
Supplementary Appendix to

Wild Bootstrap and Asymptotic Inference
with Multiway Clustering

James G. MacKinnon∗
Queen’s University

jgm@econ.queensu.ca

Morten Ørregaard Nielsen
Queen’s University and CREATES

mon@econ.queensu.ca

Matthew D. Webb
Carleton University

matt.webb@carleton.ca

September 13, 2019

A Proofs of Main Results
This supplementary appendix to our paper (MacKinnon, Nielsen, and Webb 2019) contains
mathematical proofs of all theorems.
A.1 Proof of Theorem 1
The result in (19) is an immediate consequence of Propositions 4.3 and 4.4 of Davezies et al.
(2018), where (16) is assumed. Under (17), there is clustering only at the intersection level,
and under (18) there is no clustering. Both of these are special cases of one-way clustering,
so that (20) and (21) follow from Djogbenou et al. (2019) after noting that our assumptions
imply that the cluster sizes Ngh are bounded almost surely.
A.2 Proof of Theorem 2

The results of the theorem follow directly from the definitions of V̂2 and V̂3 in (9) and (6),
respectively, and application of Lemma A.1, which is proven in the next subsection. For
example, under (16) it follows from this lemma that

R(V̂2 − V̂3) = RV̂I = OP

(
(GH)−1R

)
P−→ 0.

Lemma A.1. Suppose Assumptions 1–6 are satisfied.
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(a) If (24) holds, so that the DGP is clustered along the first dimension, then

GV̂G
P−→ VG and GHV̂I

P−→ VI .

(b) If (25) holds, so that the DGP is not clustered along the first dimension, but it is
clustered along the second dimension, then

GHa>V̂Ga
d−→ W 2

1 and GH V̂I
P−→ VI ,

where W 2
1 is a random variable satisfying W 2

1 > 0 almost surely.
(c) If (17) holds, so that the DGP is clustered by intersections, then

GH V̂m
P−→ VI for m ∈ {G,H, I}.

(d) If (18) holds, so that the DGP is not clustered, then

GH V̂m
P−→ VI for m ∈ {G,H, I}.

A.3 Proof of Lemma A.1
Proof for cases (a) and (b): The results in case (a) and the second result in case (b) are
given in Proposition 4.4 in Davezies et al. (2018). For the first result in case (b), we use
the decomposition ûgh = ugh − Xgh(β̂ − β0) such that ∑H

h=1X
>
ghûgh = ∑H

h=1X
>
ghugh −

(GH)−1∑H
h=1X

>
ghXghQ

−1X>u, where, under (25),H−1∑H
h=1X

>
ghXgh

P−→ Q0 andQ P−→ Q0;
see Assumption 2. Thus, for any arbitrary η, we write

GHη>Γ̂Hη = 1
G

G∑
g=1

(
H−1/2

H∑
h=1
η>X>ghûgh

)2
= 1
G

G∑
g=1

(
H−1/2

H∑
h=1

zgh

)2
+ oP (1),

where, for any (fixed) g, zgh = η>X>ghugh − G−1η>X>h uh is i.i.d. across h with mean zero
and finite variance. For fixed G, it follows that the random vector H−1/2∑H

h=1(z1h, . . . , zGh)>
is asymptotically normal as H →∞ with mean zero and finite G×G variance matrix, say
JG. Still for fixed G, it follows that G−1∑G

g=1(H−1/2∑H
h=1 zgh)2 d−→ G−1∑M

m=1 νm‖µm‖2Z2
m

as H → ∞, where (νm,µm) denote the eigenvalues and eigenvectors of JG, M ≤ G is the
number of non-zero eigenvalues, and Zm denote i.i.d. standard normal random variables.
Next, G−1νm‖µm‖2 → ω2

m ∈ [0,∞) for all m ≥ 1, where ωm > 0 for at least one m.
Hence, G−1∑G

g=1(H−1/2∑H
h=1 zgh)2 d−→ ∑∞

m=1 ω
2
mZ

2
m, which is a (scaled) weighted sum of

χ2
1-distributions.
Proof for cases (c) and (d): Under (17), we can apply the results of Djogbenou et al.

(2019), for the same reason as in the proof of (20), to conclude that each term in (7), multi-
plied by GH, converges in probability to ΓI defined in (14). The convergence in probability
of V̂2 and V̂3, normalized by GH, follows. Similarly, under (18), each term in (7), multiplied
by GH, converges in probability to ΓI .
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A.4 Proof of Theorem 3
To prove Theorem 3 we first present the bootstrap equivalents of Theorems 1 and 2. These
are given in Theorems A.1 and A.2, the proofs of which are in the next subsections.

