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1 Mathematical Preliminaries

This appendix reviews concepts from the theory of random sets that may assist the reader.
Let X be a bounded subset of the d−dimensional euclidean space Rd and let F denote the
set of closed sets on X and K denote the set of compact sets on X .1 Let B(F) be the
σ−algebra generated by sets of the form {F : F ∩ A 6= ∅} for all compact A ∈ K. Fix some
probability space (Ω,F ,P), and let X : (Ω,F ,P)→ (F ,B(F)).

Definition 1 (Random Closed Set (Molchanov (2005), pg. 1)). The map X : (Ω,F ,P) →
(F ,B(F)) is called a random closed set if, for every compact set A in X :

{ω : X(ω) ∩ A 6= ∅} ∈ F

Definition 2 (Capacity Functional (Molchanov (2005), pg. 4)). A functional T : K → [0, 1]
given by

T (A) = P(X ∩ A 6= ∅), A ∈ K

is called the capacity functional of the random set X.

Since the random sets X and X′ have realizations in the compact sets in Rd, we have

that X and X′ are identically distributed (denoted X
d∼ X′) if and only if P(X ∩ A 6= ∅) =

P(X′∩A 6= ∅) for all A ∈ K (i.e. their capacity functionals agree for all compact sets). Note
that, although T (∅) = 0 and T (U) = 1, unlike a typical probability measure the capacity
functional T is generally non-additive. In particular, for two sets A1, A2 ∈ 2U such that
A1 ∩ A2 = ∅ we may have:

{X ∩ A1 6= ∅} ∩ {X ∩ A2 6= ∅} 6= ∅,
1Note that since we consider a bounded subset X ⊂ Rd, all closed sets on X are compact.
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which implies

T (A1 ∪ A2) < T (A1) + T (A2).

An important concept in random set theory is the idea of a selection of a random set,
which can be intuitively understood as a random variable with realizations within the random
set:

Definition 3 (Selection, Molchanov (2005) pg. 26). A random variable X : (Ω,F ) →
(X ,B(X )) is called a (measurable) selection of the random set X if X ∈ X P-a.s. The
family of all selections of X is denoted sel(X).

In the context of this paper, we are particularly interested in the measurable selections U
from the random set G−1(W ). With this terminology, the following Theorem leads directly
to the key identification results in this paper:

Theorem (Artstein’s Theorem). Let X be a random variable with distribution µ and let X
be a random set with distribution ν. Then there exists a random variable X ′ and a random
set X′ with X ′

d∼ X and X′
d∼ X such that X ′ ∈ sel(X′) if and only if:

µ(X ∈ A) ≤ ν(X ∩ A 6= ∅) ∀A ∈ K(Rd) (1)

2 Core Determining Classes for Treatment Effects

The Exact Core Determining Class

Luo and Wang (2016) define the exact core determining class as the smallest core determining
class. This fact motivates the following definition from Luo and Wang (2016):

Definition 4 (Luo and Wang (2016)). The exact core determining class S∗ is the collection
of all subsets A ∈ 2U and A 6= U such that

Q∗(A) > P (G−1(Y,D) ∩ A 6= ∅)

where

Q∗(A) ≡ max{Q(A)|Q(A′) ≤ P (G−1(Y,D) ∩ A′ 6= ∅) ∀A′ ∈ 2U , A′ 6= A; Q(U) = 1}.

As the results in this appendix show, thinking about the exact core determining class in
terms of non-redundant linear inequality constraints is convenient. To facilitate comparison
with results that appear later, we restate the technical result of Luo and Wang (2016) here.
First, a definition of important set collections that can be used to characterize the exact core
determining class.

Definition 5 (Luo and Wang (2016)). Let Su, Sw and S−1
w be the collections of sets with

the following properties:

(a) Su is the collection of all non-empty subsets A ∈ 2U , A 6= U , such that
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(i) A is self-connected.2

(ii) There exists no u ∈ U such that u /∈ A and G(u) ⊂ G(A).

(b) Sw is the collection of all non-empty subsets B ∈ 2W , B 6=W, such that

(i) B is self-connected.

(ii) There exists no w ∈ W such that w /∈ B and G−1(w) ⊂ G−1(B).

(c) S−1
w is the collection of A ⊂ U and A 6= U such that there exists B ⊂ Sw such that
A = G−1(B)c.

Note that condition (i) in the definition of both Su and Sw corresponds to the redundancy
condition suggested by Chesher and Rosen (2017). Condition (ii) in the definition of both Su
and Sw is novel to the paper by Luo and Wang (2016). Intuitively, Su and Sw represent the
collection of non-redundant sets when Artstein’s inequalities are defined on the unobservables
and observables, respectively. Furthermore, the collection S−1

w is the “reflection” in the space
of unobservables of the non-redundant sets in the space of observables. The main result in
Luo and Wang (2016) follows.

Theorem (Luo and Wang (2016)). Assume that G is self-connected. If the measure P on
W is non-degenerate, i.e. P(w) is non-zero for all w ∈ W, then the exact core determining
class is given by:

S∗ = Su ∩ S−1
w

Using this result, Luo and Wang (2016) provide an algorithm to compute the exact core
determining class for a general econometric model and provide some Monte Carlo evidence
showing that the exact core determining class is able to reduce the number of inequalities
significantly.3 Intuitively, to find the core determining class we must:

(i) Decide which sets A ∈ 2U satisfy the conditions necessary to belong to Su.

