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A Notation and some results

In what follows, K is some generic finite term (which can be scalar or matrix-valued) and ¢
is some generic scalar such that 0 < ¢ < 1; the values of both terms may change from line to
line. Convergence to zero in probability and convergence to zero almost surely are denoted

by 0,(1) and 0,.5.(1), respectively. Given the parameter vectors v; and A (j = 1,..., N) we
define 0; = (v}, X)', v = (9, %) %0 = (Vo - Yivo) and 4 = (3, ..., 4})" . We similarly
define 6 = (v, XY, 0o = (7, \,) and 0 = (¥, N')". Whenever a variable is generated based
on an arbitrarily chosen initial value, we denote it in the subscript; e.g. Hjix(7;, A) is based

on the initial value ;. We also use the following shorthand notation:
Ssup = sup, Sup=  sup and sup = sup :

A AEO 9j ’YjG@f\,,/\G@)\ 6 Y1EO~,..., YNEOL,AEO

Using this notation, the composite likelihood function based on arbitrarily chosen initial

values h; is given by
| N
lNT,h(’yla-"77N7/\) = N;%T,h(f}/ﬂ?)‘%

T
1
leJL(/Yj? )‘) - f Z ljt,h(7j> )‘)7
t=1

Len(73:A) = log(det(Hjun(v;, M) + tr( X Xj Hjp (95, M)

The composite likelihood based on the stationary solution Hj;(7;, A) is given by

N
1
lNT(/Yl; ooy YN )‘> - N Z le(fyﬁ )\)
j=1

T
1
le(7j7 )‘) = ? Z ljt(7j7 )‘)7
t=1
Lit(j, A) = log(det(Hji(v;, N))) + tr(X;e X, Hy ' (5, M) (A1)

In the following, we will make use of several matrix algebra results. Firstly, if A is



(m x n) and B is (n x m) then, by result 4.1.1(8b) of Liitkepohl (1996),
tr (AB) = vec (A") vec(B) .
By this result and the definition of Euclidian norm, we can show that for any symmetric A
[lvee (A)]] = [[All.- (A.2)
Again, by the definition of ||-||, it can be shown that if A is (m x 1), then
[AA'|| = [|A"Al| = || A" (A.3)
Moreover, by equations (B.3) and (B.4) of PR, if one or both of A and B are square, then
|AB[| < [[A[l[|B]]- (A.4)
Also, by equation (B.8) of PR, for an (n x n) matrix A > 0 and an (n x n) matrix B > 0,
0<tr((A+B)™") <tr(B™"). (A.5)
Next, by result 4.1.2(2) of Liitkepohl (1996), if A and B are both (m x n) then,
|tr (A'B)| < [|A|1|B]].- (A.6)
By result 2.4.(11b) of Liitkepohl (1996), if A is (m x m) and B is (n x n), then
tr(A® B) =tr(A)tr (B). (A.7)

Moreover, by result 2.4(5) of Liitkepohl (1996) if A is (m xn), Bis (p x q), C'is (n x 1)
and D is (¢ x s), then

(A® B) (C® D) = AC @ BD. (A.8)



Finally, by result 2.2.(16) of Liitkepohl (1996), if A is (m xn), B is (n x p) and C is
(p X q), then

vec (ABC) = (C" @ A)vec(B).

B Scalar BEKK

In this part, we prove Theorem 4.1. Section B.1 provides the definitions that are used
throughout Section B, Section B.2 proves consistency and Section B.3 deals with asymptotic
normality. Section B.4 provides the formula for the asymptotic variance of A. Finally, the

required lemmas are stated and proved in Section B.5.

B.1 Definitions

Throughout Section B we have

Hji(v;,A) = Ti(l—a—=p)+aX;; 1 Xj, |+ BHji1(v, ),
Hjn(vj,A) = Tj(1—a—=B)+aX; 1 X;, +BHj (7, N),

where v, = vec(l'j), A = (a, B)’, and Hjop(;,A) = h; > 0. Here h; is some fixed initial
value.

We also use the following notation: first, we let Vj; = vec (thZJ’f — [2) and define
the (4N x 1) vector V;N = (V/,, ..., V¥,)". Next, we define QY as a (4N x 4N) block di-
agonal matrix where the j™ (4 x 4) diagonal block is given by Q; = D(H jt/ 2)®2 with
D=(1—-ay—B) " (1-p). We furthermore define

r /
> B ®2
Wi = |=> Bivee(Xjum1-iX), 4 — FJO)] (H (v, /\0)) ,
=0
- , i
- , _ ®
Wi = = Bvec(Hji1-i (70, Ao) — Fjﬂ)] <Hﬁl/2(%‘0a >\0)> :
L =0

and collect these objects for all 7 = 1,..., N in the matrices VVtN = N1 (Wi, Woy, oo, Wit)
and WY = N~ (Wy, Way, ..., Way). Finally, for VN, WY, W and QY defined as such, we



let
Qo = E [(QY), W), W)Y VNN (@YY, WY, (WtN)/)] :

B.2 Consistency

By Lemma B.1 and the triangle inequality

N
. 1 .
SliPUNT(%,/\) —Ivea(3 A = 5 ZSgP iz (vjo: A) = Lima (35, A)| = 04 (1), (B.1)

Jj=1

as T'— oo. Similarly, by Lemma B.2

sup lInT (7, A) = E {lne (7, A)]| < %ZS;}P L7 (75, A) = E (75, M| = 04.5.(1), (B.2)

J

as T' — oo. Note that in both (B.1) and (B.2) we are able to retain the rate o, (1) from

Lemmas B.1 and B.2 after averaging across j, since N is fixed. Finally, by Lemma B.3
Ellni(70, N)] > Ellni(y0, Ao)]  for any A # A. (B.3)

Then, by the same line of arguments as in the Proof of Theorem 4.1 of PR, for any ¢ > 0

we have almost surely for sufficiently large T that

~

Ellxi(v0,N)] < Inr(y0,\) +€/5
< Inra(3, A) +2¢/5
< Intn(¥, Ao) +3¢/5
< Int(y0, Xo) +4¢/5
< Elni(v0, Xo)] + ¢, (B4)

where the first and last inequalities follow from (B.2), the second and fourth inequalities
follow from (B.1), and the third inequality follows from the definition of A. By standard
arguments, it follows from (B.4) and the identification condition (B.3) that A — Ay =3 0 as



T — oo. Notice moreover that, by the same arguments as those leading to equation (A.6)
of PR, Assumptions 4.3 and 4.6 are sufficient to obtain 4; — v 220 for all j as T — oo.

The desired result follows.

B.3 Asymptotic normality

We proceed along the same lines as in the Proof of Theorem 4.2 of PR. First, by a mean

value expansion we obtain

al ’>\ * y ! ~ !
0 — W + K7 (07) ((71 —0) - (N _7N0>)

+Inrn (0%) (X = No), (B.5)

!/

where 0* is some mean value between 6 and 6y,

o _ Pl (07) o Plyry (07)
Bra 07) = =535 and Jwra (87) = =553
Let
Uy (6) Uy (67)
K N = = = N
wr (0°) ooy )=
. 82lN?f (60) . (92th (90)

Note that while the above terms depend on N, N plays no role in the asymptotic analysis
since it remains fixed as T" — oo.

Now, following the same arguments as in the Proof of Theorem 4.2 of PR, by Lemmas
B.7 and B.8, and (6 — ) = 04..(1) as proved in Section B.2 we have that Jyp (6*) is
invertible with probability approaching one. Moreover, by Lemmas B.11, B.12 and B.13,
the expansion in (B.5) yields

ol ,)\ % ~ / 2 n'
0 = ﬁ%oo)‘i‘KNTw )ﬁ((%—%o) 7--~7(7N_7N0))

+In7 (0F) VT (A = Xo) + 0,(1),



and rearranging this yields

5 I 0 -
VT |17 = o e Tl ( 72) Yo, (1). (BT)
A—=Xo — I () Knr(0%) =Ty (07) e

By Lemma B.7 and the consistency of é,

Iin O4nxc2 », Iin 04nxc2

(B.8)
Iy (0) Enr(07)  —JTyr(07) —J5' (00)Kn(00) —JTx'(6o)

as T'— oo. Combining (B.7) and (B.8), and using Lemma B.11, we finally obtain

Y — I O4nx
N L S IS P
A= Xo —Jy (00)Kn(00) —Jy (6o)

where () is as defined in Section B.1.

B.4 Asymptotic variance of A

In this part, we calculate the asymptotic variance of A — ) for the pairwise scalar-BEKK
composite likelihood estimator of Theorem 4.1. First, we partition the asymptotic variance

matrix €2y of Section B.1. Using the same definitions as in Sections B.1 and B.3, let

A=B[QIVVQN], B=E QNI YWY QIVNY YWY,
AN x4N AN X2
WNVNERYQN| o (W W WAV (VWY
~ Y an - ~ ~ ~
WV VYQY WV VYW WV VYW

2X4N 2%x2

C=F

which yields

B

QOZ ANX4N 4Nx2
D

2xX4N 2x2

b



Now, by Theorem 4.1, the asymptotic variance for g is given by

Lin Oanx2 A Bl | Ly —Kn(6) 5" (60)
|—Jx' (00) Ky (60) —Jy' (60)| |C D[ |Ozuan —Jx" (60)
B Iin Ounx2 A —AKy (60) Jy" (60) — BJy' (6)
|—Jx' (00) Ky (60) —Jy" (Bo)| |C —CEy (60)" Jy' (60) — DJy" (6o)
- A ~AKy (60) T3 (80) — BIS (60)
| —Jx" (00) K (60) A= Jy'" () C Iyt () ZJy" (6o)

where
Z = Ky (0)) AKn (6y) + Ky (60) B+ CKy (6y)' + D.

Remember that A corresponds to the bottom (2 x 1) block of 9. Hence, the asymptotic
variance of \ is given by the bottom-right (2 x 2) block of the asymptotic variance matrix

for 6. Therefore,

Var(A — Xo) = Jy' (60) ZJ5* (60) -

B.5 Lemmas

Remark 1 Throughout Section B.5 we assume that Assumptions 4.1-4.7 hold.

