , KXi > P ′εi|FT1 )

=
1

N2T 2

N∑
i=1

E(ε′iPKiP
′εi|FT1 )

=
1

N2T 2

N∑
i=1

Tr(E(PKiP
′εiε
′
i)|FT1 )

=
σ2
ε

NT 2
E{Tr(PKiP

′)|FT1 }

≤ σ2
ε

NT 2
E{Tr(Ki)|FT1 }

= OP (
1

NTh
),

where we are using the facts that Ki = [K(Xit, Xil)]1≤t,l≤T and Tr(Ki) ≤ Tc2
ϕh
−1 derived

from (A.19). So it follows

‖T1‖ = OP (
1√
NTh

) (S.16)

Lastly, we will handle T2 as follows. Since F ′2P? = 0 (see Section A.3), it follows that

T2 =
1

NT

N∑
i=1

[∆iF
′
2(P − P?)KXi − E(∆iF

′
2PKXi |FT1 )].

By the proof and notation in Lemma A.3, it can be shown that

P? − P

= Z′
(
(ZZ′)−1 − (Z?Z′?)−1

)
Z + Z′?(Z?Z′?)−1Z̃ + Z̃′(Z?Z′?)−1Z? + Z̃′(Z?Z′?)−1Z̃.
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Consequently, T2 has following decomposition:

T2

=
1

NT

N∑
i=1

[∆iF
′
2(Z′

(
(ZZ′)−1 − (Z?Z′?)−1

)
Z)KXi − E(∆iF

′
2(Z′

(
(ZZ′)−1 − (Z?Z′?)−1

)
Z)KXi|FT1 )]

+
1

NT

N∑
i=1

[∆iF
′
2Z′?(Z?Z′?)−1Z̃KXi − E(∆iF

′
2Z′?(Z?Z′?)−1Z̃KXi |FT1 )]

+
1

NT

N∑
i=1

[∆iF
′
2Z̃′(Z?Z′?)−1Z?KXi − E(∆iF

′
2Z̃′(Z?Z′?)−1Z?KXi |FT1 )]

+
1

NT

N∑
i=1

[∆iF
′
2Z̃′(Z?Z′?)−1Z̃KXi − E(∆iF

′
2Z̃′(Z?Z′?)−1Z̃KXi |FT1 )]

≡ T21 + T22 + T23 + T24.

The rest of the proof proceeds to bound the terms T2i, i = 1, 2, 3, 4. By (S.9) in the proof of

Lemma A.3, we obtain the following:

E(‖F ′2Z′
(
(ZZ′)−1 − (Z?Z′?)−1

)
Z‖op) = O(N−1/2 + T 1/2/N),

E(‖F ′2Z̃′(Z?Z′?)−1Z?‖op) = O(N−1/2),

E(‖F ′2Z̃′(Z?Z′?)−1Z̃‖op) = O(1/N).

Therefore, it follows that

‖E(
1

NT

N∑
i=1

∆iF
′
2Z′
(
(ZZ′)−1 − (Z?Z′?)−1)

)
ZKXi |FT1 )‖

≤ 1

NT

N∑
i=1

E(‖∆iF
′
2Z′
(
(ZZ′)−1 − (Z?Z′?)−1)

)
ZKXi‖|FT1 )

≤ 1

NT

N∑
i=1

‖∆i‖2E

‖F ′2Z′ ((ZZ′)−1 − (Z?Z′?)−1)
)
Z‖op

√√√√ T∑
t=1

‖KXit‖2|FT1


≤ 1

NT

N∑
i=1

‖∆i‖2E
(
‖F ′2Z′

(
(ZZ′)−1 − (Z?Z′?)−1)

)
Z‖op

√
Tc2

ϕh
−1|FT1

)
≤ 1√

T
sup

1≤i≤N
‖∆i‖2

√
c2
ϕh
−1E(‖F ′Z′

(
(ZZ′)−1 − (Z?Z′?)−1

)
Z‖op|FT1 )

= OP (
1√
NTh

+
1

N
√
h

).
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As a consequence, ‖T21‖ = OP ((NTh)−1/2 +N−1h−1/2). Similarly,

E{‖E(
1

NT

N∑
i=1

∆iF
′
2Z̃′(Z?Z′?)−1Z?KXi |FT1 )‖} = OP (

1√
NTh

),

E{‖E(
1

NT

N∑
i=1

∆iF
′
2Z̃′(Z?Z′?)−1Z̃KXi |FT1 )‖} = OP (

1

N
√
Th

).