(ii) Decide which sets A′ ∈ 2W satisfy the conditions necessary to belong to Sw.

(iii) Decide which sets A ∈ 2U satisfy the conditions necessary to belong to S−1
w .

(iv) Intersect the sets Su and S−1
w .

Since the number of sets in 2U and 2W can be prohibitively large, even an efficient algorithm
can take an unreasonable amount of time to characterize the exact core determining class.

Note that the POM provides a very specific structure to the correspondence G. The
structure of the correspondenceG in the POM is best illustrated when looking at the bipartite
graph G = (W ,U , G). Some appealing properties of the general bipartite graph G defined
by the POM include:

2A set A is self-connected if for every A1, A2 ⊂ A such that A1, A2 6= ∅ and A1 ∪ A2 = A we have
G(A1) ∩G(A2) 6= ∅.

3Luo and Wang (2017) mention that example 3 in Luo and Wang (2016) is able to eliminate 98.56% of
the inequalities in a 15× 25 bipartite graph.
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(i) Part U of the graph G has exactly |Y||D| nodes with degree |D|.

(ii) Part W of the graph G has exactly |Y||D| nodes with degree |Y||D|−1.

(iii) For u1 6= u2, we have G(u1) 6= G(u2). Similarly, for w1 6= w2, we have G−1(w1) 6=
G−1(w2).

(iv) G is connected.

Using the properties of the graph G, it is possible to characterize the properties of the
sets in the exact core determining class for the POM. Results on the precise nature of sets
in the exact core determining class in the POM are given in Lemmas 1, 2 and 3 below.

Lemma 1. For the POM, A ∈ Su and |A| ≥ 2 if and only if all singletons that comprise A
have exactly |D| − 1 elements in common.

Lemma 2. For the POM we have

(a) G can be partitioned into |D| disjoint subgraphs G1,G2, . . . ,G|D| with Gk = (Wk,U , G),
where

(i) Wi ∩Wj = ∅ for all i 6= j.

(ii) G−1(w) ∩G−1(w′) 6= ∅ for any pair (w,w′) with w ∈ Wi, w
′ ∈ Wj, i 6= j.

(iii) G−1(w) ∩G−1(w′) = ∅ for any w,w′ ∈ Wk.

(iv) G−1(Wk) = U for every k.

(b) B ∈ Sw if and only if:

(i) B 6⊆ Wk for any k if |B| ≥ 2.

(ii) Wk 6⊆ B for any k.

Lemma 3. If |D| = 2 and |D| < |Y|, then S−1
w contains all sets A ⊂ Su with |A| ≤ |Y| − 1.

Otherwise, Su ⊂ S−1
w .

To summarize, Lemmas 1 and 3 provide a complete characterization of the type of sets
in the exact core determining class, and Lemma 2 provides information on the structure of
the POM bipartite graph. Further intuition on the interpretation of sets selected the exact
core determining class is provided in the main paper. These Lemmas can then be used to
prove the following result, which was presented in the main text.

Theorem 1. Suppose that the distribution P is non-degenerate:

1. In the POM there are exactly:{
|Y||D| if r = 1

|Y||D|−1|D| ·
(|Y|
r

)
if r ≥ 2

r-element sets in the collection Su.
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2. In the POM there are exactly:

|D|∑
`=2

(
|D|
`

) ∑
v∈A(r,|Y|,`)

∏̀
i=1

(
|Y|
vi

)
r-element sets in the collection Sw, where

A(r, |Y|, `) =

{
(v1, v2, . . . , v`) ∈ N` :

∑
i

vi = r, 1 ≤ vi ≤ |Y| − 1 ∀i

}

3. In the POM there are{
|Y||D| +

∑|Y|
r=2 |Y||D|−1|D|

(|Y|
r

)
− |Y||D|, if |D| = 2 and |Y| > |D|

|Y||D| +
∑|Y|

r=2 |Y||D|−1|D|
(|Y|
r

)
, otherwise

sets in the exact core determining class.

3 Conditional Probability/Linear Programming

This Appendix gives an example of how to implement the optimization problems suggested
in Theorem 1. Suppose for simplicity that we are in the binary outcome, binary treatment
case. Let qij = P(Y0 = i, Y1 = j), and suppose we wish to bound the parameter

P(Y1 = 1|Y0 = 0) =
q01

q00 + q01

It is possible to show that we can bound this parameter using a linear program. First note
that we can write the dual problem to Artstein’s inequalities (discussed in Section 3) as:


1 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1


︸ ︷︷ ︸

Aπ



π00,0

π01,0

π10,0

π11,0

π00,1

π01,1

π10,1

π11,1


︸ ︷︷ ︸

π

=


p00

p01

p10

p11


︸ ︷︷ ︸

p

which trivially impose only linear constraints. Also recall that we can write:

q00 = π00,0 + π00,1

q01 = π01,0 + π01,1

q10 = π10,0 + π10,1
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q11 = π11,0 + π11,1

Then the optimization problem is:

max
π

π01,0 + π01,1

π00,0 + π00,1 + π01,0 + π01,1

s.t.