Lemma B.1 sup, |7 (70, A) — Lira(Y5, A)| = 04.5.(1) as T — oo, for any j =1,...,N.

Proof of Lemma B.1. The proof can be obtained by a straightforward modification
of the Proof of Lemma B.1 of PR, replacing A and B by y/a and +/f, respectively. In
particular, given Assumption 4.4 and 4, S 70, by the same arguments as in PR we obtain

in our case

sup ;! (o V| < sup |1 (5 DI < K, and sup | (i M| < sup | (0 V)] < K

(B.9)



see the arguments leading to equations (B.12) and (B.13) of PR. Notice that all the above
bounds hold independent of ¢. Now, in the scalar case equation (B.14) of PR becomes

t—1
vee(Hy(vjo, \)) —vee(Hu (35, N) = 3 B (1 — a = B) (vjo— ;) +B'vec(Hjo(vjo, A) — ).
=0

We note that by Assumption 4.2, sup, |5 < ¢ and sup, |(1—a—8)(1-£)""| < K.
Moreover, by Assumptions 4.3 and 4.6, the ergodic theorem yields that ||5; —v,o|| = 04.5.(1)
for all j as T" — oo. In addition, by Assumption 4.4 compactness of ©, is guaranteed.
Therefore, by the same arguments as those leading to equation (B.16) of PR we obtain

that as T" — oo
sup [[vee(Hi(vjo, A)) = vee(Hjen (3, A < K¢+ 04..(1). (B.10)
Next, we obtain a series of results in (B.11), (B.12) and (B.13). In particular,

Sup 1T (Vi0, A) — Lirn (3, M)

(3:55%:2?;3: il

Zsup [t (X0 X0 (H3, (0, ) — High (. 0)]] (B.11)

which corresponds to equation (B.11) of PR. Similarly, given that sup, H i, h (4, )\)H <K
and sup, ||H & (0, A )|| < K by (B.9), we obtain

T
1 det(Hji(vj0,A)) ) ‘
= sup log( A
T; A det(Hjen (%, A))
T
2 A
< 7 2 lI(HinC0:0) = Hiua G I sup [5G V|
t=1
K T
= TZSI)I\IDH(HJIS(%'OM\)_Hjt,h('?ﬁ)‘))”u (B.12)
t=1



and

T
—Z up|tr # X5 (Hy (0, A) — Hz (35, M) |

%

<

ﬂIN

T
ZUPH Hji(750: ) = Hyen (35 W) < XG5 (B.13)

see the derivations for the corresponding terms on pages 43-44 of PR. Substituting (B.12)
and (B.13) in (B.11), and then using (B.10) yields

HIN

T
Sl)l\plle(’)/jO?)\) l]Th 7]7 S Z Z¢t H tH +0as( )

as on page 44 of PR. Now, given that 0 < ¢ < 1, T} ZtT:1 ¢! — 0 as T — oo. Moreover,
by the same arguments as in PR (see the last equation in their Proof of Lemma B.1),
T-! Zthl O || Xe||? %3 0 for all j as T — co. Hence, sup, |Liz(7vj0, A) — Lizn (35, A)| = 04.6.(1)

for all 7 as T'— oo, as stated. m

Lemma B.2 Foranyj=1,...,N,

sup i (5, A) = E [l (73, V]| =3 0, as T — o0,
Proof of Lemma B.2. The result follows by the same arguments as in the Proof of

Lemma B.2 of PR, applied to each pair j =1,.... N. =

Lemma B.3 E[l]’t("}/jo, )\)] > E[l]’t("}/jo, )\0)] fOT‘ any A 7£ Xo- In addition, FE Hljt (7]'07 )\0)’] <

Q.

Proof of Lemma B.3. That E[|l;; (7j0, A\o)|] < oo holds is implied by Lemma B.4. As
for the first result, the arguments made in the Proof of Lemma B.3 in PR are directly
applicable to our case. This is because the arguments made there are independent of the
underlying particular volatility model. Indeed, the 2-dimensional case we consider here is a
special case of Lemma B.3 of PR which is concerned with a d-dimensional problem. Apart
from that the only change is the addition of the pair index j.

In particular, let & j and & j; be the eigenvalues of Hji(7;o, /\0) ('yjo, A) for some

10



particular j and . Suppose that A # \y. The same arguments as in the Proof of Lemma

B.3 in PR yield

E [tr (thXJ/'t (Hﬂl(%‘oa A) — Hj_tl(%‘ov )‘0)))} = B

2
> (Gije— 1] (B.14)
=1
2
1Og det (Hjt(/}/]m A)Hﬁl(’}/joa A0)) = = Z IOg fi,jh (B15>
=1

where (B.14) follows since Zj; is independent of the information set Fj;—1 = 0 (X1, Xj -2, ...) -

Using the definition of ;,(y;,A) in (A.1) with (B.14) and (B.15) yields

E [t (50, A) — Lie(7v50, Mo)]

2
Z §ije — 1 —log fzgt)] > 0,

since the eigenvalues & j; and & j; are both positive. The inequality will be strict unless
&1t = & = 1 almost surely, which is equivalent to Hj(vjo,A) = Hji(yj0, o) being
true almost surely. As Assumption 4.5 rules this out, we conclude that E[l;(vjo, )] >
Eljt(7j0, Ao)] for any A # Ao. ®

Lemma B.4 Elsupy, [1;:(7;,A)|] < oo for all j.

Proof of Lemma B.4. By the definition of {;,(7;,A) in (A.1),

E S;lp|ljt(% )|] <V2E Su10|| 5t M|+ V2E |1 X SUPHH (v M|

see also the last display in the Proof of Lemma B.4 of PR. Now, we know that sup,, |H 3, (5, M| <
K independent of j and ¢ by (B.9). Moreover, E[supy, ||H;i(7;, A)||] < oo by Lemma B.5.
Lastly, E[||X;:|[*] < oo by Assumption 4.6. The stated result follows. m

Lemma B.5 Let 0; be the it" entry of 0, where i =1,...,4N +2. Then

oH, h(vl /\) ’ it,h 7
FE THgth N T3 N E j J,
s;ljp ‘ 0, < 00, Slgljp 2500,
_ Ovec(H A
E Su‘P|’U€c( ]t(fyja ))H ] E Su-p ( ajé(r)/] )) ] < oo,

11



827}60(Hjt(’7j, A))

E 00,00,

sup
0;

3
< 00,

for all j,i and 7.

Proof of Lemma B.5. We consider the proof of E[sup,, [|OH i 1 (5, A)/00:]] < o0

First note that by a standard recursion argument,

vec(Hjep (75, A) = (1 —a— )~ + avec (X]t 1th 1)—1—61}60( it-1(75, A))
v (l—a—=p)1-p")

1-p5
-1
+ Z Blavee (X;,1X5, 1) + Blvec (hy) . (B.16)
=0

Using (B.16), we will consider each component of Efsupy, [|0H;.n (75, A) / 96;|°] individu-

ally. First, since h; is a constant, we have

3

sup
0;

= sup

dvec (Hjep (74, N)) H3
0;

Oa

(] — ¢ t—1 '
_%ﬁ/ﬂ £ Bvee (X e Xy 1)
=0

Then, by the triangle and Minkowski’s inequalities, and Assumptions 4.2, 4.3 and 4.6

E |sup dvec (Hjpn (75, M) 3]
0, Oa
- 1_575 3
= F Sup _u1=F) —|—Zﬂzvec Gi1-iXg 1)
- 3
< E <K+Zsup\|ﬁvec -1 X, 1 H)
_ —1 T EAN
< K+Z E (SupHﬁvec( jit—1— zX]t 1—i H)
=0
il . 1/3 ’
< K+Zs;1p52{E[||th||6]} )
i=0 77
t—1 3
< K+KZ¢Z’>
=0

12



< 00, (B.17)

18! (1—a—p)(1-p) +a(1-4")

for any j ane t. Next, letting A, =

(1-5) :
ovec (Hjip (74, ) 3 t—1
ith (V) o )

Then, by using the same approach as in the derivation of (B.17),

Odvec (Hjt,h (”Yj)‘)) ’
sgjp 98
t—1 ‘ 3
< E (K + s191jp |[t6" vee (hy)|| + S;ljp Z'Zliﬂz_lowec (XX 1) )
. 51y 173\ 3
< | K+ Kt +{E (Z sup [|if" awee (Xj,t_l_iX;-,t_l_i)H>
i=1 Ui
t—1 i JAERY
< | K+ Kt + Z E <Sup i avec (ijt—l—iX;/',t—l—z')H>
i=1 0;
t—1 i SREAY
< |KE+EKt$'+) (E (Sup (i ) x ||th||2>
i=1 %
t—1 1/3 3
< <K+ Ko+ > i {B [|1X°]} )
=1
t—1 3
< K+ Kt + Ky ng)
=1
- o (B.18)

for any j and ¢. Finally

dvec (Hjep (5, N))
dvec (v;)’

E |sup

05

3
= [sup

by Assumption 4.2. Hence, by (B.17)-(B.19) we have E [Supaj |Ovec (Hjpp (75, N) /06i]°| <

13




oo for any j and t. We note that this conclusion does not change in case #; correponds to
a parameter which is not included in (v}, \')’; this is because then dvec (Hjyp (75, A)) /00;

is automatically equal to zero. The remaining results can be obtained similarly. =

Lemma B.6 Let 0; be the it entry of 0, where i = 1,...,4N + 2. Then for all j, i and '
we have Elsupy, [|0°L: (75, A) /00;004|] < .