So it follows that ‖T23‖ = OP ((NTh)−1/2) and ‖T24‖ = OP (N−1(Th)−1/2). Finally, we will

handle T22. Let W = F ′2Z′?(Z?Z′?)−1. It can be easily seen from (S.10) that W ∈ FT1 and

‖W‖op = OP (1). To bound T22, notice

Z̃KXi =

(
0q1×T∑T
t=1 v̄tKXit

)
=


0q1×T∑T

t=1 v̄t1KXit∑T
t=1 v̄t2KXit

· · ·∑T
t=1 v̄tdKXit

 ,

where v̄ti is the ith element of vector v̄t. By direct calculations, it follows that

‖T22‖ = ‖ 1

NT

N∑
i=1

{∆iW Z̃KXi − E(∆iW Z̃KXi|FT1 )}‖

≤ 1

NT

N∑
i=1

‖∆iW Z̃KXi − E(∆iW Z̃KXi |FT1 )‖

≤ 1

NT

N∑
i=1

‖∆i‖2‖W‖op

√√√√ d∑
l=1

‖
T∑
t=1

(v̄tlKXit − E(v̄tlKXit|FT1 )) ‖2. (S.17)

By (S.17), it suffices to find the rate of

1

NT

N∑
i=1

√√√√ d∑
l=1

‖
T∑
t=1

(v̄tlKXit − E(v̄tlKXit|FT1 )) ‖2. (S.18)

Because d is finite and fixed, to simplify our technical arguments, assume d = 1 without loss
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of generality. Direct examinations give the following decomposition:

‖
T∑
t=1

(
v̄tlKXit − E(v̄tlKXit |FT1 )

)
‖2

=
1

N2
‖

T∑
t=1

N∑
j=1

(
vjtlKXit − E(vjtlKXit |FT1 )

)
‖2

=
2

N2
‖

T∑
t=1

N∑
j 6=i

(
vjtlKXit − E(vjtlKXit |FT1 )

)
‖2 +

2

N2
‖

T∑
t=1

(
vitlKXit − E(vitlKXit|FT1 )

)
‖2

≡ T221 + T222.

When i 6= j, vjtl is independent of Xit,FT1 , so it follows that

E{‖
T∑
t=1

∑
j 6=i

(
vjtlKXit − E(vjtlKXit |FT1 )

)
‖2|FT1 }

= E{‖
T∑
t=1

∑
j 6=i

vjtlKXit‖2|FT1 }

= E{
T∑

t,t′=1

∑
j,j′ 6=i

vjtlvj′t′lK(Xit, Xit′)|FT1 }

=
T∑
t=1

∑
j 6=i

E(v2
jtl)E(K(Xit, Xit)}|FT1 )

≤ NTE(v2
11l)c

2
ϕh
−1,

As a consequence, T221 = OP (T (Nh)−1). To deal with T222, by Cauchy inequality, it yields

that

E{‖
T∑
t=1

(vitlKXit)‖2|FT1 } ≤ E{
T∑
t=1

v2
itl

T∑
t=1

‖KXit‖2|FT1 }

≤ E(
T∑
t=1

v2
itl)Tc

2
ϕh
−1

= E(v2
11l)T

2cϕh
−1,

which further implies T222 = OP (T 2(N2h)−1). By Jensen’s inequality and d = 1, it follows
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that

(S.18) = E

 1

NT

N∑
i=1

√√√√‖ T∑
t=1

(v̄tlKXit − E(v̄tlKXit|FT1 )) ‖2|FT1


≤ 1

NT

N∑
i=1

√√√√E

(
‖

T∑
t=1

(v̄tlKXit − E(v̄tlKXit|FT1 )) ‖2|FT1

)

≤
√

2c2
ϕE(v2

11l)(
1

NTh
+

1

N2h
)

= OP (
1√
NTh

+
1

N
√
h

). (S.19)

Combining (S.17) and (S.19), it follows that ‖T22‖ = OP ((NTh)−1/2 + (Nh1/2)−1). As a

consequence, we have

‖T2‖ = OP (
1√
NTh

+
1

N
√
h

). (S.20)

Combining (S.15), (S.16) and (S.20), it yields that

‖SM,η(gη)‖ = OP (
1√
NTh

+
1

N
√
h

) + oP (
√
η).

Proof is completed.

Next we will prove Lemmas A.6, A.7 and A.8. For this purpose, let us introduce a set of

notation. Define VNT?, ANT?, VNTm?, ANTm?, HNTm? as follows,

VNT? =
1

NT

N∑
i=1

KXi(x0)′P?KXi(x0), ANT? = V
−1/2
NT? ,

VNTm? =
1

NT

N∑
i=1

φ′mΦ′iP?Φiφm, ANTm? = V
−1/2
NTm?, HNTm? =

1

NT

N∑
i=1

Φ′iP?Φi.

