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A Notation and some results

In what follows, K is some generic finite term (which can be scalar or matrix-valued) and φ

is some generic scalar such that 0 < φ < 1; the values of both terms may change from line to

line. Convergence to zero in probability and convergence to zero almost surely are denoted

by op(1) and oa.s.(1), respectively. Given the parameter vectors γj and λ (j = 1, ..., N) we

define θj = (γ′j, λ
′)′, γ = (γ′1, ..., γ

′
N)′, γ0 = (γ′10, ..., γ

′
N0)′ and γ̂ = (γ̂′1, ..., γ̂

′
N)′ . We similarly

define θ = (γ′, λ′)′, θ0 = (γ′0, λ
′
0)′ and θ̂ = (γ̂′, λ̂′)′. Whenever a variable is generated based

on an arbitrarily chosen initial value, we denote it in the subscript; e.g. Hjt,h(γj, λ) is based

on the initial value hj. We also use the following shorthand notation:

sup
λ
≡ sup

λ∈Θλ

, sup
θj

≡ sup
γj∈Θγ ,λ∈Θλ

and sup
θ
≡ sup

γ1∈Θγ ,...,γN∈Θγ ,λ∈Θλ

.

Using this notation, the composite likelihood function based on arbitrarily chosen initial

values hj is given by

lNT,h(γ1, ..., γN , λ) =
1

N

N∑
j=1

ljT,h(γj, λ),

ljT,h(γj, λ) =
1

T

T∑
t=1

ljt,h(γj, λ),

ljt,h(γj, λ) = log(det(Hjt,h(γj, λ))) + tr(XjtX
′
jtH

−1
jt,h(γj, λ)).

The composite likelihood based on the stationary solution Hjt(γj, λ) is given by

lNT (γ1, ..., γN , λ) =
1

N

N∑
j=1

ljT (γj, λ)

ljT (γj, λ) =
1

T

T∑
t=1

ljt(γj, λ),

ljt(γj, λ) = log(det(Hjt(γj, λ))) + tr(XjtX
′
jtH

−1
jt (γj, λ)). (A.1)

In the following, we will make use of several matrix algebra results. Firstly, if A is

2



(m× n) and B is (n×m) then, by result 4.1.1(8b) of Lütkepohl (1996),

tr (AB) = vec (A′)
′
vec (B) .

By this result and the definition of Euclidian norm, we can show that for any symmetric A

||vec (A)|| = ||A|| . (A.2)

Again, by the definition of ||·|| , it can be shown that if A is (m× 1), then

||AA′|| = ||A′A|| = ||A||2 . (A.3)

Moreover, by equations (B.3) and (B.4) of PR, if one or both of A and B are square, then

||AB|| ≤ ||A|| ||B|| . (A.4)

Also, by equation (B.8) of PR, for an (n× n) matrix A ≥ 0 and an (n× n) matrix B > 0,

0 < tr
(
(A+B)−1) ≤ tr

(
B−1

)
. (A.5)

Next, by result 4.1.2(2) of Lütkepohl (1996), if A and B are both (m× n) then,

|tr (A′B)| ≤ ||A|| ||B|| . (A.6)

By result 2.4.(11b) of Lütkepohl (1996), if A is (m×m) and B is (n× n), then

tr (A⊗B) = tr (A) tr (B) . (A.7)

Moreover, by result 2.4(5) of Lütkepohl (1996) if A is (m× n) , B is (p× q) , C is (n× r)

and D is (q × s) , then

(A⊗B) (C ⊗D) = AC ⊗BD. (A.8)
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Finally, by result 2.2.(16) of Lütkepohl (1996), if A is (m× n) , B is (n× p) and C is

(p× q) , then

vec (ABC) = (C ′ ⊗ A) vec (B) .

B Scalar BEKK

In this part, we prove Theorem 4.1. Section B.1 provides the definitions that are used

throughout Section B, Section B.2 proves consistency and Section B.3 deals with asymptotic

normality. Section B.4 provides the formula for the asymptotic variance of λ̂. Finally, the

required lemmas are stated and proved in Section B.5.

B.1 Definitions

Throughout Section B we have

Hjt(γj, λ) = Γj (1− α− β) + αXj,t−1X
′
j,t−1 + βHj,t−1(γj, λ),

Hjt,h(γj, λ) = Γj (1− α− β) + αXj,t−1X
′
j,t−1 + βHj,t−1,h(γj, λ),

where γj = vec(Γj), λ = (α, β)′, and Hj0,h(γj, λ) = hj > 0. Here hj is some fixed initial

value.