Proof of Lemma B.6. This is a straightforward modification of Lemma B.5 of PR. Let

— 0*H, (’77)‘)
Aji(5,A) = tr (Hjtl( i) 0]92892, )’
_ OH i (vi, A) . OH i (i, A
Bji(v;, A) = tr (Hjl(%ﬂ\)—%(@i/j )Hjtl(%”)‘) Jta(gij ))’
— ! orT— OH; '7>\ - 0H; ")\
Cit(v,A) = tr (Hjl(%)\)x 12X ¢ (’Yj»A)—Jégj )Hjtl('yﬂ")‘) ]ta(;] ))’
_ / — aQH (7,)\)
Dji(v;,A) = tr (Hjtl(%,x)x X, H, (fyj,A)—agiae; )
Then,
9L, (v;, A
Pl 01:) Aje(75: A) = Bje(v5, A) + 2C50(75, A) = D5, M), (B-20)

00,00,

which is the same as equation (B.19) of PR, except for the addition of the pair index j.
Now, using (A.3), (A.4), (A.6), (B.9) and Holder’s inequality,

- Ao < KE Jt %7 B.21
S;ljp“ ([ < S}}jp 90,00, H] (21
: : oH, (v, M P11
B o 1B Ml | < K{E ap || ) ”
j p 26;
57y 1/2
) {E - ‘w ” | (B.22)

IN

51y 1/3
]}
47y 1/3

” , 5.2

K{E [|yxﬁ||6]}”3{3 sup

X{E

’ aHjt (7]5 )‘)

E SgPHCﬁ(%)\)H]

sup
0;

8Hjt (7]'7 )‘>
00;

14



82[—Ijt (7]'7 )‘)

k 00,00,

97y 1/2
” B21)

By Assumption 4.6 we already have E[||X;||®] < oco. Moreover, by Lemma B.5 we have
{E[supy, |[0H;: (75, A) 106;])°1}/3 < oo and {E[supy, [[0>Hjz (75, A) 10000, ||"1}/? < oc.
Then, from (B.20) and (B.21)-(B.24) it follows that E[supy, [[0%l;; (v;, A) /00:00|]] < o0,

sngDﬁ(w,A)H] < K{B [Hxﬁnﬂ}”{E

sup
0

J

independent of j, as stated. Notice that this result continues to hold if 6; and/or 6 are not
included in (7}, X')’; this is because, in that case we automatically have 0%l (v;, A) /06;00, =
0. m

Lemma B.7 Let 0; be the i'" entry of 0, where i = 1,...,4N + 2. Then,

a.s.

sup =0 asT — oc.

0

aglNT(77A) _E a2th(’Y, )‘>
00,00, 00,00,

Proof of Lemma B.7. We invoke Lemma B.6 and use the same arguments as in the

Proof of Lemma B.6 of PR to obtain

sup 20, (B.25)

0;

82le(’7j7/\) _E azljt(’yﬁ/\)
00,00, 00;00;

for each pair j as T' — oo (notice that, if 6; and/or 6, is any parameter that is not included
in (v}, N')', then 9*l;p(v;, A)/060;00; = 0 and the above statement holds automatically).
Then, by the triangle inequality and (B.25), and since N is fixed, we obtain

2 2 N
S FInr(v,N) _E [8 Ine (v, )\)H < 1 ZSU

W | 0000, 00,00, || =N 25

Plir (15, ) Plit(vi, M| _
00,00, E [W} = 04.5.(1),

j=1
as stated. m

Lemma B.8 F [0%Iy; (70, \o) /ONON] is non-singular.

Proof of Lemma B.8. The Proof of Lemma C.2 is directly applicable here, with a few
straightforward modifications due to the change in parameter dimensions. In particular,

given that the parameter vector A for the scalar BEKK model in (12) is (2 x 1), we have

15



to re-define hj;, kj; and c as follows:
hje = (hjeas hjea), ki = (kjea, kjee),  and ¢ = (e, ¢a).

As in the Proof of Lemma C.2, )\; is the i** entry of A; but now ¢ = 1, 2. In line with this,
the summations 2?21 have to be replaced by Zle, as well. Moreover, A®? and B®2 should

be replaced by a and . Consequently, the following modified definitions follow:

wj = I—a—=p8)7y, wjpo=1~—ao—75)70,

.0 . K9 &0
C:)jo = ZCiaw]‘ N A[) = Zcia@ s and BO = chaﬂ
i1 7 )

0;=0;0 =1 0;=0;0 =1 " lo=050
With these modifications, the Proof of Lemma C.2 becomes valid for the case at hand, and

the desired result follows. m

Lemma B.9 For 4; as defined in (13), we have

Qt

. T
! Z ‘/tN—i-Op(—) as T — oo,

8ZNT (’}/0, )\0) /8)\ WtN

3

where QN, WN, WX and VN are as defined in Section B.1.

Proof of Lemma B.9. To keep the notation concise, in what follows we let Hj; =
Hji (740, Xo). We start with the proof for the score, Oyt (70, Ao) /OA. Given the definition
of [;:(7;,A) in (A.1) we have

D) e o)) 2 A e gy (st 22 )
T/ 22 Ovec (Hj (v, A
= {[vec(Hj_t )} —U€C(X X ) (Hjt) } (fga(’y ))

We also have,

ovec (Hji (v, N)) dvec ,
(f;; ’ = 5 [T+ (X1 X,y —T) 4 B(Hje1 (45, N) = T5)]
dvec , dvec
= Of(Xj,t—lXj,t_l - Fj) + a—aﬁ(Hj,t—1 (%‘a A)— Fj)

Oa
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dvec (Hjs—1 (v, N)

= UeC(Xj,tle],',t—l —Ij)+5 da ’

and by recursion this yields,

dvec (Hji(v;, N))
Oa

dvec (H;s—1 (v, N))
Ox

— ZﬁlU€C<Xj7t717iX;7t,1,i - T ) + lim 51 Quec (Hj i (75, )
=0

i—00 [0

= vec( X1 X, —T;)+8

= Y Bvec(XjiXf, o, —T)),
i=0
since 0 < B < 1 by Assumption 4.2. Therefore,

ol fy.,)\ _ / - i /
P2 e ()] vee (X,X,) ()"} 2 e Xy =)

o 22) K
= { |:’U€C ([2) — U€C<thZJI't>]/ (Hjtl/z) } Z BZUGC<Xj7t,1 ZX],t 1—i — F])
=0

Notice that this is a scalar term and so its transpose is equal to itself. Hence,

T

/
azm, 1 ; ~1/2) 2
) :—?Z (;5 vece(Xj1-i X5, - z_Fj)> (Hjt /) vec(ZpZj — I),

and consequently,

alNT % 1 Al - i 1/2
= NTZZ _ZB (,UeC<Xj,t71 7,X]It 1— Z_F])) (H]t /) vec(thZ]'-t—[g) .

j=1t=1 L i=0

J/

Oye(33 ) /D
(B.26)

Similarly,

PN _ £l (1))~ vee (X3 (1

) @2 } Qvec (Hji (v, N))
86 Jt Jt

op ’
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where

dvec (Hjt (v, N)) dvec
B 0B
= vec(Hjp1 (v, A) —Ly) + 8

[Fj + Oé(Xj,tAXJ/',tﬂ —T5) + B(Hje1 (35, A) — Fjﬂ
dvec(Hji—1 (75, A))
op
Ovec(Hji—; (75, )

= ; Bvec(Hj—1-i (v;,A) — Tj) + Zliglo B 5

= Z Brvec(Hji1-i (5, M) — T;).
=0

e}

Therefore, by the same arguments as for the score with respect to «,

Al (7, A 1 & > o ,
Ng(g '~ 7 O D |2 e (Hypami (1. 0) = T))Y (H ") o 23 2, — 1) .
j=1 t=1 i=0

Na /
g

OLjt(v;,1)/ 98

(B.27)

Next, we consider 4; —7;0. By following the same steps as PR (see the arguments leading

to the final equation on p. 50 of PR), we obtain

T
. 1-68 1 12 ©2
(%5 —vj0) = T—ag— BT ; <Hjt ) vee (thZJ/'t — 1)
n 1
1 —ag— fo
1 1
X (O&O?UGC (onXJI-D — XjTX]/'T) + 50;1}60 (HjO — Hj )) . (B28)

We focus on the second term on the right-hand side of (B.28). By standard results,

||agvee (X0Xy — X0 X)p) + Bovee (Hjo — Hyr)||

IA

ao [[vee (Xj0Xjo — XjrXiz) ||

+Bo l[vec (Hjo — Hyr)]|

eoee (G0l + a0 e (X5 |

+0o [lvec (Hjo)|| + Bo [lvec (Hjr )|

= o ||XolI” + a0 [ X;2]* + Bo | Hjol| + Bo || Hyr] - (B.29)

IN
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By Assumption 4.6 and Lemma B.5, we have E[||X;||?] < oo and E[||Hj||] < oo, respec-

tively, for all 7 and t. Moreover, by Assumption 4.2, oy and [y are both finite. Therefore,

by (B.29) we obtain
E [||agvec(X;0X o — X0 Xp) + Bovec(Hjo — Hyr)||] < oo.

Then, by Chebychev’s inequality, for any ¢ > 0

(\/_Haovec X;0Xjo — X1 X5r) + Bovec (Hjo — Hyr) H>5)

E [||agvec(X;0X )y — X2 X)p) + Bovec (Hjo — Hyr)||]
= T1/2¢
— 0 (T71/2) 7

as T' — oo. Hence,

|avguec( X;0Xjo — XjrXip) + Bovec (Hjo — Hyr) || = o0,(1),

|

and combining this result with (B.28) yields

T
. 1-=5 1 1/2\ 2 ( 1 )
)= — H./ %% vec(Z4 2!, — )+ o0, | —= |, B.30
(% — o) 1— g —BOT;( jt ) (Zjt jt 2) +0p JT ( )
for all j as T'— oco. Bringing (B.26), (B.27) and (B.30) together, we then have
. T
== Yni(70,X) +0p (—> ;
Olnt (’70, )\0) /3)\ T t=1 \/T
where
[ %(H#)@QU@C (ZuZi, — 1)
Yve (70, Ao) = P (HY ) 2vee (Zyi Zy, — 1)
— 0 i / —-1/2
NS =50 Bivee(Xju1-iX )1 — Tio)] (Hy,'*)#2vee( 232, — 1)
NS [ 302 Bivee(Hi—1—i (vjo, Ao) — Tjo)]' (H;,'*)®%vec(Z, 2}, — 1) |
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Notice that Yy (70, Ao) stated as such is equivalent to [(QN), (WN), (WN)Y]V;N, where
QN, WN, WX and VN are as defined in Section B.1. This yields the stated result. m

Lemma B.10 B[|[((Q), (W), (W)Y VNIP] < oo, where VN, QF, W and WY are
as defined in Section B.1.