{
Aπ · π = p

0 4 π 4 1
(2)

To write this as a linear programming problem, define

r =
1

π00,0 + π00,1 + π01,0 + π01,1

, π̃ =



π00,0/(π00,0 + π00,1 + π01,0 + π01,1)
π01,0/(π00,0 + π00,1 + π01,0 + π01,1)
π10,0/(π00,0 + π00,1 + π01,0 + π01,1)
π11,0/(π00,0 + π00,1 + π01,0 + π01,1)
π00,1/(π00,0 + π00,1 + π01,0 + π01,1)
π01,1/(π00,0 + π00,1 + π01,0 + π01,1)
π10,1/(π00,0 + π00,1 + π01,0 + π01,1)
π11,1/(π00,0 + π00,1 + π01,0 + π01,1)



c =



0
1
0
0
0
1
0
0


, d1 =



1
1
0
0
1
1
0
0


, d2 =



1
1
1
1
1
1
1
1


.

Then the problem above can be re-written

max
π̃,r

c′ · π̃ s.t.



Aπ · π̃ − p · r = 0

d1 · π̃ = 1

d2 · π̃ − r = 0

0 4 π̃ 4 1

r ≥ 1

(3)

This can be seen by replacing the objective function in (2) with the equivalent objective

function in (3), by multiplying both sides of the constraint Aπ · π = p in (2) by the variable

r and rearranging, and by imposing constraints ensuring that the conditional probability

measure is a proper probability measure, namely:
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d1 · π̃ = 1 =⇒
∑
j

P(Y1 = yj|Y0 = 0) = 1

d2 · π̃ − r = 0 =⇒
∑
i

∑
j

P(Y0 = yi, Y1 = yj) = 1

0 4 π̃ 4 1 and r ≥ 0 =⇒ 0 ≤ P(Y0 = yi, Y1 = yj) ≤ 1 ∀i, j

Alternatively, we could write the same problem more compactly as

max
q̃r

c′r · q̃r s.t.

{
Ar · q̃r = ar

bl 4 q̃r 4 bu
(4)

where q̃′r = (π̃′, r)′ and where

Ar =

Aπ −p
d′1 0
d′2 −1

 , ar =

0
1
0

 ,

cr =



0
1
0
0
0
1
0
0
0


, bl =



0
0
0
0
0
0
0
0
1


, bu =



1
1
1
1
1
1
1
1
∞


.

The problem (4) is now in a form amenable for implementation in common linear program-

ming software; for example, Matlab and Gurobi. It is also easily generalized to cases beyond

binary treatment and binary outcome.

3.1 Introducing Additional Constraints

Imposing additional assumptions on the unobserved probability measure Q in an analytic

framework requires a new proposed identified set and corresponding proof of sharpness. In

contrast, additional assumptions can be imposed easily on Q in the computational frame-
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work. In addition, in many cases additional assumptions can be included as linear constraints

in Q, which are convenient from a computational point of view.

Additional constraints are often useful when the identified set for a parameter of interest

is wide, as introducing constraints on Q can result in a more informative identified set.

These additional constraints allow a researcher to trade-off the length of the bounds with

the credibility of the maintained assumptions. Perhaps the most well-known assumptions

used in the partial identification of treatment effects are the monotone treatment response

(MTR) assumption and the monotone instrumental variables assumption (MIV), which are

outlined in Manski and Pepper (2000) and discussed in Manski (2003).

Definition 6 (MTR, Manski and Pepper (2000)). Let Yd be an ordered set. Then the MTR

assumption is satisfied if d′ ≥ d =⇒ P(Yd′ ≥ Yd) = 1.

I.e. the MTR assumption implies that the potential outcomes are monotone in the

treatment, and can be useful when a researcher has some strong a priori evidence that a

particular treatment is effective at increasing (decreasing) an outcome variable Y for all

individuals. It is also possible to order potential outcomes with respect to a variable other

than treatment status, which motivates the MIV assumption:

Definition 7 (MIV, Manski and Pepper (2000)). Suppose that Z is an ordered set. The

covariate Z is a monotone instrumental variable if for each treatment d ∈ Yd, we have that

z′ ≥ z =⇒ E[Yd|Z = z′] ≥ E[Yd|Z = z].

Note that the MTR and MIV assumptions can be written as constraints on the unobserved

probability measure Q. Indeed, it has been shown by Demuynck (2015), Lafférs (2013,

2015) and Torgovitsky (2016) that these assumptions, and versions thereof, can be written

as linear constraints on Q (which makes them especially amenable to inclusion in linear

programs). Since the set Q† is still convex and closed under these constraints, estimation

using Artstein’s inequalities is consistent by Theorem 2. The MTR and MIV assumptions

presented are examples of additional assumptions that can be imposed to obtain a more
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informative analysis, although there are many other assumptions that might also be imposed

without affecting any of the previous results.
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4 Consistency and Inference

In this section we show the conditions under which the optimization-based bounding proce-

dure is consistent, and we repeat some discussion given in the main paper. Consistency is

presented without an instrument for simplicity, but the result also holds when a instrument

with finite support is available. Finally, the proof of consistency is given for the case when Q

is defined by Artstein’s inequalities rather than the dual approach, although it is applicable

to both approaches since both approaches give numerically identical characterizations of Q.

Consider the usual empirical measure:

Pn(A) ≡ 1

n

n∑
i=1

1{(Yi, Di) ∈ A},

and define the sets

Q(Pn) ≡ {Q ∈ Q† : Q(A) ≤ Pn(G−1(Y,D) ∩ A 6= ∅) for all A ∈ 2U},

or equivalently:

Q(Pn) ≡ {Q ∈ Q† : ∃π ∈M(Pn, Q)}.