We also use the following notation: first, we let Vjt = vec
(
ZjtZ

′
jt − I2

)
and define

the (4N × 1) vector V N
t = (V ′1t, ..., V

′
Nt)
′. Next, we define QN

t as a (4N × 4N) block di-

agonal matrix where the jth (4× 4) diagonal block is given by Qjt = D(H
1/2
jt )⊗2 with

D = (1− α0 − β0)−1 (1− β0) . We furthermore define

Wjt =

[
−
∞∑
i=0

βi0vec(Xj,t−1−iX
′
j,t−1−i − Γj0)

]′ (
H
−1/2
jt (γj0, λ0)

)⊗2

,

W̃jt =

[
−
∞∑
i=0

βi0vec(Hj,t−1−i (γj0, λ0)− Γj0)

]′ (
H
−1/2
jt (γj0, λ0)

)⊗2

,

and collect these objects for all j = 1, ..., N in the matrices WN
t = N−1 (W1t,W2t, ...,WNt)

and W̃N
t = N−1(W̃1t, W̃2t, ..., W̃Nt). Finally, for V N

t , W
N
t , W̃

N
t and QN

t defined as such, we
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let

Ω0 = E
[
((QN

t )′, (WN
t )′, (W̃N

t )′)′V N
t (V N

t )′((QN
t )′, (WN

t )′, (W̃N
t )′)

]
.

B.2 Consistency

By Lemma B.1 and the triangle inequality

sup
λ
|lNT (γ0, λ)− lNT,h(γ̂, λ)| ≤ 1

N

N∑
j=1

sup
λ
|ljT (γj0, λ)− ljT,h(γ̂j, λ)| = oa.s.(1), (B.1)

as T →∞. Similarly, by Lemma B.2

sup
θ
|lNT (γ, λ)− E [lNt(γ, λ)]| ≤ 1

N

N∑
j=1

sup
θj

|ljT (γj, λ)− E [ljt(γj, λ)]| = oa.s.(1), (B.2)

as T → ∞. Note that in both (B.1) and (B.2) we are able to retain the rate oa.s.(1) from

Lemmas B.1 and B.2 after averaging across j, since N is fixed. Finally, by Lemma B.3

E[lNt(γ0, λ)] > E[lNt(γ0, λ0)] for any λ 6= λ0. (B.3)

Then, by the same line of arguments as in the Proof of Theorem 4.1 of PR, for any ε > 0

we have almost surely for sufficiently large T that

E[lNt(γ0, λ̂)] < lNT (γ0, λ̂) + ε/5

< lNT,h(γ̂, λ̂) + 2ε/5

< lNT,h(γ̂, λ0) + 3ε/5

< lNT (γ0, λ0) + 4ε/5

< E [lNt(γ0, λ0)] + ε, (B.4)

where the first and last inequalities follow from (B.2), the second and fourth inequalities

follow from (B.1), and the third inequality follows from the definition of λ̂. By standard

arguments, it follows from (B.4) and the identification condition (B.3) that λ̂− λ0
a.s.→ 0 as
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T →∞. Notice moreover that, by the same arguments as those leading to equation (A.6)

of PR, Assumptions 4.3 and 4.6 are sufficient to obtain γ̂j − γ0
a.s.→ 0 for all j as T → ∞.

The desired result follows.

B.3 Asymptotic normality

We proceed along the same lines as in the Proof of Theorem 4.2 of PR. First, by a mean

value expansion we obtain

0 =
∂lNT,h (γ0, λ0)

∂λ
+KNT,h (θ∗)

(
(γ̂1 − γ10)′ , ..., (γ̂N − γN0)′

)′
+JNT,h (θ∗) (λ̂− λ0), (B.5)

where θ∗ is some mean value between θ̂ and θ0,

KNT,h (θ∗) =
∂2lNT,h (θ∗)

∂λ∂γ′
and JNT,h (θ∗) =

∂2lNT,h (θ∗)

∂λ∂λ′
.

Let

KNT (θ∗) =
∂2lNT (θ∗)

∂λ∂γ′
, JNT (θ∗) =

∂2lNT (θ∗)

∂λ∂λ′
,

KN (θ0) = E

[
∂2lNt (θ0)

∂λ∂γ′

]
and JN (θ0) = E

[
∂2lNt (θ0)

∂λ∂λ′

]
. (B.6)

Note that while the above terms depend on N, N plays no role in the asymptotic analysis

since it remains fixed as T →∞.