Proof of Lemma B.10. To keep the notation concise, in what follows we let H;; =
Hjt (vjo, Ao). This lemma is the scalar BEKK version of Lemma C.4 (which focusses on
the non-scalar BEKK model of equation (14)). Consequently, a substantial portion of the
arguments made in the Proof of Lemma C.4 can also be used here. In particular, by the
same arguments as in the Proof of Lemma C.4, one can immediately show that for V",

QN, WY and W} as defined in Section B.1

EN@QY), WYY, WY)YVNPL = BV @YY QNVN + E[(VN) (WY WV
+E[(VN)Y (WY WV, (B.31)

and
E[(V)(@QY) QN VY] < oo (B.32)

Moreover, letting
Gth_l = — Z Bévec(Xj,t—l—iX;t_l_i —Fj0> and éj,t—l = — Z BéU@C(ijt_l_i —Fjo),
1=0 =0

again by the same arguments that lead to (C.26) and (C.33) in the Proof of Lemma C.4,

it is straightforward to obtain

B[V YWY YWNVY] < EIG . lFyE G I],  (B.33)

»u
g:\/ [e=d \/E[||G;7t1||2] (B.34)

L
Ky

IN

||M2 ||M2

BV ()T Ni
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Now, by Minkowski’s inequality

97y 1/2

(E(IGs - IP] =

7 /
UeC(in—l—in,t—l—i - FjO)

° , 1/2
< >y {E [| |Govee( Xj-iXj, 1y — FjO)HZ] }
=0
/ 517 1/2
< Zﬁo{ lveelXu-iXpa—Tlll*]} 0 (B39)

and by (A.2) and (A.3)
1/2 r 1/2
{E |:‘ ‘vec(Xj,t—l—iX;t_l_i — Fj()) } ‘2i| } = {E _‘ |Xj7t—1—iXJ/',t—1—i - FjO‘ {2] }

_ / 571 1/2
< {B[(IX Xl + 0]}

B 2 1/2
= (B[l + 0]}

4 2 2171/2
= {E [IXje1=ll” 4+ 2 [|X -1l " ITj0l] + [|T5011] }

< K,

since E[||Xj||*] < oo by Assumption 4.6. Combining (B.35) with (B.36), we then obtain

VEIG ] < K6 <o, (B.37)
=0

since 0 < By < 1 by assumption. Noting that E[||H;||?] < oo by Lemma B.5, it can
similarly be proved that

E[||Gj-1]2] < o0 (B.38)
Combining (B.33), (B.34), (B.37) and (B.38) yields

E[(%N)/(WtN)/WtNVtN]<oo and E{(VtN)/ (WtN)/WtN%N (B.39)

The stated result now follows from equations (B.31), (B.32) and (B.39). m
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Lemma B.11 Let )y be defined as in Section B.1 and let 7, be as defined in (13). Then,

as T — oo we have

VT T 4N (0,90) .
GZNT (’}/0, )\0) /8)\

Proof of Lemma B.11. Let QN, W, W/ and VN be as defined in Section B.1. Define

= ((QNY, (WNY, (WNYYVN. Notice that QN, W and W/ are all F,_;-measurable
(remember that F; is the sigma algebra generated by the collection of all returns at and
before time t). Moreover, V¥ is independent of F;_;. Therefore, (AY, F;) yields an ergodic
martingale difference sequence. Observe that by Lemma B.10 AYN is square-integrable.
Then, by the same arguments as in the Proof of Lemma B.10 of PR an appropriate CLT

exists and

T
1
W ZA,{V 4 N (0,90) asT — oo, (B.40)

t=1

where €2y is as defined in Section B.1. Finally, invoking Lemma B.9 and using it together

with (B.40) yields the stated result. m

Lemma B.12 Let \y = a and \y = 8. Then, fori=1,2,

Olj ( %07 Ao)  Oljen (v50, M)
o\

=0p(1), asT — oo.

=SS

=1 t=1

Proof of Lemma B.12. To keep the notation concise, in what follows we will omit
the arguments of a function whenever it is evaluated at the true parameter values; e.g.
Lit = Lit (70, No) s Hjt = Hji (750, Ao) ete. First, notice that inequality (B.32) of Hafner and
Preminger (2009) can be modified to accommodate our two-dimensional setting with the
indices (4,t). Then, for some r such that 0 < r < 1,

< KE l(K + K[| X5

Ay Mo
o\ OM

o\ o\

‘ 8Hjt 8Hjt7h

T}
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7’ aH " T
+KE[(K+KHXMIQ H e Il jt,hu}
r OH h '
FKE [||th||2 Hy — Hyll” H Ly ] (BA1)

We note that sup,, || Jth(yj,/\)H < oo and E[||X;||%] < oo by (B.9) and Assumption 4.6,
respectively. Then, by (B.41) and Holder’s inequality it can be shown that if

Hy |l =0 (¢') (B.42)
waH]t B aH]th } — 0 (1), (B.43)
H’aHJ” } . (B.44)
then
oy, Oy | .
E [ T T o =0 (t¢), (B.45)

We start with (B.42): by Lemma B.5

E

sup ‘WH] < 0, (B.46)
0; i

S;lp||Hjt(7j,A)||]<OO and E

i
for all 5 and ¢, where 6; is as defined in Lemma B.5. Next, by a recursion argument

Hj (75, A) — Hjun (7, N) = B(Hje—1 (75, A) — Hj—1.n (75, )

= B'(Hjo (v, M) — hy) - (B.47)

Then,

SUPHB ]0 7]7 H

J

= 0(¢"), (B.48)

E SblpHHjt('Vj’/\) Jth(%a )||] =

J

which follows from (B.46), (B.47), Assumption 4.2 and the fact that h; is a constant. This
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proves (B.42). Next, we consider (B.43):

E = b

sup
05

sup

O\

‘aHjt (737)‘) aHjth 7]7 H]

o]

= 0O (tqjt) , (B.49)

where the first equality follows from (B.47) whereas the second equality is due to (B.46); see
also the argument leading to equation (B.48) in PR. Hence, (B.43) holds. Finally, (B.44)
holds by Lemma B.5. Hence, the conditions (B.42)-(B.44) are satisfied and (B.45) holds.
Now, notice that limp o 3, O (t¢!) < oo since @' converges to 0 exponentially
whereas ¢ diverges to oo linearly. Then, following PR, we use the generalised Cheby-

chev’s inequality, the ¢, inequality (see White (2001), p.35) and (B.45) to obtain that for

any € > 0,
N
1 azﬂ azﬁh
P(vTar syl -5
N T 1/4
. (Z azﬁ - azjth )
= 61/4N1/4T1/8
j=1 t=1
N T 1/4
| oy, Ol
‘7 =
1 N T
t
< WZZO (t¢')
t=1
<

1
cl/AN1/47T1/8 Z K,
Jj=1

which is O(T~1/®) since N is fixed. The desired result follows. m

Lemma B.13 Let 0; be the it entry of 0, where i =1,...,4N + 2. Then,

N T

azljt (’Yjﬁ /\) . aQth,h </7j7 /\)
00,00, 00,00,

=045(1), asT — oo,

t=1
for all i and i’
Proof of Lemma B.13. The proof follows the same ideas as the Proof of Lemma B.12
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above. Modifying the inequality (B.36) of Hafner and Preminger (2009) for our particular

case with both cross-section and time indices, and using Holder’s inequality, we observe

that if

E [|1X;4]I°] < oo, (B.50)

E |sup [Jvee (Hj: (75, A)) = vee (Hjen (3, M| = O (¢ (B.51)
[ Ovec (Hji (v, A))  Ovec (Hjp (4, N)) ]

E J 70 _ Jt, J) — t B.52
S;.ljp ) a6, O (t¢') (B.52)
[ 0?vec (Hyi (v4,N))  0*vec(Hjpp (5, \))

E J 7 . Jt, Jo — 2t B.
"oy 06,00, 00,00, O (r¢")., (B.53)
[ Hoo (s

E |sup Qvec (Hy (15, ) < 00, (B.54)
0 00;

E |sup Qvec (Hjn (05, V) < 00, (B.55)
0 00;
[ O*vec (Hjpp (74, N))

E syjp 20,00, < 00, (B.56)

then
Ol (1, N Plin (35, N |

E it V5> A)  Ohen (5 — O (2241) B.