Consistency in the estimation of sets is usually defined in terms of the Hausdorff distance

dH , which furnishes a metric on the space of non-empty compact subsets of Rd.4 Here we

are interested in establishing consistency with respect to the Hausdorff metric of the set

Θf (Pn) = [f `(Pn), fu(Pn)] with f `(Pn) = sup
Q∈Q(Pn)

f(Q), fu(Pn) = inf
Q∈Q(Pn)

f(Q) (5)

for the set

Θf (P ) = [f `(P ), fu(P )] with f `(P ) = sup
Q∈Q(P )

f(Q), fu(P ) = inf
Q∈Q(P )

f(Q) (6)

4The Hausdorff distance for any two sets A and B as:

dH(A,B) = max

{
sup
a∈A

inf
b∈B
||a− b||, sup

b∈B
inf
a∈A
||a− b||

}
.
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Consistency is given in the following Theorem, which is also presented in the main text:

Theorem. Fix any continuous functional f : Q → R. Suppose that (a) Q† is restricted only

through linear (in)equality constraints; (b) the Jacobian of the linear equality constraints

defining Q (if any) has full row rank; (c) {Wi}ni=1 is i.i.d. from some probability measure P

with finite support; and (d) int (Q(P )) 6= ∅. Then Θf (Pn)
p→ Θf (P ) in the Hausdorff metric.

Since f is a continuous functional, consistency follows if we can show that Q(Pn)
p→ Q(P )

in the Hausdorff metric (see the proof for a detailed discussion). To begin the proof, we

first show Q(Pn) can be written as the set minimizer of an appropriately defined criterion

function, as well-known consistency results exist for problems of this kind (see in particular

Chernozhukov et al. (2007), Yildiz (2012), Menzel (2014) and Shi and Shum (2015)). The

proof then follows by verifying that the problem fits into the framework of Shi and Shum

(2015), and by verifying the conditions required for consistency presented in their paper.

Condition (a) in the Theorem is made primarily for simplicity, but also since it covers all

the cases discussed in this paper. It is possible to relax condition (a), although it will then

generally be harder to verify condition (b) if the linear equality constraints become non-linear

equality constraints, since the gradients of these equality constraints would then depend on

the parameter Q. Condition (b) in the Theorem is required to apply the consistency result

of Shi and Shum (2015), and condition (c) is standard.

Condition (d) is worth some discussion. Note that Theorem 2 shows that estimation

of bounds on any continuous functional of the joint distribution can be completed using

Artstein’s inequalities without the need for a tuning parameter. However, this is done at the

cost of ruling out point identification through assumption (d). While point identification is

a knife-edge case under all assumptions considered in this paper, some researchers may feel

assumption (d) is too restrictive. If this is the case, researchers can add a slackness term that

drifts towards zero —say cn— to each of the inequalities defining the set Q, and Theorem

2 can then be applied with assumption (d) replaced with the assumption that Q 6= ∅. A

general rule for selecting the slackness is that it should dominate relative to sampling error;
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thus, a possible choice for the slackness is given by cn =
√

log(n)/n. Introducing such a

slackness term will cause any estimated identified sets to have slightly larger length, although

any difference will be negligible for large n.

5 Application Robustness Exercise

Figure 1 shows plots of P(Y1 > yq|Y0 ≤ y0.5) and P(Y1 > y0.5|Y0 ≤ yq) against yq, where yq

is the qth quantile of the observed grade 3 ranks. The figures emphasize that, for the most

part, the bounds on the conditional probability for the Tennessee STAR application are wide

and uninformative. In contrast, Figure 2 shows informative plots of the joint distribution

P(Y1 > yq, Y0 ≤ y0.5) and P(Y1 > y0.5, Y0 ≤ yq) against yq.
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Y
1
>
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0
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)
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Upper Bound

(a)
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1
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)

Lower Bound

Upper Bound

(b)

Figure 1: Bounds on the conditional probability (Grade 3, Bins=35, MTR assumption P(Y1 >
Y0) ≥ 0.95).

Table 1 shows bounds for the parameters of interest in the Tennessee STAR experi-

ment when the MTR condition is relaxed from P(Y1 > Y0) ≥ 0.95 to the MTR condition

P(Y1 > Y0) ≥ 0.5. As discussed in the main text, the bounds on some of the parameters

—such as the bounds on P(Y1 > Median|Y0 ≤ Median), P(Y0 ≤ Median),
√
V ar(Y0))—

are almost completely unaffected by the relaxing of the assumption. However, bounds on
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Figure 2: Bounds on the joint probability (Grade 3, Bins=35, MTR assumption P(Y1 > Y0) ≥ 0.95).

other parameters —especially E[Y1−Y0] and Corr(Y0, Y1)— become uninformative when the

assumption is relaxed. However, the reader is encouraged to keep in mind that under either

condition (P(Y1 > Y0) ≥ 0.95 or P(Y1 > Y0) ≥ 0.5) the bounds are sharp in the sense that

they exhaust all the information provided by the data under the maintained assumptions.

Thus, whether the bounds are informative —and under which assumptions the bounds are

informative— depends always on the empirical context, and not on the method proposed in

this paper (which always delivers sharp bounds).