Now, following the same arguments as in the Proof of Theorem 4.2 of PR, by Lemmas

B.7 and B.8, and (θ̂ − θ0) = oa.s.(1) as proved in Section B.2 we have that JNT (θ∗) is

invertible with probability approaching one. Moreover, by Lemmas B.11, B.12 and B.13,

the expansion in (B.5) yields

0 =
√
T
∂lNT (γ0, λ0)

∂λ
+KNT (θ∗)

√
T
(
(γ̂1 − γ10)′ , ..., (γ̂N − γN0)′

)′
+JNT (θ∗)

√
T (λ̂− λ0) + op(1),
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and rearranging this yields

√
T

γ̂ − γ0

λ̂− λ0

 =

 I4N 04N×2

−J−1
NT (θ∗)KNT (θ∗) −J−1

NT (θ∗)

√T
 γ̂ − γ0

∂lNT (γ0,λ0)
∂λ

+ op (1) . (B.7)

By Lemma B.7 and the consistency of θ̂, I4N 04N×2

−J−1
NT (θ∗)KNT (θ∗) −J−1

NT (θ∗)

 p→

 I4N 04N×2

−J−1
N (θ0)KN(θ0) −J−1

N (θ0)

 (B.8)

as T →∞. Combining (B.7) and (B.8), and using Lemma B.11, we finally obtain

√
T

γ̂ − γ0

λ̂− λ0

 d→

 I4N 04N×2

−J−1
N (θ0)KN(θ0) −J−1

N (θ0)

N (0,Ω0) ,

where Ω0 is as defined in Section B.1.

B.4 Asymptotic variance of λ̂

In this part, we calculate the asymptotic variance of λ̂− λ0 for the pairwise scalar-BEKK

composite likelihood estimator of Theorem 4.1. First, we partition the asymptotic variance

matrix Ω0 of Section B.1. Using the same definitions as in Sections B.1 and B.3, let

A = E
[
QN
t V

N
t (V N

t )′QN ′
t

]
4N×4N

, B = E
[
QN
t V

N
t (V N

t )′WN ′
t QN

t V
N
t (V N

t )′W̃N ′
t

]
4N×2

,

C = E

WN
t V

N
t (V N

t )′QN ′
t

W̃N
t V

N
t (V N

t )′QN ′
t


2×4N

, and D = E

WN
t V

N
t (V N

t )′WN ′
t WN

t V
N
t (V N

t )′W̃N ′
t

W̃N
t V

N
t (V N

t )′WN ′
t W̃N

t V
N
t (V N

t )′W̃N ′
t


2×2

,

which yields

Ω0 =

 A
4N×4N

B
4N×2

C
2×4N

D
2×2

 .
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Now, by Theorem 4.1, the asymptotic variance for θ̂ is given by I4N 04N×2

−J−1
N (θ0)KN (θ0) −J−1

N (θ0)

A B

C D

 I4N −KN (θ0)′ J−1
N (θ0)

02×4N −J−1
N (θ0)


=

 I4N 04N×2

−J−1
N (θ0)KN (θ0) −J−1

N (θ0)

A −AKN (θ0)′ J−1
N (θ0)−BJ−1

N (θ0)

C −CKN (θ0)′ J−1
N (θ0)−DJ−1

N (θ0)


=

 A −AKN (θ0)′ J−1
N (θ0)−BJ−1

N (θ0)

−J−1
N (θ0)KN (θ0)A− J−1

N (θ0)C J−1
N (θ0)ZJ−1

N (θ0)


where

Z = KN (θ0)AKN (θ0)′ +KN (θ0)B + CKN (θ0)′ +D.

Remember that λ̂ corresponds to the bottom (2 × 1) block of θ̂. Hence, the asymptotic

variance of λ̂ is given by the bottom-right (2× 2) block of the asymptotic variance matrix

for θ̂. Therefore,

V ar(λ̂− λ0) = J−1
N (θ0)ZJ−1

N (θ0) .

B.5 Lemmas

Remark 1 Throughout Section B.5 we assume that Assumptions 4.1-4.7 hold.

Lemma B.1 supλ |ljT (γj0, λ)− ljT,h(γ̂j, λ)| = oa.s.(1) as T →∞, for any j = 1, ..., N.

Proof of Lemma B.1. The proof can be obtained by a straightforward modification

of the Proof of Lemma B.1 of PR, replacing A and B by
√
α and

√
β, respectively. In

particular, given Assumption 4.4 and γ̂j
a.s.→ γj0, by the same arguments as in PR we obtain

in our case

sup
λ
||H−1

jt (γj0, λ)|| ≤ sup
θj

||H−1
jt (γj, λ)|| ≤ K, and sup

λ
||H−1

jt,h(γ̂j, λ)|| ≤ sup
θj

||H−1
jt,h(γj, λ)|| ≤ K;

(B.9)
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see the arguments leading to equations (B.12) and (B.13) of PR. Notice that all the above

bounds hold independent of t. Now, in the scalar case equation (B.14) of PR becomes

vec(Hjt(γj0, λ))−vec(Hjt,h(γ̂j, λ)) =
t−1∑
i=0

βi (1− α− β) (γj0−γ̂j)+βtvec(Hj0(γj0, λ)−hj).