Theorem A.1. Suppose Assumptions 1–7 are satisfied and that H0 is true. Let m ∈
{G,H, I,NC} denote bootstrap clustering by the first dimension, the second dimension, in-
tersections, and individual observations, respectively; c.f. step 3(a). Then it holds that

(a>V̈ma)−1/2a>(β̂∗ − β̈) d∗−→ Z, in probability,

where Z ∼ N(0, 1).

Theorem A.2. Suppose Assumptions 1–7 are satisfied and that H0 is true.
(i) Suppose the bootstrap DGP in step 3(a) is clustered along the first (G) dimension

(results for bootstrap clustering along the second dimension are symmetric).
(a) If (24) holds, so that the DGP is clustered along the first dimension, then

G(V̂ ∗2 − V̈G) P ∗−→ 0 and G(V̂ ∗3 − V̈G) P ∗−→ 0, in probability.

(b) If (25) holds, so that the DGP is not clustered along the first dimension, but it is
clustered along the second dimension, then

GHa>(V̂ ∗2 −V̈G−V̈I)a d∗−→ W0 and GHa>(V̂ ∗3 −V̈G)a d∗−→ W0, in probability,

whereW0 is a zero mean random variable that is independent of Z in Theorem A.1.
(c) If (17) holds, so that the DGP is clustered by intersections, then

GH(V̂ ∗2 − V̈G − V̈I) P ∗−→ 0 and GH(V̂ ∗3 − V̈G) P ∗−→ 0, in probability.

(d) If (18) holds, so that the DGP is not clustered, then

GH(V̂ ∗2 − V̈G − V̈I) P ∗−→ 0 and GH(V̂ ∗3 − V̈G) P ∗−→ 0, in probability.

(ii) If the bootstrap DGP in step 3(a) is clustered by intersections, then

GH(V̂ ∗2 − 2V̈I) P ∗−→ 0 and GH(V̂ ∗3 − V̈I) P ∗−→ 0, in probability.

(iii) If the bootstrap DGP in step 3(a) is the WB, then

GH(V̂ ∗2 − 2V̈I) P ∗−→ 0 and GH(V̂ ∗3 − V̈I) P ∗−→ 0, in probability.

Let m ∈ {G,H, I,NC} denote bootstrap clustering by the first dimension, the second
dimension, intersections, and individual observations, respectively; c.f. step 3(a). We then
decompose the bootstrap t-statistic as

t∗a,j = a>(β̂∗ − β̈)
(a>V̂ ∗j a)1/2

=
(
a>V̈ma

a>V̂ ∗j a

)1/2
a>(β̂∗ − β̈)
(a>V̈ma)1/2

= (A∗m,j)1/2B∗m, (A.1)
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say. From Theorem A.1 we find that B∗m
d∗−→ Z ∼ N(0, 1), in probability, for all m.

For the first term on the right-hand side of (A.1), the result follows by direct application
of Lemma A.1 and Theorem A.2. In particular, for cases (i)(a),(c), and (ii), A∗m,j

P ∗−→ q,
in probability, where q = 1/2 or q = 1 is the variance of the limit distribution of t∗a,j. For
case (i)(b), we write A∗m,j = 1 − (V̂ ∗j − V̈G)/V̂ ∗j and apply Lemma A.1 and Theorem A.2.
Note that, because H0 is true, the results of Lemma A.1 also apply to the variance estimators
imposing the null, i.e. all V̂ in Lemma A.1 can be replaced by V̈ . The random variable
W 2

1 may then be different, but since the explicit form of W 2
1 is not needed, that is not an

issue. Finally, Z and W0 are generated by the bootstrap measure and are both therefore
independent of W 2

1 .
A.5 Proof of Theorem A.1
We give the proof only for the case where the bootstrap is clustered along the first dimension;
that is, u∗g = ügv

∗
g . The proofs for the other cases are entirely analogous. First note that

(a>V̈Ga)−1/2a>(β̂∗ − β̈) =
G∑

g=1
z∗g , z∗g = (a>V̈Ga)−1/2a>(X>X)−1X>g ügv

∗
g .