13



Table 1: Bounds on School Achievement from the Tennessee STAR Experiment Assuming P(Y1 >
Y0) ≥ 0.5

Y = Grade 3 percentile rank Y = Grade 8 percentile rank
D = Small class K-3 D = Small class K-3

Lower Bound Upper Bound Lower Bound Upper Bound

P(Y0 ≤Median(Y ), Y1 > Median(Y )) :† Bins=25 0.08 0.53 0.04 0.52
Bins=30 0.08 0.53 0.04 0.52
Bins=35 0.09 0.53 0.04 0.52

E[Y1 − Y0]: Bins=25 -6.26 19.27 -8.51 17.03
Bins=30 -6.58 19.13 -9.39 16.32
Bins=35 -7.52 18.32 -9.57 16.27

P(Y1 > Y0) :∗ Bins=25 0.11 0.97 0.05 0.97
Bins=30 0.11 0.98 0.05 0.98
Bins=35 0.11 0.98 0.05 0.98

P(Y1 > Median(Y )|Y0 ≤Median(Y )) :† Bins=25 0.14 0.97 0.07 1.00
Bins=30 0.14 0.96 0.07 1.00
Bins=35 0.17 1.00 0.07 1.00

P(Y0 ≤Median(Y )) :† Bins=25 0.55 0.55 0.52 0.52
Bins=30 0.55 0.55 0.52 0.52
Bins=35 0.53 0.53 0.52 0.52

P(Y1 > Median(Y )) :† Bins=25 0.40 0.66 0.39 0.66
Bins=30 0.39 0.66 0.39 0.65
Bins=35 0.42 0.69 0.39 0.65

Corr(Y0, Y1): Bins=25 -0.50 0.50 -0.50 0.50
Bins=30 -0.50 0.50 -0.50 0.50
Bins=35 -0.50 0.50 -0.50 0.50√

V ar(Y1 − Y0): Bins=25 2.37 43.90 0.84 42.75
Bins=30 2.43 44.57 0.55 43.02
Bins=35 2.07 43.89 0.89 45.26

†: Recall that Median(Y) is the median of the observed outcome, but not necessarily the median of Y0 or Y1.
∗: The parameter P(Y1 > Y0) is the only parameter estimated without the MTR assumption P(Y1 > Y0) ≥ 0.95.

6 Proofs

Proof of Theorem 1. Recall our probability space is (Ω,F ,P). Note since U is finite, then

so is G−1(Y,D) since G−1 maps within U . Since {(y, d) : G−1(y, d) ∩ A 6= ∅} ∈ 2W for all

A ∈ 2U , and since Y and D are random variables (measurable by assumption) we have that

{ω : G−1(Y (ω), D(ω)) ∩A 6= ∅} ∈ F for all A ∈ 2U , and thus G−1(Y,D) is a random closed

set. By Artstein’s Theorem we have that for the random set G−1(Y,D) and for the element

U ∈ U , there exists a random set [G′]−1(Y,D) and a random variable U ′ ∈ U such that
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[G′]−1(Y,D)
d∼ G−1(Y,D) and U ′

d∼ U and U ′ ∈ [G]−1(Y,D) a.s. if and only if

P(U ∈ A) ≤ P(G−1(Y,D) ∩ A 6= ∅) ∀A ∈ 2U

Thus, the collection Q provides a sharp characterization of the set of all joint distributions

Q of U ∈ U consistent with the observed distribution P . If Q† is convex then Q is also

convex, as it restricts Q† only via the linear inequality constraints implied by Artstein’s

Theorem. The result than follows from the proof of proposition 1 in Torgovitsky (2016). In

particular, because U is finite with dimension dU , we have that Q ⊂ RdU is compact. Finally,

the image of a continuous functional over a non-empty compact and convex set Q ⊂ RdU is

a non-empty interval with the end points defined as in equation (9). �

Proof of Lemma 1. For notational simplicity, let M ≡ |Y| and K ≡ |D|.

First consider the reverse; i.e. suppose that A is a union of r singletons that have exactly

K − 1 elements in common. Note that for every pair of singletons u, u′ ∈ A, we have

G(u) ∩ G(u′) 6= ∅ and G(u) 6= G(u′). Thus, for any partition A1, A2 of A we always have

G(A1) ∩ G(A2) 6= ∅. Next, suppose by way of contradiction that there exists a u /∈ A

such that G(u) ⊂ G(A). Since G(u) ⊂ G(A), it must be that u must have the same K − 1

elements in common with all members of A (otherwise it cannot map within G(A)). However,

since u /∈ A it must be that u has one element uncommon to all members of A. But then

G(u) 6⊂ G(A), which gives the desired contradiction and completes the proof of the reverse

direction.

Now consider the forward direction; i.e. suppose that A ∈ Su and |A| = r ≥ 2, and

proceed by inducting on r. First consider the case when r = 2. For any A ∈ Su with |A| = 2,

take the singletons u1, u2 that comprise A (i.e. the singletons such that u1 ∪ u2 = A). If u1

and u2 share more than K − 1 elements then they are the same vector. It is also clear that

u1 and u2 must share at least one element, otherwise condition (a)(i) in Definition 5 is not
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satisfied. Thus, suppose u1 and u2 share 1 ≤ k < K−1 elements. Without loss of generality,

suppose that they share the first k elements, so that we can write the vectors u1 and u2 as:

u1 = (y1, y2, . . . , yk, y1(k+1), y1(k+2), . . . , y1K)

u2 = (y1, y2, . . . , yk, y2(k+1), y2(k+2), . . . , y2K)

Now consider the vector u3 given by:

u3 = (y1, y2, . . . , yk, y1(k+1), y1(k+2), . . . , y1(K−1), y2K)

I.e. u3 is the vector that shares the same first k elements with both u1 and u2, shares the

next (K − 1)− (k + 1) elements with vector u1, and shares the last element with vector u2.