We note that by Assumption 4.2, supλ |βi| ≤ φi and supλ | (1− α− β) (1− β)−1 | ≤ K.

Moreover, by Assumptions 4.3 and 4.6, the ergodic theorem yields that ||γ̂j−γj0|| = oa.s.(1)

for all j as T → ∞. In addition, by Assumption 4.4 compactness of Θλ is guaranteed.

Therefore, by the same arguments as those leading to equation (B.16) of PR we obtain

that as T →∞

sup
λ
||vec(Hjt(γj0, λ))− vec(Hjt,h(γ̂j, λ))|| ≤ Kφt + oa.s.(1). (B.10)

Next, we obtain a series of results in (B.11), (B.12) and (B.13). In particular,

sup
λ
|ljT (γj0, λ)− ljT,h(γ̂j, λ)|

=
1

T

T∑
t=1

sup
λ

∣∣∣∣log

(
det(Hjt(γj0, λ))

det(Hjt,h(γ̂j, λ))

)∣∣∣∣
+

1

T

T∑
t=1

sup
λ

∣∣tr [XjtX
′
jt

(
H−1
jt (γj0, λ)−H−1

jt,h(γ̂j, λ)
)]∣∣ , (B.11)

which corresponds to equation (B.11) of PR. Similarly, given that supλ
∣∣∣∣H−1

jt,h(γ̂j, λ)
∣∣∣∣ ≤ K

and supλ
∣∣∣∣H−1

jt (γj0, λ)
∣∣∣∣ ≤ K by (B.9), we obtain

1

T

T∑
t=1

sup
λ

∣∣∣∣log

(
det(Hjt(γj0, λ))

det(Hjt,h(γ̂j, λ))

)∣∣∣∣
≤ 2

T

T∑
t=1

sup
λ
||(Hjt(γj0, λ)−Hjt,h(γ̂j, λ))|| × sup

λ

∣∣∣∣H−1
jt,h(γ̂j, λ)

∣∣∣∣
≤ K

T

T∑
t=1

sup
λ
||(Hjt(γj0, λ)−Hjt,h(γ̂j, λ))|| , (B.12)
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and

1

T

T∑
t=1

sup
λ

∣∣tr [XjtX
′
jt

(
H−1
jt (γj0, λ)−H−1

jt,h(γ̂j, λ)
)]∣∣

≤ K

T

T∑
t=1

sup
λ
||(Hjt(γj0, λ)−Hjt,h(γ̂j, λ))|| × ||Xjt||2 ; (B.13)

see the derivations for the corresponding terms on pages 43-44 of PR. Substituting (B.12)

and (B.13) in (B.11), and then using (B.10) yields

sup
λ
|ljT (γj0, λ)− ljT,h(γ̂j, λ)| ≤ K

1

T

T∑
t=1

φt +
K

T

T∑
t=1

φt ||Xjt||2 + oa.s.(1),

as on page 44 of PR. Now, given that 0 < φ < 1, T−1
∑T

t=1 φ
t → 0 as T → ∞. Moreover,

by the same arguments as in PR (see the last equation in their Proof of Lemma B.1),

T−1
∑T

t=1 φ
t ||Xjt||2

a.s.→ 0 for all j as T →∞. Hence, supλ |ljT (γj0, λ)− ljT,h(γ̂j, λ)| = oa.s.(1)

for all j as T →∞, as stated.

Lemma B.2 For any j = 1, ..., N ,

sup
θj

|ljT (γj, λ)− E [ljt(γj, λ)]| a.s.→ 0, as T →∞.

Proof of Lemma B.2. The result follows by the same arguments as in the Proof of

Lemma B.2 of PR, applied to each pair j = 1, ..., N .

Lemma B.3 E[ljt(γj0, λ)] > E[ljt(γj0, λ0)] for any λ 6= λ0. In addition, E [|ljt (γj0, λ0)|] <

∞.

Proof of Lemma B.3. That E [|ljt (γj0, λ0)|] < ∞ holds is implied by Lemma B.4. As

for the first result, the arguments made in the Proof of Lemma B.3 in PR are directly

applicable to our case. This is because the arguments made there are independent of the

underlying particular volatility model. Indeed, the 2-dimensional case we consider here is a

special case of Lemma B.3 of PR which is concerned with a d-dimensional problem. Apart

from that the only change is the addition of the pair index j.