Proof of Lemma A.6. Define

Qi? = E(
Φ′iP?Φi

T
|FT1 ), Q̄? =

1

N

N∑
i=1

Qi?, Qi = E(
Φ′iPΦi

T
|FT1 ), Q̄ =

1

N

N∑
i=1

Qi = Im.

Notice that, conditioning on FT1 , Φi are independent. Hence, by Chebyshev’s inequality,
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it follows that

P (‖HNTm? − Q̄?‖F > ε|FT1 ) = P (‖ 1

N

N∑
i=1

(
Φ′iP?Φi

T
−Qi?)‖F > ε|FT1 )

≤ 1

ε2N2
E{Tr

(
[
N∑
i=1

(
Φ′iP?Φi

T
−Qi?)]

2

)
|FT1 }

=
1

ε2N2

N∑
i=1

Tr{E
(

[
Φ′iP?Φi

T
−Qi?]

2

)
|FT1 }

=
1

ε2N2

N∑
i=1

E

(
‖Φ′iP?Φi

T
−Qi?‖2

F |FT1
)

≤ 1

ε2N2

N∑
i=1

E

(
‖Φ′iP?Φi

T
‖2
F |FT1

)

≤ 1

ε2N2T 2

N∑
i=1

E
(
‖Φi‖4

F |FT1
)

≤ m2(cϕ + 1)4

ε2N
.

As a consequence, it follows that,

P (‖HNTm? − Q̄?‖F >
εm(cϕ + 1)2

√
N

|FT1 ) ≤ 1

ε2
.

By taking expectation on both sides, we have

P (‖HNTm? − Q̄?‖F >
εm(cϕ + 1)2

√
N

) ≤ 1

ε2
.

Since cϕ = OP (1), we obtain

‖HNTm? − Q̄?‖F = OP (mN−1/2). (S.21)
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By Lemma A.3, we have

E(‖HNTm −HNTm?‖F |FT1 ) ≤ 1

NT

N∑
i=1

E(‖Φ′i(P − P?)Φi‖F |FT1 )

≤ 1

NT

N∑
i=1

E(‖(P − P?)‖op‖Φi‖2
F |FT1 )

≤ 1

NT

N∑
i=1

mTc2
ϕE(‖(P − P?)‖op|FT1 )

= OP (
m√
N

). (S.22)

Again by Lemma A.3 and similar calculations, it follows that

‖Q̄− Q̄?‖F = ‖E(
1

NT

N∑
i=1

Φ′i(P − P?)Φi|FT1 )‖F

≤ 1

NT

N∑
i=1

E(‖Φ′i(P − P?)Φi‖F |FT1 )

= OP (
m√
N

). (S.23)

Combining (S.21), (S.22) and (S.23), it yields that

‖HNTm − Im‖F = ‖HNTm − Q̄‖F = OP (
m√
N

) = oP (1).

To the end of the proof, we quantify the minimal and maximal eigenvalues of HNTm as

follows.

λmin(HNTm) = min
‖u‖2=1

u′HNTmu

≥ min
‖u‖2=1

u′Imu− min
‖u‖2=1

|u′(HNTm − Im)u|

= 1− ‖HNTm − Im‖op

= 1 + oP (1),
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and

λmax(HNTm) = max
‖u‖2=1

u′HNTmu

≤ max
‖u‖2=1

u′Imu+ max
‖u‖2=1

|u′(HNTm − Im)u|

= 1 + ‖HNTm − Im‖op

= 1 + oP (1).

In the last step, we have used the trivial inequality ‖HNTm−Im‖op ≤ ‖HNTm−Im‖F = oP (1).

Proof is completed.

Proof of Lemma A.7. By Lemma A.6, we find a lower bound for VNTm and an upper bound

for ANTm as follows:

VNTm = φ′mHNTmφm ≥ λmin(HNTm)‖φm‖2
2 ≥ λmin(HNTm)C,

ANTm = V
−1/2
NTm ≤ λ

−1/2
min (HNTm)‖φ′m‖−1

2 = OP (1)(
m∑
ν=1

ϕ2
ν(x0)

(1 + ηρν)2
)−1/2 = OP (1).(S.24)

Define Li(x0) = KXi(x0)− Φiφm. Then it follows that

E(‖Li‖2
2|FT1 ) ≤ Tc4

ϕ(
∞∑

ν=m+1

1

1 + ηρν
)2 ≡ Tc4

ϕD
2
m.