"o | 06000, 06,00, 0(#') (B.57)

We now verify (B.50)-(B.56). First, E[||X;||*] < oo by Assumption 4.6. From (B.48)
we already know that (B.51) holds. By (B.49) we also know that (B.52) holds when the
derivative is taken with respect to « or 5. However, from (B.47) it is obvious that, given
Lemma B.5, we can obtain the same result for the derivative with respect to v;, as well.
Notice that (B.52) also holds if §; is not one of the parameters contained in (v}, X')’, as
in that case the derivatives are identically equal to zero. Hence, (B.52) holds. Next, we

consider (B.53). Using (B.47), the triangle inequality and Lemma B.5

E

sup
0;

00,00, 00,00,

0*vec (Hji (v, N)) B D*vec (Hjpp (775, A H]
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] .
= B {sun | g5 2 veel(Hio G ) = )| u

< E _su o BvecHjo (75, N)||| + E [su o Bvec (h;)
= TP 96,06, 70105 o) || 96,06, d
— 0(2);

see also the arguments on page 54 of PR who obtain the same result in their equation

(B.52). The bounds in (B.54), (B.55) and (B.56) follow from Lemma B.5. Hence, (B.57)

1/4]

since N is fixed. Notice that this is akin to equation (B.51) of PR with r = 1/4, except

holds. Now, by the triangle and ¢, inequalities, and (B.57), we have

1/4 1
< — E
| < v

— 0(8),

32th (’}/, /\) . a2th,h (’77 )‘>

Pt (75, M) _ Pljtn (13, N)

E

sup
0

sup
0;

that here we have [y; (7, A) and Inyp (7, A), rather than [ (75, A) and L (75, A) , due to
the averaging across pairs. This averaging does not affect the asymptotic arguments since
N is fixed. Then, by the same arguments as in the last part of the Proof of Lemma B.11
of PR, the stated result follows. m
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C Non-scalar BEKK

In this section we provide the consistency and asymptotic normality of the composite like-
lihood estimator when the pairwise likelihood functions are based on the non-scalar BEKK
model given in (14). The only required change is that Assumptions 4.2 and 4.4 be replaced
by Assumptions C.1 and C.2 below, respectively. The latter is a simple modification of
Assumption 4.4 to accommodate the change in the number of parameters.

In what follows, for a (K x K) matrix Z with eigenvalues &1, ..., {k, we define p(Z) =

maxi<kg<k ’fk\
Assumption C.1 The parameter matrices A and B are such that p(A®? + B®?) < 1.

Assumption C.2 For every pair j, 7; € ©, and A € ©, where ©, and ©, are compact
subsets of R* and R8, respectively.

Theorem C.1 follows, which we provide below. In Section C.1 we define some additional
notation, while consistency and asymptotic normality are proved in Sections C.2 and C.3.

Required lemmas are presented and proved in Section C.4.

Theorem C.1 Suppose Assumptions 4.1, 4.3, 4.5-4.7, C.1 and C.2 hold. Letf = (A5 - s 5\’)'
be the composite likelihood estimator as defined in (13), with H;(vj, A) given by the non-
scalar BEKK model in (14). Then, as T — oo we have 6 — 0y “3 0 and

JT Y =Y q Iin Osnvxs

N N <O7 QO) )
A= Ao —JN (60)Kn(60) —J5' (o)

where Jn(00), Kn(0y) and Qq are as defined in Section C.1.

C.1 Definitions

Throughout Section C we use

Hji(v;,A) = T = AGA' = BU; B + AX 1 X5, A+ BHju (v, M)B, - (C1)
Hjt,h(7j7 )\) = Fj — AFjA, — BF]‘B/ + AXj,t—lX]/‘7t_1A, + BHj,t—l,h(’yja )\)B/,

27



where v; = vec(l';), A = (vec(A)',vec(B)')". As in Section B, Hjox(7j, A) = h; > 0, where
h; is the starting value.

As for the remaining definitions: We first note that the definitions for Jy(6y) and
Kn(6p) made in (B.6) are still valid, except that [;; (7;, A) is now based on the non-scalar
BEKK model in (C.1). The definition of the asymptotic variance matrix also remains the

same as in Section B.1:
Qo = E [(QY), W), W)YV VNY (@YY, WY, (WtN),)] ;

however, the definitions of some of the variables V;N, W, W and QN are now different.
To start with, they are now based on Hj:(7;,A) as defined in (C.1). Moreover, although
QY is still a (4N x 4N) block diagonal matrix with the j** diagonal block given by Q;; =
D(H;t/z)m, we now have D = (I, — AS? — B§*)71(I; — B§?). The definitions of W;; and

W;; are also different now due to the presence of matrix valued parameters A and B :

— o =7/

i - ®2
Wi = |- Z (ng) M;s—1-i (70, Mo) (Hjt1/2(7j07 Ao)) ) (C.2)
L =0 i

— 0 -/

. .- ~ ©2
Wi = |- Z (BS?)" Mji—1-i (50, o) <Hjt1/2(7jo, Ao)) ; (C.3)
=0

where

Mji (5, A) = {TAXGXG, — 1)) @ I} + {1 @ [A(X; X, — T)]} o,

Mji (75, 0) = {[B(Hu(75,\) = T))] © Lo} + {2 @ [B(Hji(75,A) — T))]} Kaz.
Here, K55 is the (4 x 4) commutation matrix. In particular, for any (2 x 2) matrix M,
we have Kjyvec(M) = vec(M"). Notice that Mj, (v;, ) and Mj, (y;, \) as defined here are
analogous to the definitions in equations (B.28) and (B.29) in PR.

The definitions of V;V, W and W} remain otherwise the same as in Section B.1. In

particular, Vj, = vec(ZZ}, — Ir), VN = (V. ... Vi)', WY = N=H (W, Way, ..., W) and
WN = N~Y Wy, Wy, ..., Way) for Wy, and W, as defined in equations (C.2) and (C.3).
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C.2 Proof of consistency

First, notice that under the maintained assumptions all results of PR hold for every indi-

vidual pair j = 1,..., N. In particular for each j we have

Iy~ 0ll = 00 () 2T >, .
Slip it (Vio, A) — Lirn (B, A)| = 0as. (1) as T — o0, (C.5)
Sup iz (75, A) = E [l (75, V]| = 0as. (1) as T — o0, (C.6)
Elj (vj0, M)l > E [Lje (50, M) if - A # Ao (C.7)

The consistency result of (C.4) follows from equation (A.6) of PR, whereas (C.5)-(C.7) are
due to Lemmas B.1-B.3 of PR. By using the same arguments as in Section B.2 above, since

N is fixed (C.5)-(C.7) are sufficient to establish

sgp Nt (Y0, A) — InTh (3, A)| = 04.5.(1)  as T — o0,

SLo}p |lNT(rY7 A) - F [th(’Y7 /\)” - Oa.s.(l) as T — 00,

Ellni(70, N)] > Ellne(70, Ao)]  for any A # A.

Then, the remaining arguments in Section B.2 above hold and one obtains A— Ao = 04.5.(1)

as T'— oo. Together with (C.4) this establishes

A

0—00=0,5(1) as T — o0,

as desired.

C.3 Proof of asymptotic normality

Starting with the same expansion as in (B.5), one can use Lemmas C.1, C.2, C.5 and C.6
to proceed in exactly the same way as in Section B.3 and prove the asymptotic normality

result of Theorem C.1.
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C.4 Lemmas

Remark 2 Throughout Section C.4 we assume that Assumptions 4.1, 4.3, 4.5-4.7, C.1
and C.2 hold.

Lemma C.1 Let 0; be the i'" entry of 0, where i =1,...,4N + 8. Then, as T — oo

sup

Pt (1, M) _E [82th (7, A)
0

00,00, 00,00,

} ‘ = 045 (1) foralli and 7.

Proof of Lemma C.1. Under the maintained assumptions we can invoke Lemma B.6 of

PR to obtain

sup
0;

aQZjT (’Yjv )‘) _E |:82le (r)/jv )‘)

00,00, 90,00, } ‘ =045 (1), asT — oo

for each pair j = 1,...,N (note that when 6; and/or 6y is not one of the parameters
contained in (7}, \'), the above result holds trivially since 0ljr (v;, A) /96;00; = 0). Since
N is fixed, this result and the triangle inequality are sufficient to obtain the statement of

Lemma C.1. =

Lemma C.2 E [0%Ix; (70, \o) /ONON] is non-singular.

Proof of Lemma C.2. This is a straightforward extension of Lemma B.7 of PR to the
specific case of composite likelihood function. Consequently, the proof is almost identical
to the Proof of Lemma B.7 of PR.

To keep the notation concise, in what follows we use Hj; = Hj; (7 0, o). Let A; be the
i'" entry of \, where i = 1, ..., 8. Remembering that F [thX]/'tu:j,t—l] = Hj;, and modifying
equation (B.22) of PR by adding the pair index j, we have

OHy; ., OH,
fjH] =tr (ngl ! a;f). (C.8)

9Ly (Vj0, \o)

E ONONy

Next, we define hj;; = (H_l/2)®2kjt7i and kj;; = vec(0H;;/0N\;). Then, (C.8) can be

Jt
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written as

%Lt (705 o)
N, |

0H; 0H;
_ 1Ot o Oty
= tr (Hjt 3>\; H, a)\‘z )

OH N\ r1 OHj
= [vec( 8)\1 )} [Hjt ®Hjt}vec(a)\;)

OH\1" . 1/ —1/2 OHj,
- [vec(a/\z ﬂ (Hj, )®2><(Hjt )®2vec 87:/

= Wy, (C.9)

E

where the second equality follows from result 7.2(11) of Liitkepohl (1996). Then, by (C.9)

we obtain

E 32th(70,)\0) _ 1
OOy

=l
M-

I 9%t (vj0, Ao)
OOy

1

E{E
1

E (W) ihji] -

<
Il

%Lt (50, Mo)
ON;ONy/

I
2|~

]

J

I
=i

1

<
I

Next, lettlng Hjt = (Hj;1/2)®2, hjt = (hjt,la hjt,27 vy hjt,8) and kjt = (kjt,17kjt,27 ey kjt,8) we

have hj; = H;.kj:. Notice that since in our particular case where the composite likelihood
is based on the non-scalar BEKK model in (14), X is (8 x 1). Consequently, h;; and kj;
are (1 x 8). Now, for E[0%In¢ (70, Ao) /OAON] to be singular we must have some non-zero

(8 x 1) vector ¢ = (cy, ..., cg)’, such that

C/E |:a2th (707)\0>:| c =

s [0l (750, Mo)
INON cb [ } ‘

ONON

=] =
AMZ

1

<
Il

I
=

C,E [(hjt,l, ceey hjug)l (hjt,h ceey hjt,S)} C

1

<
Il

I
=]~

E [¢W),hjic]
1

<
I
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I
=~

E (K M5 kjc]