Clearly this vector u3 exists, u3 /∈ A and G(u) ⊂ G(u1 ∪ u2), contradicting the fact that

A = u1 ∪ u2 is in Su. Thus we conclude that the claim holds for the base case of r = 2.

Now suppose the claim holds for r = `. Then we know that any A ∈ Su such that |A| = `

must be comprised of singletons u1, u2, . . . , u` that share K − 1 elements. Without loss of

generality suppose that these are the first K − 1 elements so that we can write:

u1 = (y1, y2, . . . , yK−1, y1K)

u2 = (y1, y2, . . . , yK−1, y2K)

...

u` = (y1, y2, . . . , yK−1, y`K)

where yiK 6= yjK for any i 6= j. Now consider a set A′ ∈ Su with |A′| = ` + 1. Note that

any such set can be constructed by adding a singleton u to a set A ∈ Su where |A| = `, so

that A′ = A ∪ u for some u ∈ U . Thus, suppose by way of contradiction that there exists a

u`+1 ∈ U such that for some A ∈ Su we have A′ = A ∪ u`+1 ∈ Su, but that u`+1 does not

have K−1 elements in common with every vector in A. Clearly u`+1 cannot have more than

K−1 elements in common with any vector in A, since then it is the same as one vector in A.

Thus it must be that u`+1 has less than K − 1 elements in common with at least one vector
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in A. Also note that clearly u`+1 has at least one element in common with one vector ui ∈ A

(otherwise A does not satisfy condition 1 in Definition 5). Suppose without loss of generality

that this vector is ui = u1; this simplification is only to reduce the level of abstraction. Now

consider two cases:

1. u`+1 and u1 share the element y1K : the fact they share y1K implies it must be that

they do not share at least one element yj from one of the elements y0, y1, . . . , yK−1

(otherwise they are the same vector). But then there exists a vector u ∈ U such that

u is the same as vector u`+1 except with the last element of u`+1 replaced with y2K .

Then u /∈ A′ and G(u) ⊂ G(A′), so that A′ is redundant.

2. u`+1 and u1 share at least one of the elements y0, y1, . . . , yK−1: Note that if these

elements share y1K then we are in the previous case, since this implies that they do

not share at least one element in y0, y1, . . . , yK−1. Thus, suppose they do not share

y1K . If they share all other elements, then u`+1 shares exactly K − 1 elements with all

vectors in A, which is a contradiction. Thus, there must exist at least one element in

y0, y1, . . . , yK−1 that they do not share. But note there exists a u ∈ U that is the same

as u1 except that its last element is replaced with the last element of u`+1. But then

u /∈ A′ and G(u) ⊂ G(A′), so that A′ is redundant.

We conclude that u`+1 must have the same elements in common with u1, u2, . . . , u`, which

shows the inductive step and concludes the proof. �

Proof of Lemma 2. For notational simplicity, let M ≡ |Y| and K ≡ |D|.

(a) First note that for any (y, d), (y′, d) ∈ W we have G−1(y, d) ∩G−1(y′, d) = ∅. Thus we

can divide the graph G into K disjoint subgraphs G1,G2, . . . ,GK where Gk = (Wk,U , G)

and where

Wk = {(y, d) : d = k}
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By construction we have Wi ∩Wj = ∅ for all i 6= j, and G−1(y, d) ∩G−1(y′, d) = ∅ for

any y 6= y′. Also note that the vectors of the form (y, d) map to vectors of the form

(·, ·, . . . , ·, y, ·, . . . , ·), with y in the dth position. Thus, collecting such vectors for all

values of y we obtain the collection U , so that we can conclude G−1(Wk) = U . Finally

consider the pair (v, v′) with v ∈ Wi, v
′ ∈ Wj, i 6= j. v and v′ can be written as

v = (y, i) and v′ = (y′, j). But since v is mapped to the set of vectors of the form

(·, ·, . . . , ·, y, ·, . . . , ·), with y in the ith position, and since v′ is mapped to the set of

vectors of the form (·, ·, . . . , ·, y′, ·, . . . , ·), with y′ in the jth position, it is clear that

G−1(v) ∩G−1(v′) 6= ∅ when i 6= j.

(b) For the forward direction note that by property (iii) of collections Wk proved in part

(a), (i) is implied if B is self-connected. In addition, note that G−1(Wk) = U for every

k, so that if (ii) did not hold for B ∈ Sw we would have G−1(B) = U . But then if

B 6= W we can always find a v /∈ B such that G−1(v) ⊂ G−1(B), contradicting the

fact that B ∈ Sw.

For the reverse, note first that since G−1(y, d) ∩ G−1(y′, d) = ∅ for any y 6= y′, and

G−1(y, d) ∩ G−1(y′, d′) 6= ∅ for any d 6= d′, condition (i) is sufficient to ensure B is

self-connected. Next, suppose by way of contradiction that there exists a collection

of singletons B = {y1, . . . , yr} ⊂ W satisfying conditions (i) and (ii), but that there

also exists a v ∈ W such that v /∈ B and G−1(v) ⊂ G−1(B). Note that v can be

written as v = (y, d), and maps to the set of vectors of the form (·, ·, . . . , ·, y, ·, . . . , ·),

with y in the dth position. Thus G−1(B) must contain all the vectors of this form if

G−1(v) ⊂ G−1(B). But since B does not contain v, this is only possible if Wk ⊆ B for

some k, contradicting the fact that condition (ii) is satisfied.