In particular, let ξ1,jt and ξ2,jt be the eigenvalues of Hjt(γj0, λ0)H−1
jt (γj0, λ) for some
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particular j and t. Suppose that λ 6= λ0. The same arguments as in the Proof of Lemma

B.3 in PR yield

E
[
tr
(
XjtX

′
jt

(
H−1
jt (γj0, λ)−H−1

jt (γj0, λ0)
))]

= E

[
2∑
i=1

(ξi,jt − 1)

]
, (B.14)

log det
(
Hjt(γj0, λ)H−1

jt (γj0, λ0)
)

= −
2∑
i=1

log ξi,jt, (B.15)

where (B.14) follows since Zjt is independent of the information set Fj,t−1 = σ (Xj,t−1, Xj,t−2, ...) .

Using the definition of ljt(γj, λ) in (A.1) with (B.14) and (B.15) yields

E [ljt(γj0, λ)− ljt(γj0, λ0)] = E

[
2∑
i=1

(ξi,jt − 1− log ξi,jt)

]
≥ 0,

since the eigenvalues ξ1,jt and ξ2,jt are both positive. The inequality will be strict unless

ξ1,jt = ξ2,jt = 1 almost surely, which is equivalent to Hjt(γj0, λ) = Hjt(γj0, λ0) being

true almost surely. As Assumption 4.5 rules this out, we conclude that E[ljt(γj0, λ)] >

E[ljt(γj0, λ0)] for any λ 6= λ0.

Lemma B.4 E[supθj |ljt(γj, λ)|] <∞ for all j.

Proof of Lemma B.4. By the definition of ljt(γj, λ) in (A.1),

E

[
sup
θj

|ljt(γj, λ)|

]
≤
√

2E

[
sup
θj

||Hjt(γj, λ)||

]
+
√

2E

[
||Xjt||2 sup

θj

∣∣∣∣H−1
jt (γj, λ)

∣∣∣∣] ;

see also the last display in the Proof of Lemma B.4 of PR. Now, we know that supθj ||H
−1
jt (γj, λ)|| ≤

K independent of j and t by (B.9). Moreover, E[supθj ||Hjt(γj, λ)||] < ∞ by Lemma B.5.

Lastly, E[||Xjt||2] <∞ by Assumption 4.6. The stated result follows.

Lemma B.5 Let θi be the ith entry of θ, where i = 1, ..., 4N + 2. Then

E

[
sup
θj

∣∣∣∣∣∣∣∣∂Hjt,h (γj, λ)

∂θi

∣∣∣∣∣∣∣∣3
]
<∞, E

[
sup
θj

∣∣∣∣∣∣∣∣∂2Hjt,h (γj, λ)

∂θi∂θi′

∣∣∣∣∣∣∣∣3
]
<∞,

E

[
sup
θj

||vec(Hjt(γj, λ))||3
]
<∞, E

[
sup
θj

∣∣∣∣∣∣∣∣∂vec(Hjt(γj, λ))

∂θi

∣∣∣∣∣∣∣∣3
]
<∞,
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E

[
sup
θj

∣∣∣∣∣∣∣∣∂2vec(Hjt(γj, λ))

∂θi∂θi′

∣∣∣∣∣∣∣∣3
]
<∞,

for all j,i and i′.

Proof of Lemma B.5. We consider the proof of E[supθj ||∂Hjt,h(γj, λ)/∂θi||3] < ∞.

First note that by a standard recursion argument,

vec (Hjt,h (γj, λ)) = (1− α− β) γj + αvec
(
Xj,t−1X

′
j,t−1

)
+ βvec (Hj,t−1(γj, λ))

=
γj (1− α− β) (1− βt)

1− β

+
t−1∑
i=0

βiαvec
(
Xj,t−1X

′
j,t−1

)
+ βtvec (hj) . (B.16)

Using (B.16), we will consider each component of E[supθj ||∂Hjt,h (γj, λ) /∂θi||3] individu-

ally. First, since hj is a constant, we have

sup
θj

∣∣∣∣∣∣∣∣∂vec (Hjt,h (γj, λ))

∂α

∣∣∣∣∣∣∣∣3 = sup
θj

∣∣∣∣∣
∣∣∣∣∣−γj (1− βt)

1− β
+

t−1∑
i=0

βivec
(
Xj,t−1−iX

′
j,t−1−i

)∣∣∣∣∣
∣∣∣∣∣
3

.