<
Il
—

= 0, (C.10)

which is possible only if

—0, (C.11)
9j=9j0

8
0
kjic = Z Ciﬁ [vec (Hjt (75, M)]
i=1 v

for all j and ¢. Using notation similar to that of the Proof of Lemma B.7 of PR, we define

(,dj = ([4 — A®2 — B®2) ’Yj, w]'() = ([4 — A®2 B®2) ’7]0,

9 ) © = O
“io o c A=) aA.Am o Bo=) aA'B®2
=1 © loj=050 i=1 ’ 0;=050 i=1 ' ;=050
Now, if (C.11) holds, then
0
0 = Z Cigy {w; + A% vec (Xj-1X},_1) + B®vec [Hjy-1 (75, M)}
i=1 ! 0=0j0
= @0 + Agvec (X, t_lX; 1-1) + Bovec(Hj;_1)
+B§? Z ¢ vec Hji 1 (v, N)]
Ai 0,=050
= @jo + Agvec (Xj,t_linfl) + Bovec(Hj, 1), (C.12)

where the last line follows from k;;—1¢ = 0 by (C.11). Subtracting (C.12), which is equal

to zero, from vec (Hj;) yields another expression for vec (H,;), given by
vec(Hy) = wijo+ AFvee (Xj-1X5, 1) + B§?vec(Hjy—1)
—(I)j() — A()UGC (Xj,t—lX]/',t—l) — B(ﬂ)(ﬁC(Hj’t_l)
= ((J.Jjo — (Ifjo) + (A?Q — 1210)1}60 (in 1X]t 1) <B§2 — Bo)UGC(HLt,l),
in terms of the new parameters (wjo — @ o), (AS? — Ag) and (B$? — By). Since ¢y, ..., ¢

cannot be equal to zero, these parameters are different from (wjo, A%, BE?). By the same

argument as in the Proof of Lemma B.7 of PR, this violates the condition that vec (H};)

32



has a unique representation. This holds for all 7 and ¢, independent of N and T'. Therefore,
Assumption 4.5 is violated. This means that (C.11) and, therefore, (C.10) cannot hold,
implying that E [0%ly¢ (Y0, Ao) /ONON] is non-singular. m

Lemma C.3 Let QN, WN, WY and VN be as defined in Section C.1. Then, for v as
defined in (13), we have

N
7= :li WtN VN Lo (i) as T — oo
alNT(’Yo,)\o)/a)\ Tt:l WtN ' ' \/T
t

Proof of Lemma C.3. To keep the notation concise, in what follows we use Hj =

Hji (7j0, Ao). Under the maintained assumptions we can invoke Lemma B.8 of PR to obtain

R T
Vi — V40 1 1
-7 }/}t <7j07 )\0) + Op (_) ) (Cl?))
AT (Vjo, Ao) /OA r tzz; vT

for each pair j as T' — oo, where

D(H%Q)@Qvec (thZj’-t - ]2)

. /

Yii (50, Ao) = [— > (BS?) Mji—1-i (0, /\0)} (Hﬁm)@?v@c (22}, — I)
P i

[— >0 (B5?) M1 (v, /\0)} (H,'")*%vec (2,2, — I)

and Mj, (v;, ) and Mj, (7;,\) are as defined in Section C.1. Next, let

D(H\[*)*vec (ZuZi, — 1)

Yy (0, Ao) = D(HN})*vec (Zyy Zhy, — 1) :
. !
NI [— >oo (BE?) M1 (Y0, )\0)] (H;,'*)®%vec (22}, — )
. / _
N PO [— >oo (BE?) Mj-1-i (Y0, AO)] (H,'*)®%vec (22, — 12)_

and notice that Y, (70, M) = [(QN), (WX, (WNYVVN for QN, WY, WY and VN as
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defined in Section C.1. Then, since N is fixed, by the result in (C.13) we have

N
4 =% T | 1
= ? Z WtN ‘/;5 + Op | —F= | >
Olyr (’70, )\0) /3)\ t=1 WN T
t

as T — oo, as stated. m

Lemma C.4 Let VN, QN, WY and W} be as defined in Section C.1. Then, we have
E((@Y), (WY, (WX YVNP] < oo
Proof of Lemma C.4. To keep the notation concise, in what follows we use Hj =

Hji (70, Ao). We first note that under the maintained assumptions we have

sup |1, (33, N | = sup fer [ (33, 0)] < \/sg_p (T = AT A = B B) 7 < K,

(C.14)

where the first inequality follows from (A.5) and the last inequality follows from Assumption

C.2; see also the second-to-last equation on page 42 of PR. Moreover, we also have

E[||Hy|?] < (C.15)

by the same arguments as those leading to equation (B.20) of PR.

Next, we derive some simple results which will be used later. First,

HH—1/2 Hj—tl/2 _ \/tr (<Hj—t1/2 2 H—1/2)(H—1/2 2 H_1/2)>

=\t (' @ HY))
= \/tr(Hj—tl)tr(Hj;l)
= o (11|

= |tr (H};'L)|

< || H; || 122

= V2|
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< K, (C.16)

since ||H ;|| < ||Hj_tl/2|\2, and ||H;1/2]| < 0o by (C.14). Note that the second equality in
(C.16) follows from (A.8), while the third equality is due to (A.7). Second, for two (m x 1)

matrices A and B,

|AB'|| = +«/tr (AB'BA’)
= +/tr (A’AB'B)
< VIAANBE]
< VAP IIBIP
= [lAllIBII, (C.17)

where the first inequality follows from (A.6), while the second inequality is due to (A.3).
Third,

- vec (thZJ/-t — ]2) vec (thZJ/-t — ]2),

]

e 2, 191
2]

11Z3ll* +2v2 123 1* + 2]

(22}, - B)|[*

~—

(112023 + 111

(1Z3l* + 11211)°)

|
eI cS N S B S I ©S I €

where we have used (A.2), (A.3) and the triangle inequality. Notice that,
~1/2 ~1/2
E|Zil|"] = Bl X5 l') < BIH I < KE(1Xl|] < 00, (C.18)

since \|Hj;1/2]| < oo by (C.14) and E[||X;|[*] < oo by Assumption 4.6. Also, the first
inequality in (C.18) follows from (A.4). It then follows that

Ellvec(Zj Z;, — I)vec(ZuZs, — I)'|]] < K. (C.19)
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Finally, for any 5,k =1, ..., N, by Holder’s inequality and similar arguments as before

Ell| 22y — Lll x 1225, — L[] < \/E[HZMZ;Qt - IQHZ]\/E[HZJtZ/t - bl <

We now focus on the main proof. We have

[ @y oway (Y Y v

< rlVY@YYQNVII + [tV Y (W YWV 4 [ (VY O WV

= (V@YY QNVN + (VYW YWNVN + (VY (WNYWN VY. (C.20)

We consider the expectation of each term in (C.20) individually. First, using the definitions

in Section C.1 we have

E(V)(@QY) QY VY
N
= Y Elvec(ZuZj, — LY (H,[*)*D'D(H,[*)**vec(Z; 2}, — I)]. (C.21)
Now,
[vec L) (H1/2)®2D D(H![*)®vec(2;, 7, - 12)}

E
- E {tr [vec — L) (HY{*)®D' D(HY?)*vec (23 2l — [2)] }
E { /

£

IDIP ELICH;?) 21 x B |||vee (2312}, — 1) vee (22}, — 1)

IA

o [}y D<H1/2>®2U€C(thzjl't_]2) vee (22, — by)'|

}

vee (ZuZy, — 1) vec (2 25, — _[2)/

|

(H1/2)®2D D(H1/2)®2

IN

X

)

DI B [[erlCH{ )52

It

] x K

= K|[DI B [[tr [(H;)*]]

= K||D||” E [(tr (Hy))’]

< K||D|*2E [||Hyl*]

< o (C.22)

where we use (A.6) to obtain the second inequality, (A.4) to obtain the second equality,
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(C.19) to obtain the third equality, (A.7) to obtain the fifth equality, and (C.15) to obtain
the last inequality. By (C.21) and (C.22), and since N is fixed, we finally obtain

EL(VY) (@) @] < oo, (C.23)

Next, we focus on the expectations of the remaining two terms in (C.20). First, letting

Gji-1 = — Z (B§?)" Mji—1—i (0, M) ,
1=0
G = — Z (BS®)" Mji—1-i (vjo, M),
=0
we notice that
—1/2 —1/2 -1/2 —1/2
EWWull] = B[l @ H, ) GiGryy (1 @ 12|
—1/2 —1/2
< B[N0 5 Gl X ||Greal | X 10,2
< K\E[|G P/ E [IGL, L 112], (C.24)

and similarly,

B [I0W30al] < 5y [1G0-sP] B 1650 1R) (©.25)

where we have used (A.4), (C.16) and Holder’s inequality. Now,

B (V) (W) WY
i /
vec (thZit — IQ) vec (thZit — IQ)
— E|tr : (WM W :
vec (Zni 2y, — Ia) vec (ZniZn, — Ia)
1 N N
/
= mE <t7’ {Z [U@C (thZ§t — [2)] VV]{thtvec (Zk'tZ]/gt — [2)})
j=1 k=1
] N N
!/
< 5E <Z 3 ‘tr {W;twktvec (ZiZy — L) [vee (Zu 2l — 1)] } )
=1 k=1
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IA
2|H
Mz

[H Wil ¢ |[oec (ZeuZhy — o) [vee (232 — 1)

J

)

vee (ZiwZy — Ip) [vec (22}, — _[2)],

IA
3|~
™M=

)

IA
4
M=
WE
ey
5
§
PTN
|
el
N
N
Fenl

IA
N
3|~
M=
] =
ey
5

I
=

N N
%ZZW NI (C.26)
=1

where the second inequality follows from (A.6), the third inequality follows from | ‘W;tht‘ |
being measurable with respect to F;_1, the fourth inequality follows from (A.2) and (C.17),
the second-to-last inequality follows from (C.19) and the final inequality follows from
(C.24). Next, we investigate \/m . Using Minkowski’s inequality and the already
utilised matrix algebra results,

1/2

Elf|Gjill?]