�
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Proof of Lemma 3. For notational simplicity, let M ≡ |Y| and K ≡ |D|. Consider any

A ∈ Su with |A| = r. We want to show there exists a B ∈ Sw such that A = G−1(B)c, or

equivalently, Ac = G−1(B). Since A ∈ Su, by Lemma 1 the singletons that comprise A have

exactly K − 1 elements in common. Suppose without loss of generality that the uncommon

element is the first element, and suppose the K−1 common elements are y1, y1, . . . , y1. Then

every ui ∈ A can be written

ui = (vi, y1, y1, . . . , y1)

for some vi ∈ {y1, y2, . . . , yM}, and where vi 6= vj for i 6= j. Given our A ∈ Su described

above, Ac can be represented by

Ac = {{ui}ri=1 : ui = (vi, y1, y1, . . . , y1), vi ∈ {y1, y2, . . . , yM}, i = 1, . . . , r}c

=

(
M⋃

i1=r+1

M⋃
i2=1

M⋃
i3=1

. . .
M⋃

iK=1

(vi1 , yi2 , yi3 , . . . , yiK )

)

∪

(
M⋃
i1=1

M⋃
i2=2

M⋃
i3=1

. . .
M⋃

iK=1

(vi1 , yi2 , yi3 , . . . , yiK )

)
∪ . . .

. . . ∪

(
M⋃
i1=1

M⋃
i2=1

M⋃
i3=1

. . .
M⋃

iK=2

(vi1 , yi2 , yi3 , . . . , yiK )

)

=

(
M⋃

i1=r+1

G−1(vi1 , 1)

)
∪

(
M⋃
j=2

K⋃
k=2

G−1(yj, k)

)

= G−1

(
M⋃

i1=r+1

M⋃
j=2

K⋃
k=2

(vi1 , 1) ∪ (yj, k)

)
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Now set

B =
M⋃

i1=r+1

M⋃
j=2

K⋃
k=2

(vi1 , 1) ∪ (yj, k)

and consider the follow cases:

• M > K,K = 2: We claim B ∈ Sw only if 1 ≤ r ≤M − 1. Indeed, if r ≥ |Y| then

B =
M⋃

i1=r+1

M⋃
j=2

K⋃
k=2

(vi1 , 1) ∪ (yj, k) =
M⋃
j=2

K⋃
k=2

(yj, k) =
M⋃
j=2

(yj, 2)

so that clearly B ⊆ W2 and so B /∈ Sw. However, if 1 ≤ r ≤M − 1 then

B =
M⋃

i1=r+1

M⋃
j=2

K⋃
k=2

(vi1 , 1) ∪ (yj, k) =
M⋃

i1=r+1

M⋃
j=2

(vi1 , 1) ∪ (yj, 2)

so B 6⊆ Wk for any k and Wk 6⊆ B for any k, which proves B ∈ Sw by Lemma 2.

• K ≥ 3: We claim that B ∈ Sw with no additional conditions. This follows from the

fact that the union:

M⋃
i1=r+1

M⋃
j=2

K⋃
k=2

(vi1 , 1) ∪ (yj, k)

contains elements from W2, . . . ,Wk regardless of the magnitude of r, and Wk 6⊆ B for

any k. Thus by Lemma 2 we have that B ∈ Sw.

Thus we conclude that if K = 2 and K < M , then for any A ∈ Sw with |A| ≤ M − 1,

∃B ∈ Sw such that Ac = G−1(B), so that A ∈ S−1
w . Otherwise, if K > 2, then for any

A ∈ Sw, ∃B ∈ Sw such that Ac = G−1(B), so that A ∈ S−1
w . This completes the proof. �

Proof of Theorem 1. For notational simplicity, let M ≡ |Y| and K ≡ |D|.

1. Note that every singleton trivially satisfies the conditions in Definition 5, so that the

result holds for r = 1. Now consider any A ∈ Su with |A| = r ≥ 2. We know from

Lemma 1 that every u ∈ A must share the same K−1 elements. There are MK−1 ways
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to select the first K − 1 elements, and
(
M
r

)
ways of choosing the uncommon element.

Finally, the uncommon element can be in any one of K positions. We conclude that

there are exactly

MK−1K ·
(
M

r

)
sets A ∈ Su with |A| = r ≥ 2.

2. By the results of Lemma 2, to construct a set B ∈ Sw of size r from the singletons

we can choose r elements from any combination of the K subsets Wk, but we must

choose elements from at least two subsets, and we must choose less than M elements

from each collection. Now note that there are
(
K
`

)
ways to choose from any 2 ≤ ` ≤ K

collections, and
(
M
vk

)
ways to choose 1 ≤ vk ≤ M − 1 elements from each collection.

Finally, we must ensure that if we are constructing an r-element set B that we have

∑
k

vk = r

Combining everything, there are

K∑
`=2

(
K

`

) ∑
v∈A(r,M,`)

∏̀
i=1

(
M

vi

)
r-element sets in the collection Sw, where

A(r,M, `) =

{
(v1, v2, . . . , v`) ∈ N` :

∑
i

vi = r, 1 ≤ vi ≤M − 1 ∀i

}

as claimed.

3. This follows from part 1 of this Theorem when combined with Lemma 3.

�

Proof of Theorem 2. Notation for the proof is given in Appendix 4.