Then, by the triangle and Minkowski’s inequalities, and Assumptions 4.2, 4.3 and 4.6

E

[
sup
θj

∣∣∣∣∣∣∣∣∂vec (Hjt,h (γj, λ))

∂α

∣∣∣∣∣∣∣∣3
]

= E

sup
θj

∣∣∣∣∣
∣∣∣∣∣−γj (1− βt)

1− β
+

t−1∑
i=0

βivec
(
Xj,t−1−iX

′
j,t−1−i

)∣∣∣∣∣
∣∣∣∣∣
3


≤ E

(K +
t−1∑
i=0

sup
θj

∣∣∣∣βivec (Xj,t−1−iX
′
j,t−1−i

)∣∣∣∣)3


≤

K +
t−1∑
i=0

E
(sup

θj

∣∣∣∣βivec (Xj,t−1−iX
′
j,t−1−i

)∣∣∣∣)3


1/3


3

≤

(
K +

t−1∑
i=0

sup
θj

βi
{
E
[
||Xjt||6

]}1/3

)3

≤

(
K +K

t−1∑
i=0

φi

)3
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< ∞, (B.17)

for any j ane t. Next, letting At =
tβt−1(1−α−β)(1−β)+α(1−βt)

(1−β)2
,

sup
θj

∣∣∣∣∣∣∣∣∂vec (Hjt,h (γj, λ))

∂β

∣∣∣∣∣∣∣∣3 = sup
θj

∣∣∣∣∣
∣∣∣∣∣−γjAt +

t−1∑
i=1

iβi−1αvec
(
Xj,t−1−iX

′
j,t−1−i

)
+ tβt−1vec (hj)

∣∣∣∣∣
∣∣∣∣∣
3

.

Then, by using the same approach as in the derivation of (B.17),

sup
θj

∣∣∣∣∣∣∣∣∂vec (Hjt,h (γj, λ))

∂β

∣∣∣∣∣∣∣∣3

≤ E

(K + sup
θj

∣∣∣∣tβt−1vec (hj)
∣∣∣∣+ sup

θj

∣∣∣∣∣
∣∣∣∣∣
t−1∑
i=1

iβi−1αvec
(
Xj,t−1−iX

′
j,t−1−i

)∣∣∣∣∣
∣∣∣∣∣
)3


≤

K +Ktφt−1 +

E
( t−1∑

i=1

sup
θj

∣∣∣∣iβi−1αvec
(
Xj,t−1−iX

′
j,t−1−i

)∣∣∣∣)3


1/3


3

≤

K +Ktφt−1 +
t−1∑
i=1

E
(sup

θj

∣∣∣∣iβi−1αvec
(
Xj,t−1−iX

′
j,t−1−i

)∣∣∣∣)3


1/3


3

≤

K +Ktφt−1 +
t−1∑
i=1

E
(sup

θj

(
iβi−1α

)
× ||Xjt||2

)3


1/3


3

≤

(
K +Ktφt−1 +

t−1∑
i=1

iφi
{
E
[
||Xjt||6

]}1/3

)3

≤

(
K +Ktφt−1 +K

t−1∑
i=1

iφi

)3

< ∞, (B.18)

for any j and t. Finally

E

[
sup
θj

∣∣∣∣∣∣∣∣∂vec (Hjt,h (γj, λ))

∂vec (γj)
′

∣∣∣∣∣∣∣∣3
]

=

[
sup
θj

∣∣∣∣∣∣∣∣I4
(1− α− β) (1− βt)

1− β

∣∣∣∣∣∣∣∣3
]
<∞, (B.19)

by Assumption 4.2. Hence, by (B.17)-(B.19) we haveE
[
supθj ||∂vec (Hjt,h (γj, λ)) /∂θi||3

]
<

13



∞ for any j and t. We note that this conclusion does not change in case θi correponds to

a parameter which is not included in (γ′j, λ
′)′; this is because then ∂vec (Hjt,h (γj, λ)) /∂θi

is automatically equal to zero. The remaining results can be obtained similarly.

Lemma B.6 Let θi be the ith entry of θ, where i = 1, ..., 4N + 2. Then for all j, i and i′

we have E[supθj ||∂
2ljt (γj, λ) /∂θi∂θi′ ||] <∞.

Proof of Lemma B.6. This is a straightforward modification of Lemma B.5 of PR. Let

Ajt(γj, λ) = tr

(
H−1
jt (γj, λ)

∂2Hjt (γj, λ)

∂θi∂θi′

)
,

Bjt(γj, λ) = tr

(
H−1
jt (γj, λ)

∂Hjt (γj, λ)

∂θi′
H−1
jt (γj, λ)

∂Hjt (γj, λ)

∂θi

)
,

Cjt(γj, λ) = tr

(
H−1
jt (γj, λ)XjtX

′
jtH

−1
jt (γj, λ)

∂Hjt (γj, λ)

∂θi′
H−1
jt (γj, λ)

∂Hjt (γj, λ)

∂θi

)
,

Djt(γj, λ) = tr

(
H−1
jt (γj, λ)XjtX

′
jtH

−1
jt (γj, λ)

∂2Hjt (γj, λ)

∂θi∂θi′

)
.