= {E Z B®2 jt 1—i ’YJOa)\O ]
=0

{E (ZH(BSMY j-1-i(7j0, Ao) ||>
=0

IN

A

IN
&

1188 M1 o )|
_ | / . 1/2
E||tr { [(BG*) Mj-1-i (vj0, )] [(B5*) Mje—1-i (vjo, Mo)] }H }

I}

1/2
X | ‘Mj}tflfi (’)/jo, )\0) Mj,t—lfi (7j07 )‘0),| }] }

NGERNNGE

{
{
{E tr { (B (BS?)' Mja-1-: (0, Mo) Myem1-i (0, Ao)/}
{

E ||| (B2 (B2

I
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Next,

IN

IN

and

IA

_EZWWQHWU|t1zmAMHW2 (C.27)

1/2

{E[ -1 (50, Ao) | ]}

/ 1/2
E H[Ao( 1 X1 ’L_Fjo)i|®]2H }}

—1—{ [H{IQ®[AO< jb—1— ZXJ't - JO>]}K22H }}1/2

1[Ao (Xj41-iXL, 1 — Ty)] @ I |2]

1t ({[Ao (Xje1-iX s = Do) @ B} { [Ao (Xju1X 41 = Tio)] @ o} |
[t ({1 10X = Tio) AG] @ I} {[Ao (Xjem1-iXG 1y = Tjo)] @ Lo} ]
|tr { [(Xjm1-iX 41— — Tjo) AGAo (Xju-1-:X) 1 — Tho)] ® L }]

[t [(Xgem1iXy 1 s = Do) AgAg (XjemamiXfy 1y — Tjo)] tr (I2))]

2E [[tr [(Xjem1-iX], -1 — Tjo) ApAo (Xje1-:Xj 1 — Tjo)] |]

2B [H( jim1-iXf o= Too) || % ||A0||2}

2||A||* E

’ Jt—=1—i gt 1— z_FJO)HZ]

2[4 B [ (|11 ]|+ 10l

21| 40ll” E [(11 X141 + 1 Tsoll) ]

K (C.29)

since E[||X/||"] < oo by Assumption 4.6. By a similar reasoning, one can also prove that

E[|[{2® [ (Xj1-iXpms ~ To)]} Kaal ] < . (30

39

(B (|10 (1-Xcr— )] © B} + {18 [0 (XX cas = Do) Kl ]}

[0 (500X 1= )] @+ {12 [As (01,1 )]} el ]}

(C.28)



Combining (C.28), (C.29) and (C.30) with (C.27) we obtain

VEIGiIP] < i (852

where we used equation (B.15) of PR. Hence, by (C.26) and (C.31) we finally obtain

' < o0, (C.31)

E [(VtN)’ (WtN)/WtNWN] < . (C.32)

Finally, we consider E[(VN) (WNYWNVN]. Notice that the only difference between
E[(VNY(WNYWNVN] and E[(VN)Y(WNYWNVN] is that the former is based on Mj,(7;0, Ao)
instead of M, (70, Ao). Hence, it is straightforward to modify the arguments leading to
(C.26) and obtain

BANUANTAL AT KNiizNj B (|||
< K%iiwﬂ [1GsaalF]\ 2 (1G] (C39

1

b
Il

1

.
Il

where the last line follows from (C.25). Similarly, (C.27) can be modified to yield

VElIG eall?) < Z [1BE) LB M, -1 (vio, M) P32, (C.34)

Now,

1/2

V" < e oo i)

{ {H jt—1-i (Y50, Ao) i
B [I1{12 ® [Bo (Hye = o)} Kool ]}

and notice that,

EI{[Bo(Hy —Tjo)l @ L}[!] = E [|tr ({[Bo (Hj — Tj0)] ® LY {[Bo (Hj: — Tj0)] ® I})|]
= Elltr ({[(H; —Tj0) ByBo (Hji — Tjo)] @ I»})|]
< 2E[jtr {[(Hj: — T'jo) ByBo (Hj: — Tjo)]}]
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= 2B (jtr {[(Hje — Tjo) (Hje — T'jo) ByBol}]
< 2B [|[Hj — Tyl || Boll’]
= 2||Bo|[* E [([|Hjl + [ITjol)%]

< oo,

since E[||Hy||?] < oo by (C.15). E[||{I, ® [Bo(H,; — Tjo)]} K22||’] can be bounded in a
similar way. Hence { E[||M;,_1-:(7j0, Mo)||?]}/? < oo and together with (C.34) this implies
that

VENIG) el < Z 1(B52) LB Mje-1-i (vi0, M) P]}2 < o0, (C.35)

using the same arguments as those leading to (C.31). Consequently, combining (C.33) and

(C.35) we have
E (VY (WYY WPV < oo (C.36)

Finally, taking the expectation of (C.20) and combining this with (C.23), (C.32) and (C.36)
yields the stated result. m

Lemma C.5 Let Q) be as defined in Section C.1. Then, for7; as defined in (13), we have

VT T iN(O,QO) as T — 0.
8[NT (’}/0,)\0) /8)\

Proof of Lemma C.5. Let VN, QN, W and W/ be as defined in Section C.1. Notice
that V;V is independent of F,_, the information set at time t—1. Also, (QN), (W), (WN)Y)is
measureable with respect to F;_;. Therefore, (QN), (WN)Y, (WNYYVN, F), t =1,...,T,

is an ergodic martingale difference sequence for any N. Moreover, under the maintained
assumptions ((QN), (WX, (WN))Y VN is square integrable by Lemma C.4. Hence, by the
same arguments as in the Proof of Lemma B.10 of PR a CLT applies and

STUQRYY, (WYY, (WNYYVY 5 N©0,Q), as T — . (C.37)

t=1
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Lemma C.3 and (C.37) together yield the desired result. =

Lemma C.6 Let \; be the i*" entry of \, where i = 1,...,8. Also, let 0; be the i'" entry of
0, where i =1,...,.4N + 8. Then,

‘ﬁ (aZNT@Szf’ = aZNT’}é(AjO’W 20 fori=1. .8
a2lNT (7, )\) 82lNTh (’y, )\> a.s o
B ’ + 0 "=1,..,4N +38
Sl@lp 891892’ 892891/ - fO’I" b ’ +3,
as T — oo.

Proof of Lemma C.6. Under the maintained assumptions we can invoke Lemma B.11

of PR to obtain

Iy (vjo, Ao) Oy (50, Ao) \ |
‘ﬁ ( P 3y =0, (1), (C.38)
Plr (v, N Plirw (35, ) _

for each pair j = 1,..., N as T — oo. Notice that (C.39) also holds when 6; and/or 6 is
not any of the parameters contained in (v}, \')’, since in that case the derivatives are both
identically equal to zero. Hence, given that NV is fixed, the desired results follow by (C.38),
(C.39) and the triangle inequality. m
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D Additional material

D.1 Additional material for Section 4.2

In this part we provide heuristic proofs for the consistency and asymptotic normality of
the composite likelihood estimator discussed in Section 4.2. In what follows, in addition to

the definitions made in Section 4.2 we also use 6 = (0}, ..., 0% ), 0o = (G, .., O'ng)'-

D.1.1 Consistency

Our argument follows along the same lines of Section 3.2 of Aielli (2013). In particular, we

assume that

sup S,(0;, ) —Sjo(ej,@] 20, (D.1)
sup |le(0j7Sjv¢) - E[le(gjaSjagb)H £> Oa (DQ)

9]73]7¢

for all j as T — co. We also assume that it has already been established that
0; 5 050, (D.3)

for all j as T' — oo.

We start with the consistency of ¢. First, (D.1) and (D.3) can be used to obtain
Sup 11565, 6) — Sjo(6j0, 9)[| 2 0, (D.4)
for all j as T — oo (see, e.g., Theorem 3.7 of White (1994)). By (D.4) and (D.2) we have

Sl;p "3(@, o) — s(6y, ¢)’ 20, (D.5)

suplivr (6,5, 6) — B [Inz (8,5, 6)]] 0, (D.6)

respectively. Then (again by Theorem 3.7 of White (1994) or a similar result), one can use
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(D.3), (D.5) and (D.6) together to obtain
SI;P lNT(é7 §(é, ), ®) — E[In1 (60, (60, ¢), )] = 0. (D.7)

Remember that ¢ = arg max, lNT(é, §(é, ®), ¢). Hence, if one can show that E[lnr (6o, s(6o, @), ¢)]
is uniquely maximised at ¢, then under certain conditions (D.7) would be sufficient to yield
¢ 5 ¢y (e.g., Theorem 3.4 of White (1994)).
Finally, ¢ = ¢, (D.1) and (D.3) can together be used to obtain 5,(6;, o) 5 s;(0j0, ¢o)
for all j as T' — oo - for a typical example of such a result see Lemma A.1 of Wooldridge

(1994).

D.1.2 Inference

In discussing inference, in addition to the notation defined in Section 4.2 , we use the fol-
lowing notation: first, §;(6;, ¢), s;(6;, ¢) and s; are vectorised versions of S'j(Gj, ®), S;(0;,9)
and S;, where S; is some (2 x 2) matrix. We also let 6 = (8}, ...,0%)’, and define § and
0o similarly. Moreover, §(0,¢) = (51(01,9)', ..., 8n(On,®)"), and s(0,¢), and s are defined

similarly. Next, we define the population estimating equation. First, let
M(0) = (M(61)', ..., Mn(On)"),

where
M;(6;) = (disr(n;,)/dn)y,, disyr(ng,) /dnf,)

Under standard conditions, F[M(6y)] = Ogn. Second, we define,
G(0,s,0) = (Gi1(0h,51,0), ... Gn(On, 583, 8)')',

where

G;(05,55,0) = 3;(0;,0) — s;.
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Notice that under stationarity E[$;(0;,¢)] = s;(6;,¢) for any (0;,¢) and j; therefore,
E[G (60,500, ¢0), #0)] = Oan. Third, we define

1 N T
Ine(0,5(0,0),0) = o= > D Lin(0, 5505, 0), 0).

j=1 t=1

From the identification condition for ¢y, it follows that E[dlyr (6o, s(0o, d0), ¢o)/dd] = 0,.