By Theorem 1 the identified set Θf is an interval. Thus, to show consistency with respect

to the Hausdorff metric, it suffices to show that f̂ `n
p→ f ` and f̂un

p→ fu. We can focus on the
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upper bound problem, since the lower bound problem is symmetric. The upper bounding

problem is:

fu(Pn) = sup
Q∈Q(Pn)

f(Q) (7)

To prove consistency we want to show that for every ε > 0:

lim sup
n→∞

P (|fu(Pn)− fu(P )| > ε) = 0 (8)

Now note:

|fu(Pn)− fu(P )| =

∣∣∣∣∣ sup
Q∈Q(Pn)

f(Q)− sup
Q∈Q(P )

f(Q)

∣∣∣∣∣ ≤ sup
||Q−Q′||≤dH(Q(Pn),Q(P ))

|f(Q)− f(Q′)|

Let ∆Q denote the (|U| − 1)-simplex. Since ∆Q ⊂ RdU is compact, continuity of f implies

uniformly continuity over ∆Q. Thus, we know that for every ε > 0 there exists a δ > 0 such

that ||Q−Q′|| < δ implies |f(Q)− f(Q′)| < ε. Thus, to show (8) it suffices to show that for

every δ > 0:

lim sup
n→∞

P (dH(Q(Pn),Q(P )) > δ) = 0 (9)

Note that by assumption (a) (and the fact Artstein’s Theorem implies only linear inequality

constraints) Q(·) is defined completely by linear equality and inequality constraints. Now

convert all inequality constraints to equality constraints by introducing a slackness parameter

λk ≥ 0 for each constraint. Let λ denote the vector of slackness parameters, and let θ =

(Q′, λ′)′ be the vector of dimension dθ × 1. In addition, let g(θ, P ) be the de × 1 vector of

moment equalities. Rather than include the constraint
∑

u∈U Q(U = u) = 1 as an equality

constraint, note that, as per the remark 1 in Shi and Shum (2015), we can instead drop one

equality constraint gk(θ, P ) (and thus also the associated slackness parameter λk), and solve

for λk using the constraint:

∑
j∈I(U)

Q(U = uj) +
∑
j∈I(U)

λj = 1
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=⇒ λk = 1−
∑
j∈I(U)

Q(U = uj)−
∑

j∈I(U),j 6=k

λj (10)

and then add the non-negativity constraint on (10) (where I(U) is an index set for elements

in U). Thus, there will be (de−1) equality constraints in the vector g(θ, P ), and dθ inequality

constraints given by the vector

h(θ) ≡


Q

λ−k

1−
∑

j∈I(U)Q(U = uj)−
∑

j∈I(U),j 6=k λj

 < 0

Importantly, note that the inequality constraints do not depend on the first-stage parameter

P . Now define Θ(P ) = {θ ∈ Θ : g(θ, P ) = 0, h(θ) ≥ 0}. Consider the criterion function:

T (θ, P ) = g(θ, P )′g(θ, P )

Then under assumption (d) we have:

Θ(P ) = arg min
θ∈Θ

T (θ, P ) s.t. h(θ) < 0

The sample analog of the above is:

Θ(Pn) = arg min
θ∈Θ

T (θ,Pn) s.t. h(θ) < 0

Under assumption (d), dH(Q(Pn),Q(P ))
p→ 0 if and only if dH(Θ(Pn),Θ(P ))

p→ 0. Thus it

suffices to show the latter. To do this, we will verify the conditions of Theorem 2.1 in Shi

and Shum (2015):

1. Since 2W contains at most a finite number of sets, by assumption (c) and the Glivenko-

Cantelli Theorem we know that supA∈2W |Pn(A) − P (A)| = oP (1); thus, Pn converges

uniformly to P in probability.

2. The (|W| − 1)-simplex ∆P ⊂ RdW is compact. Θ is also compact (since it is without
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loss of generality that we restrict λ ∈ [0, 1]).

3. g(·, P ) is trivially continuously differentiable on Θ for all P , and h(·) is trivially con-

tinuous on Θ; this follows since both g(·, P ) and h(·) are linear functions of θ.

4. Note by assumption (a) that Θ(P ) is defined completely by linear equality and inequal-

ity constraints and is closed and convex, so that together with assumption (d) we have

cl(int(Θ(P ))) = Θ(P ) (see Remark (i) after Theorem 2.1 in Shi and Shum (2015)). In

addition, by assumption (b) the Jacobian ∂g(θ, P )/∂θ′ must have full row rank. To

see this, first note by linearity of all constraints the Jacobian is a matrix of constants.

Next note all equality constraints can be classified as (i) equality constraints defining

Q†, and (ii) equality constraints that were converted from inequality constraints by

adding a slackness parameter. By assumption (b), the Jacobian of the set of linear

equality constraints of type (i) have full row rank. For equality constraints of type (ii)

the rows will also have full rank, since by construction any equality constraint j that

was constructed from an inequality constraint will contain its own slackness parameter

λj (and thus row j contains a 1 in the Jacobian for λj, and row j′ 6= j contains a 0 for

λj). Finally, note that equality constraints of type (ii) can be combined with equality

constraints of type (i) while still yielding a full rank Jacobian. This last step again

follows since type (ii) equality constraints will contain additional non-zero entries in

the rows of the Jacobian for the slackness parameters, so that the gradients of these

constraints will not be linearly dependent with the gradients of the constraints of type

(i), which do not contain such non-zero entries.

Consistency of Θ(Pn) for Θ(P ) in the Hausdorff metric then follows from Theorem 2.1 in

Shi and Shum (2015).

�
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