Then,

∂2ljt (γj, λ)

∂θi∂θi′
= Ajt(γj, λ)−Bjt(γj, λ) + 2Cjt(γj, λ)−Djt(γj, λ), (B.20)

which is the same as equation (B.19) of PR, except for the addition of the pair index j.

Now, using (A.3), (A.4), (A.6), (B.9) and Hölder’s inequality,

E

[
sup
θj

||Ajt(γj, λ)||

]
≤ KE

[
sup
θj

∣∣∣∣∣∣∣∣∂2Hjt (γj, λ)

∂θi∂θi′

∣∣∣∣∣∣∣∣
]
, (B.21)

E

[
sup
θj

||Bjt(γj, λ)||

]
≤ K

{
E

[
sup
θj

∣∣∣∣∣∣∣∣∂Hjt (γj, λ)

∂θi′

∣∣∣∣∣∣∣∣2
]}1/2

×

{
E

[
sup
θj

∣∣∣∣∣∣∣∣∂Hjt (γj, λ)

∂θi

∣∣∣∣∣∣∣∣2
]}1/2

, (B.22)

E

[
sup
θj

||Cjt(γj, λ)||

]
≤ K

{
E
[
||Xjt||6

]}1/3

{
E

[
sup
θj

∣∣∣∣∣∣∣∣∂Hjt (γj, λ)

∂θi′

∣∣∣∣∣∣∣∣3
]}1/3

×

{
E

[
sup
θj

∣∣∣∣∣∣∣∣∂Hjt (γj, λ)

∂θi

∣∣∣∣∣∣∣∣3
]}1/3

, (B.23)
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E

[
sup
θj

||Djt(γj, λ)||

]
≤ K

{
E
[
||Xjt||4

]}1/2

{
E

[
sup
θj

∣∣∣∣∣∣∣∣∂2Hjt (γj, λ)

∂θi∂θi′

∣∣∣∣∣∣∣∣2
]}1/2

.(B.24)

By Assumption 4.6 we already have E[||Xjt||6] < ∞. Moreover, by Lemma B.5 we have

{E[supθj ||∂Hjt (γj, λ) /∂θi||3]}1/3 < ∞ and {E[supθj ||∂
2Hjt (γj, λ) /∂θi∂θi′ ||2]}1/2 < ∞.

Then, from (B.20) and (B.21)-(B.24) it follows that E[supθj ||∂
2ljt (γj, λ) /∂θi∂θi′||] < ∞,

independent of j, as stated. Notice that this result continues to hold if θi and/or θi′ are not

included in (γ′j, λ
′)′; this is because, in that case we automatically have ∂2ljt (γj, λ) /∂θi∂θi′ =

0.

Lemma B.7 Let θi be the ith entry of θ, where i = 1, ..., 4N + 2. Then,

sup
θ

∣∣∣∣∂2lNT (γ, λ)

∂θi∂θi′
− E

[
∂2lNt(γ, λ)

∂θi∂θi′

]∣∣∣∣ a.s.→ 0 as T →∞.

Proof of Lemma B.7. We invoke Lemma B.6 and use the same arguments as in the

Proof of Lemma B.6 of PR to obtain

sup
θj

∣∣∣∣∂2ljT (γj, λ)

∂θi∂θi′
− E

[
∂2ljt(γj, λ)

∂θi∂θi′

]∣∣∣∣ a.s.→ 0, (B.25)

for each pair j as T →∞ (notice that, if θi and/or θi′ is any parameter that is not included

in (γ′j, λ
′)′, then ∂2ljT (γj, λ)/∂θi∂θi′ = 0 and the above statement holds automatically).

Then, by the triangle inequality and (B.25), and since N is fixed, we obtain

sup
θ

∣∣∣∣∂2lNT (γ, λ)

∂θi∂θi′
− E

[
∂2lNt(γ, λ)

∂θi∂θi′

]∣∣∣∣ ≤ 1

N

N∑
j=1

sup
θj

∣∣∣∣∂2ljT (γj, λ)

∂θi∂θi′
− E

[
∂2ljt(γj, λ)

∂θi∂θi′

]∣∣∣∣ = oa.s.(1),

as stated.

Lemma B.8 E [∂2lNt (γ0, λ0) /∂λ∂λ′] is non-singular.

Proof of Lemma B.8. The Proof of Lemma C.2 is directly applicable here, with a few

straightforward modifications due to the change in parameter dimensions. In particular,

given that the parameter vector λ for the scalar BEKK model in (12) is (2 × 1), we have

15



to re-define hjt, kjt and c as follows:

hjt = (hjt,1, hjt,2), kjt = (kjt,1, kjt,2), and c = (c1, c2).