Directly calculation shows that

|VNT − VNTm| ≤ |
2

NT

N∑
i=1

L′iPKXi|+ |
1

NT

N∑
i=1

L′iPLi| ≡ 2|T1|+ |T2|. (S.25)

Let Rx0(·) =
∑∞

ν=m+1
ϕν(x0)ϕν(·)

1+ηρν
. Notice Li = τiRx0 and E(T1|FT1 ) = V (Kx0 , Rx0). Simi-

lar to the proof of Lemma A.6, we can show that

E(|T1 − V (Kx0 , Rx0)||FT1 ) = OP (
Dm√
Nh

).

Meanwhile we have the following

V (Kx0 , Rx0) =
∞∑

ν=m+1

ϕ2
ν(x0)

(1 + ηρν)2
≤ c2

ϕDm.

As a consequence, it follows that |T1| = OP (Dm).

24



A bound for T2 is given by the following inequality,

E(|T2||FT1 ) ≤ 1

NT

N∑
i=1

E(‖Li‖2
2|FT1 ) = OP (D2

m).

So (S.25) becomes VNT − VNTm = OP (Dm) = oP (1). Hence ANT = ANTm + oP (1) =

OP (1), where the last equality is from (S.24). Proof is completed.

Proof of Lemma A.8. The proof of this lemma is based on Lyapunov C.L.T. Let ci =

ANTmPΦiφm/(NT ). We have

√
NTANTm(

1

NT

N∑
i=1

φ′mΦ′iPεi) =
N∑
i=1

√
NTc′iεi.

Since ci ∈ DT1 and εi is independent of DT1 , it follows that

E[(
N∑
i=1

√
NTc′iεi)

2||DT1 ] = NTσ2
ε

N∑
i=1

c′ici

= NTσ2
εA

2
NTm

1

N2T 2

N∑
i=1

φ′mΦ′iPΦiφm

= σ2
ε .

Let cit be the tth element of ci. By direct examinations, it follows that

N∑
i=1

E[(
√
NTc′iεi)

4||DT1 ] = N2T 2

N∑
i=1

T∑
t=1

c4
itE(ε4it)

+3N2T 2

N∑
i=1

T∑
t=1

∑
t′ 6=t

c2
itc

2
it′E(ε2itε

2
it′). (S.26)

Next we are going to find a bound for cit. By direct calculation, we have

|cit| = |ANTm
1

NT
pt·Φiφm|

≤ ‖ANTmφm‖2‖
1

NT

T∑
s=1

ptsΦi,s·‖2

≤ λ
−1/2
min (HNTm)

1

NT
‖

T∑
s=1

ptsΦi,s·‖2,

where pt· is the tth row of P , pts is the (t, s)th element of P and Φi,s· is the sth row of Φi.
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Meanwhile, pts = δts − Z ′s(ZZ′)−1Zt, hence

‖
T∑
s=1

ptsΦi,s·‖2 = ‖Φi,t· −
1

T
Z ′t(

ZZ′

T
)−1

T∑
s=1

ZsΦi,s·‖2

≤ ‖Φi,t·‖2 + ‖Zt‖2‖(
ZZ′

T
)−1‖op

√√√√ 1

T

T∑
s=1

‖Zs‖2
2

√√√√ 1

T

T∑
s=1

‖Φi,s·‖2
2

≤
√
mc2

ϕ + ‖Zt‖2‖(
ZZ′

T
)−1‖op

√√√√ 1

T

T∑
s=1

‖Zs‖2
2

√
mc2

ϕ

≤
√
mc2

ϕ(1 + b‖Zt‖2),

where b = ‖(ZZ′
T

)−1‖op

√
1
T

∑T
s=1 ‖Zs‖2

2 = OP (1) by Assumption A5. So |cit| ≤ a(1 + b‖Zt‖2),

where a = λ
−1/2
min (HNTm) 1

NT

√
mc2

ϕ. By Lemma A.6, we have

N∑
i=1

T∑
t=1

c4
it ≤

N∑
i=1

T∑
t=1

8a4(1 + b4‖Zt‖4
2) = OP (

m2

N3T 3
), (S.27)

and

N∑
i=1

T∑
t=1

∑
t′ 6=t

c2
itc

2
it′ ≤

N∑
i=1

√√√√ T∑
t=1

∑
t′ 6=t

c4
it

√√√√ T∑
t=1

∑
t′ 6=t

c4
it′

≤ T
N∑
i=1

T∑
t=1

c4
it

= OP (
m2

N3T 2
). (S.28)

Combining (S.26), (S.27) and (S.28), we have
∑N

i=1 E[(
√
NTc′iεi)

4||DT1 ] = OP (m2/N). And

by Lyapunov C.L.T, the result follows. Proof is completed.
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