Because v∗g is independent across g with mean zero and variance one, it follows that z∗g
is independent across g with E∗(z∗g) = 0 and Var∗(∑G

g=1 z
∗
g) = ∑G

g=1 Var∗(z∗g) = 1. The
Lyapunov condition is satisfied (with P -probability converging to one) because

G∑
g=1

E∗|z∗g |4 ≤ E(v∗4)(a>V̈Ga)−2‖Q−1‖4
G∑

g=1

∥∥∥ 1
GH

X>g üg

∥∥∥4

= OP (1)(a>V̈Ga)−2 1
(GH)4

G∑
g=1

∥∥∥X>g üg

∥∥∥4 P−→ 0,

regardless of the clustering structure in the DGP. To see this, suppose first that (24) holds, in
which case the DGP is clustered along the first (G) dimension. Then X>g üg = ∑H

h=1X
>
ghügh

is of order OP (H) and GV̈G
P−→ VG > 0; see Davezies et al. (2018) and Lemma A.1. How-

ever, if the DGP is not clustered along the first dimension (under (17), (18), or (25)), then
X>g üg = OP (H1/2) and V̈ −1

G = OP (GH); see also Djogbenou et al. (2019) and Lemma A.1.
In either case, ∑G

g=1 E∗|z∗g |4 = OP (G−1).
A.6 Proof of Theorem A.2

In all cases, the factors Q−1 in the definitions of V̂ ∗j are functions only of the original data
and satisfy Q P−→ Q0 > 0. Hence, these factors have no impact on the proofs. We therefore
prove most results for the corresponding Γ̂∗m; see (7) and (22). Specifically, we prove the
following lemma, which suffices for the theorem.

Lemma A.2. Suppose Assumptions 1–7 are satisfied and that H0 is true.
(i) Suppose the bootstrap DGP in step 3(a) is clustered along the first (G) dimension

(results for bootstrap clustering along the second dimension are symmetric).

3



(a) If (24) holds, so that the DGP is clustered along the first dimension, then

G(Γ̂∗G − Γ̈G) P ∗−→ 0 and GH(Γ̂∗I − Γ̈I) P ∗−→ 0, in probability,
Var∗(GH(Γ̂∗H − Γ̈I)) = OP (1).

(b) If (25) holds, so that the DGP is not clustered along the first dimension, but it is
clustered along the second dimension, then

GH(Γ̂∗G − Γ̈G) P ∗−→ 0 and GH(Γ̂∗I − Γ̈I) P ∗−→ 0, in probability,

GHa>(V̂ ∗H − V̈I)a d∗−→ W0, in probability,

whereW0 is a zero mean random variable that is independent of Z in Theorem A.1.
(c) If (17) holds, so that the DGP is clustered by intersections, then

GH(Γ̂∗G− Γ̈G) P ∗−→ 0 and GH(Γ̂∗m− Γ̈I) P ∗−→ 0, in probability, for m ∈ {H, I}.

(d) If (18) holds, so that the DGP is not clustered, then

GH(Γ̂∗G− Γ̈G) P ∗−→ 0 and GH(Γ̂∗m− Γ̈I) P ∗−→ 0, in probability, for m ∈ {H, I}.

(ii) If the bootstrap DGP in step 3(a) is clustered by intersections, then

GH(Γ̂∗m − Γ̈I) P ∗−→ 0, in probability, for m ∈ {G,H, I}.

(iii) If the bootstrap DGP in step 3(a) is the WB, then

GH(Γ̂∗m − Γ̈I) P ∗−→ 0, in probability, for m ∈ {G,H, I}.

A.7 Proof of Lemma A.2
We prove convergence in mean square. That is, we show that the second moment (conditional
on the sample) converges to zero (in P -probability). Let η be an arbitrary conforming vector.

Proof for case (i): First, using the decomposition û∗g = ügv
∗
g −Xg(β̂∗− β̈), we find that

η>(Γ̂∗G − Γ̈G)η = 1
(GH)2

G∑
g=1
η>X>g ügü

>
g Xgη(v∗2g − 1) (A.2)

− 2
(GH)2

G∑
g=1
η>X>g üg(β̂∗ − β̈)>X>g Xgηv

∗
g (A.3)

+ 1
(GH)2

G∑
g=1

(
η>X>g Xg(β̂∗ − β̈)

)2
. (A.4)

Because (v∗2g − 1) is independent and identically distributed across g with mean zero and
finite variance, the conditional second moment of (A.2) is