Then, the population estimating equation is given by
gNT<8787¢> - (M<0)/’g(9787¢> leT<9 S( ) )/d¢>

where Elgnr (6o, 5(60, o), ¢0)] = O1on+2-

Our argument is based on a series of mean-value expansions. In what follows, the
“~” sign denotes a mean value; e.g. gf; is a mean value between gg and ¢y. Moreover,
R is a generic remainder term, the exact value of which may differ from line to line.
Also, to keep the notation concise we use the following shorthand notation for derivatives:
dy = dJdo, dpy = d?/dpde, d¢93_ = dz/dgzﬁdﬁg etc. Finally, we define Inr(6,5(0, ¢), ¢) =
(NT)™ 320, 300 Lie(6;,.55(6;, ), 9).

We start with the expansion of d¢lNT(é, §(é, QAS), qg) about ¢ = ¢y:

A A A ~ ~ A~ ~

d¢lNT(é7 §(9, 925)7 (b) = dtblNT(ev §(67 ¢0)7 (bO) + [d¢¢'lNT(07 ( ¢) qg)]((é ¢0)
= d¢lNT(é7§(é7¢0)a¢0>
EldgeIn (00,5 (60, d0) , 60)](6 — do) + R, (D.8)

where, remembering that 8 2 6y, ¢ = ¢ and §(9A,qg) s 5(6, ¢o) as obtained in Section

D.1.1, we assume that

ooyl (0,3(0,0), 0) — EldgyInr (80,5 (B0, o) , d0)] = Oass.

In the following expansions we will implicitly assume that similar convergence results hold

for the terms evaluated at parameter estimates and/or mean values. Next, by similar ideas,
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expanding dylir(0;, 5;(0;, do), do) around 0, = 0}, yields

d¢>l_7T(é]7 g] (éj7 ¢0)7 (bO) = d¢l]T<0j07 Sj (0j07 ¢0>7 ¢0) + dqﬁ@; l]T( ~j7 Sj (QNJJ Qb()), ¢0>(éj - 6.70)7
= d¢l]T<9j07 gj (9j07 ¢0)7 ¢0)
+E |dgorLir (850, S;(0j0, d0), ¢o) (6; — 0j0) + R. (D.9)

Next, we expand dyl;r(6;0, Sj(ﬁjo, ®0), o) around $§;(0;0, Po) = s;j(0j0, o) and obtain,

dslir(9j0, 55(8j0, d0), 60) = dylyr(Bs0, S;(Bj0, bo)s bo)
+dys Lz (050, S; (050, o), $0)[8;(050, o) — 57 (050, do)]
= dylyr (50, Sj (00, o), Po)
+F d¢s; Lir (850, S5 (50, d0), ¢0)] G050, 5(0j0, ¢0), bo)
R (D.10)

where in obtaining the second equality we used G;(0o,s;(0j0, ¢0), 00) = 5;(650,0) —

sj(0jo, ¢o). Next, expanding d,, l;,7(7;,) around 7);, = 1,0, by similar arguments as be-

fore we have

dy,, L7 (1,) = dy, Lyr (20) + Eldy, oy Ly (05,0)](705 — 120) + R,

and similarly for d,, lj,r(7;,). Then, remembering that d,, l;r(7;,) = dy,, Liyr(7);,) = O3

and 0; = (n},,1/,)'; we have

. —1 .
X {E[—dnjlngl lle(njlo)]} dy;, Livr (1j10)

(6~ 030) = | L iR (D.11)
{Bl=dy Lt O30))} i Lisr 110)

Bringing (D.8)-(D.11) together and remembering that d¢lNT(é, §(é, gg), ¢2) = 09, by defini-

tion, leads to

02 = dglnr(bo, (0o, Po), Po)
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N i
Y E (dos i (050, 55 (050, P0), Po) | G(050,55(00, o), do)

/

Jj=1 v~
AjT

LBl L)} (o)

N
. ) ]
N E E | dgg;Lir (00, S;(050, P0), Po)

= ' {E (o, ijo(njzo)]} IR IRACIRY)

. .

+EdsorInr (0o, 5 (60, 60) , $0))(& — do) + R. (D.12)
Notice that,
N

Z dd)s lNT(H(h (907¢0>7¢0)]g<0078(607¢0)7¢0)7 (D13>

and

1 N

N > " Bjr = Eldsolnr (0o, 5(00, ¢0), do)|{ Elder M(0)]}~ M(6). (D.14)

Then, solving (D.12) for (¢ — ¢), and using (D.13) and (D.14) yields

¢—do = —{E[dss InT (00, 5(00, P0), ¢0)]} " dplnr (00, $(60, $0), do)
—{EldggInT (00, (00, d0), $0)]} " EldgsInr (0o, 5(00, $0), ¢0)]G (00, 5(6, do), do)
+{Eldgg (00, 500, ¢0), ¢0)]} " EldgoInt (80, 560, $0), ¢0)|{ Elder M (60)]} " M(6p)
+R

= JInrgnr (0o, 5(00, o), do) + R, (D.15)

where

INT = |10 INT00 { Eldo M(00)]} " = I3 1o INT:60 —J&lTW]’
and

Intigey = EldggInT (0o, (00, 00), d0)],
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JNT;¢8’ = E[dqbs’lNT(Qo,5(90,%)7%)]7
Intiger = EldeoInr(6o, (60, do), ¢0)].

Now, letting

XN = Zlglgo Var(ﬁgNT(90,3(907¢o)a $0)), (D.16)
JN = lim JNT7 (Dl?)
T— o0

if (i) the remainder R in expansion (D.15) is o0,(T~/2), and (ii) gnr(6o, s(0o, o), Po) LN
N<010N><27 EN)) then <D15) yields,

VT( — ¢o) > N (0, InEnTy) as T — oo,

as desired. The final asymptotic expansion in (D.15) is a combination of a multitude of
expansions. As such, its remainder has a complicated form and obtaining its rate will
require substantial work. As for the second requirement, since E[gnr(6o, $(00, Po), ¢0)] =
O10n42 it is reasonable to expect that this term satisfies a central limit theorem. However,
proving that such a result exists will, again, be subject of substantial work. We note that
these comments are not peculiar to the composite likelihood method - similar conditions
would also be required for obtaining the asymptotic distribution for the maximum likelihood
estimator of the DCC/cDCC model. The complications arise not due to the estimation

method employed, but rather due to the underlying model itself (DCC/cDCC).

D.2 Additional material for Section 5.2

In this section we provide the additional Figure D.1, which presents the results of the

efficiency analysis of Section 5.2 for the BEKK model.

D.3 Additional material for Section 5.4

Figures D.2 and D.3 replicate Figure 2 in Section 5.4 in the main paper by reducing the
sample size from 2000 to 500 (Figure D.2) and increasing the cross-sectional dimension to

200 (Figure D.3). Reducing the sample size increases the bias in the estimates of 5 when
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Figure D.1: Standard deviation for the CL estimator based on all pairs (2MCLE) and on a
subset of pairs (2MSCLE), as L varies from 2 to 100. Calculated from simulated data for
the scalar BEKK model with o = .05, 8 = .93.

the number of moments is 6 or 8. When the number of moments is only 4, decreasing
the sample size reduces the bias, suggesting that the asymptotic bias term may dominate
the distribution when out theory does not apply. Figure D.4 produces similar Q-Q plots
for parameters estimated using 2MLE. While these parameters appear to lie along the 45-
degree line, they are severely biased. The bias is reflected in the y-axis values which range

from -6 to -26 for o and 0 to 13 for 3, depending on the model configuration.

D.4 Additional material for Section 5.5

To measure the effects of changing L and T on the conditioning numbers of the 2MLE and

2MCLE estimators in Section 5.5, we consider a simple regression specification,

Yy = Bo+ BiIn L+ BoInT + npr,y,

where yrr, is one of the two measures, urr or 4. rr and r is the replication index. The
idea here is that $; and [, are measures of the exponents of L and 7', in the sense that
yrr, = O(In LATP2). The estimates are B, = 1.0046 and B, = —0.8383 for 2MLE, and
Bl = 0.0487 and 52 = —0.1448 for 2MCLE. Hence, in line with our earlier observation,
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%

Figure D.2: Q-Q plots of estimates of o and § from scalar BEKK models parameterised
to have 8, 6 and 4 finite moments. The normalised parameter errors are plotted along the

y-axis. All estimates were produced from models with L = 50 and 7" = 500 using 2MCLE.
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T = 2000, L = 200
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Figure D.3: Q-Q plots of estimates of o and § from scalar BEKK models parameterised
to have 8, 6 and 4 finite moments. The normalised parameter errors are plotted along
the y-axis. All estimates were produced from models with L = 200 and 7" = 2000 using
2MCLE. 51
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Figure D.4: Q-Q plots of estimates of o and § from scalar BEKK models parameterised
to have 8, 6 and 4 finite moments. The normalised parameter errors are plotted along the

y-axis. All estimates were produced from models with L = 50 and T" = 2000 using 2MLE.
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for both methods, larger values of L increase the estimation error while larger values of
T decrease the error. The long-run estimator is an important source of noise in these
problems, and an ill-conditioned target influences the precision of the dynamic parameters.
In extreme cases, when the cross-section size is larger than the time-series dimension, the
2MLE estimator is not feasible. This is reflected in Bl and 32: for 2MLE the effect of L
is of a greater magnitude than 7', whereas it is the other way around for 2MCLE. These
indicate that diagonally increasing both the cross-section size and the sample size will not
ruin the 2MCLE estimator by creating large errors in the fitted values of H;;.. On the
other hand, for the 2MLE, growing the cross-section size along with the sample length will

produce large errors. This is consistent with our Monte Carlo findings.
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