E∗((A.2)2) = 1
(GH)4 E∗

(
(v∗2 − 1)2

) G∑
g=1

(η>X>g ügü
>
g Xgη)2.
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Under (24), where the DGP is clustered along the first (G) dimension,X>g üg = ∑H
h=1X

>
ghügh

is of order OP (H). However, if the DGP is not clustered along the first dimension (under
(17), (18), or (25)), then X>g üg = OP (H1/2). This shows the results for (A.2) for case (i).
The conditional second moment of (A.3) is

E∗((A.3)2) = 4
(GH)4 E∗

( G∑
g1,g2=1

η>X>g1üg1ü
>
g2Xg2(X>X)−1X>g1Xg1ηv

∗
g1v
∗
g2

)2
,

where we note that expanding the square results in four summations, but two of these are
eliminated because v∗g is independent across g, so that the summation indexes must be equal
in pairs. Using this together with the aforementioned orders of magnitude of X>g üg and the
facts that (X>X)−1 = OP ((GH)−1) and X>g Xg = OP (H) (Davezies et al. 2018) yields the
desired results for (A.3) for case (i). Finally, (A.4) is a non-negative random variable, and
noting that Var∗(β̂∗ − β̈) = V̈G, its conditional mean is

E∗((A.4)) = 1
(GH)2

G∑
g=1
η>X>g XgV̈GX

>
g Xgη = OP (G−1‖V̈G‖).

The results for (A.4) for case (i) then follow by application of Lemma A.1.
Next, we find that

GHη>(Γ̂∗I − Γ̈I)η = 1
GH

G∑
g=1

H∑
h=1
η>X>ghüghü

>
ghXghη(v∗2g − 1) (A.5)

− 2
GH

G∑
g=1

H∑
h=1
η>X>ghügh(β̂∗ − β̈)>X>ghXghηv

∗
g (A.6)

+ 1
GH

G∑
g=1

H∑
h=1

(
η>X>ghXgh(β̂∗ − β̈)

)2
. (A.7)

The proofs for each of the terms (A.5)–(A.7) are nearly identical to those for (A.2)–(A.4),
and they are therefore omitted.

For Γ̂∗H we find that

GHη>Γ̂∗Hη = 1
GH

H∑
h=1

(η>X>h û∗h)2 = 1
GH

H∑
h=1

(
η>X>h u

∗
h −Xh(β̂∗ − β̈)

)2
= 1
GH

H∑
h=1

(η>X>h u∗h)2 + A∗, (A.8)

where E∗|A∗| = OP (G‖V̈G‖), in probability, by application of Lemma A.1 and the Cauchy-
Schwarz inequality, because

E∗
( 1
GH

H∑
h=1

(η>X>h Xh(β̂∗ − β̈)
)2

= 1
GH

H∑
h=1
η>X>h XhV̈GX

>
h Xhη = OP (G‖V̈G‖).

This shows that A∗ is of the required order of magnitude in part (a) and is negligible in
parts (b)–(d). Noting that X>h u∗h = ∑G

g=1X
>
ghüghv

∗
g , the main term in (A.8) satisfies

1
GH

H∑
h=1

(η>X>h u∗h)2 −GHη>Γ̈Iη = 1
GH

H∑
h=1

G∑
g=1
η>X>ghüghü

>
ghXghη(v∗2g − 1) (A.9)
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+ 1
GH

H∑
h=1

G∑
g1 6=g2

η>X>g1hüg1hü
>
g2hXg2hηv

∗
g1v
∗
g2 . (A.10)

By independence of (v∗2g − 1) across g, it is easily seen that E∗((A.9)2) = OP (G−1), showing
the results for (A.9) for case (i). Similarly,

E∗((A.10)2) = 2
(GH)2

G∑
g1 6=g2

( H∑
h=1
η>X>g1hüg1hü

>
g2hXg2hη

)2
,

which is OP (1) in part (a) and oP (1) in parts (c) and (d), showing the results for (A.10) for
those parts. Thus, only part (b) remains for (A.10). For any fixed h, as G→∞,

1
G1/2η

>X>h u
∗
h = 1

G1/2

G∑
g=1
η>X>ghüghv

∗
g

d∗−→ N
(

0, plim
G→∞

1
G

G∑
g=1

(η>X>ghügh)2
)
, (A.11)

in probability. Moreover, for fixed h1 6= h2, as G→∞,

E∗
( 1
G
η>X>h1u

∗
h1η

>X>h2u
∗
h2

)
= 1
G

G∑
g=1
η>X>gh1ügh1ü

>
gh2Xgh2η

P−→ 0. (A.12)

It follows from (A.11), (A.12), and the continuous mapping theorem that, for fixed H, as
G→∞,

1
GH

H∑
h=1

(η>X>h u∗h)2 d∗−→ 1
H

H∑
h=1

(
plim
G→∞

1
G

G∑
g=1

(η>X>ghügh)2
)
Z2

h, in probability,

where Zh ∼ i.i.d.N(0, 1) for h = 1, . . . , H. Because (GH)−1∑G
g=1

∑H
h=1(η>X>ghügh)2 P−→

η>ΓIη <∞ by Lemma A.1, it follows that

1
GH

H∑
h=1

(η>X>h u∗h)2 d∗−→
∞∑

m=1
υ2

mZ
2
m, in probability, (A.13)

where Zm ∼ i.i.d.N(0, 1) for m = 1, 2, . . . . The right-hand side of (A.13) is a weighted sum
of χ2

1-distributions, where the weights satisfy ∑∞m=1 υ
2
m = η>ΓIη. Hence, using Q P−→ Q0

and combining (A.8), (A.9), (A.10), and (A.13), we find for part (b) that

GHa>(V̂ ∗H − V̈I)a d∗−→
∞∑

m=1
τ 2

m(Z2
m − 1) = W0, in probability,

where the weights τm are derived from υm by setting η = Q−1
0 a in the latter and the τm thus

satisfy ∑∞m=1 τ
2
m = a>VIa. Finally, W0 is independent of Z because

E∗
(
(a>V̈Ga)−1/2a>Q−1 1

GH

G∑
g1=1

X>g1üg1v
∗
g1

1
G

( G∑
g2=1

η>X>g2hüg2hv
∗
g2

)2 )
= OP ((GH)−1/2)

using Lemma A.1, independence of v∗g across g (to eliminate the summation over g2), and
the fact that X>g üg = OP (H1/2) under (25).
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Proof for case (ii): First, we find that

GHη>(Γ̂∗G − Γ̈I)η = 1
GH

G∑
g=1

H∑
h=1
η>X>ghüghü

>
ghXghη(v∗2gh − 1) (A.14)

+ 1
GH

G∑
g=1

H∑
h1 6=h2

η>X>gh1ügh1ü
>
gh2Xgh2ηv

∗
gh1v

∗
gh2 (A.15)

− 2
GH

G∑
g=1

H∑
h1,h2=1

η>X>gh1ügh1(β̂∗ − β̈)>X>gh2Xgh2ηv
∗
gh1v

∗
gh2 (A.16)

+ 1
GH

G∑
g=1

H∑
h1,h2=1

η>X>gh1Xgh1(β̂∗ − β̈)(β̂∗ − β̈)>X>gh2Xgh2ηv
∗
gh1v

∗
gh2 .

(A.17)

The proofs for (A.14), (A.16), and (A.17) are nearly identical to those for (A.2)–(A.4), and
are therefore omitted. For (A.15) we find

E∗((A.15)2) = 1
(GH)2

G∑
g1,g2

H∑
h1 6=h′1

H∑
h2 6=h′2

t(g1, g2, h1, h
′
1, h2, h

′
2)E∗(v∗g1h1v

∗
g1h′1

v∗g2h2v
∗
g2h′2

), (A.18)

where t(g1, g2, h1, h
′
1, h2, h

′
2) = η>X>g1h1üg1h1ü

>
g1h′1
Xg1h′1

ηη>X>g2h2üg2h2ü
>
g2h′2
Xg2h′2

η is a func-
tion only of the original data and is OP (1). By independence of v∗gh across both g and h,
the right-hand side of (A.18) is non-zero only if g1 = g2 and either h1 = h2, h

′
1 = h′2 or

h1 = h′2, h
′
1 = h2. In either situation, one summation over g and two summations over h are

eliminated, so that (A.18) is at most OP (G−1), which proves the result for Γ̂∗G.
The proof for Γ̂∗H is identical to that for Γ̂∗G after interchanging the g and h subscripts

throughout. Finally, GHη>(Γ̂∗I − Γ̈I)η is equal to the sum of (A.14), (A.16), and (A.17),
with h1 = h2 in the latter two, so we have already proven the required result for this term.

Proof for case (iii): The proofs for case (iii) are nearly identical to those for case (ii) and
are therefore omitted.
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