As in the Proof of Lemma C.2, λi is the ith entry of λ; but now i = 1, 2. In line with this,

the summations
∑8

i=1 have to be replaced by
∑2

i=1, as well. Moreover, A⊗2 and B⊗2 should

be replaced by α and β. Consequently, the following modified definitions follow:

ωj = (1− α− β) γj, ωj0 = (1− α0 − β0) γj0,

ω̃j0 =
2∑
i=1

ci
∂

∂λi
ωj

∣∣∣∣∣
θj=θj0

, Ã0 =
2∑
i=1

ci
∂

∂λi
α

∣∣∣∣∣
θj=θj0

, and B̃0 =
2∑
i=1

ci
∂

∂λi
β

∣∣∣∣∣
θj=θj0

.

With these modifications, the Proof of Lemma C.2 becomes valid for the case at hand, and

the desired result follows.

Lemma B.9 For γ̂j as defined in (13), we have

 γ̂ − γ0

∂lNT (γ0, λ0) /∂λ

 =
1

T

T∑
t=1


QN
t

WN
t

W̃N
t

V N
t + op

(
1√
T

)
as T →∞,

where QN
t , W

N
t , W̃

N
t and V N

t are as defined in Section B.1.

Proof of Lemma B.9. To keep the notation concise, in what follows we let Hjt =

Hjt (γj0, λ0). We start with the proof for the score, ∂lNT (γ0, λ0) /∂λ. Given the definition

of ljt(γj, λ) in (A.1) we have

∂ljt(γj, λ)

∂α
=

[
vec
(
H−1
jt

)]′ ∂vec (Hjt(γj, λ))

∂α
− vec

(
XjtX

′
jt

)′ (
H−1
jt

)⊗2 ∂vec (Hjt(γj, λ))

∂α

=
{[
vec
(
H−1
jt

)]′ − vec (XjtX
′
jt

)′ (
H−1
jt

)⊗2
} ∂vec (Hjt(γj, λ))

∂α
.

We also have,

∂vec (Hjt(γj, λ))

∂α
=

∂vec

∂α

[
Γj + α(Xj,t−1X

′
j,t−1 − Γj) + β(Hj,t−1 (γj, λ)− Γj)

]
=

∂vec

∂α
α(Xj,t−1X

′
j,t−1 − Γj) +

∂vec

∂α
β(Hj,t−1 (γj, λ)− Γj)
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= vec(Xj,t−1X
′
j,t−1 − Γj) + β

∂vec (Hj,t−1 (γj, λ))

∂α
,

and by recursion this yields,

∂vec (Hjt(γj, λ))

∂α
= vec(Xj,t−1X

′
j,t−1 − Γj) + β

∂vec (Hj,t−1 (γj, λ))

∂α

=
∞∑
i=0

βivec(Xj,t−1−iX
′
j,t−1−i − Γj) + lim

i→∞
βi
∂vec (Hj,t−i (γj, λ))

α

=
∞∑
i=0

βivec(Xj,t−1−iX
′
j,t−1−i − Γj),

since 0 < β < 1 by Assumption 4.2. Therefore,

∂ljt(γj, λ)

∂α
=

{[
vec
(
H−1
jt

)]′ − vec (XjtX
′
jt

)′ (
H−1
jt

)⊗2
} ∞∑

i=0

βivec(Xj,t−1−iX
′
j,t−1−i − Γj)

=

{[
vec (I2)− vec(ZjtZ ′jt)

]′ (
H
−1/2
jt

)⊗2
} ∞∑

i=0

βivec(Xj,t−1−iX
′
j,t−1−i − Γj).

Notice that this is a scalar term and so its transpose is equal to itself. Hence,

∂ljT (γj, λ)

∂α
= − 1

T

T∑
t=1

(
∞∑
i=0

βivec(Xj,t−1−iX
′
j,t−1−i − Γj)

)′ (
H
−1/2
jt

)⊗2

vec(ZjtZ
′
jt− I2),

and consequently,

∂lNT (γ, λ)

∂α
=

1

NT

N∑
j=1

T∑
t=1

[
−
∞∑
i=0

βi
(
vec(Xj,t−1−iX

′
j,t−1−i − Γj)

)′
(H
−1/2
jt )⊗2vec(ZjtZ

′
jt − I2)

]
︸ ︷︷ ︸

∂ljt(γj ,λ)/∂α

.

(B.26)

Similarly,

∂ljt(γj, λ)

∂β
=
{[
vec
(
H−1
jt

)]′ − vec (XjtX
′
jt

)′ (
H−1
jt

)⊗2
} ∂vec (Hjt(γj, λ))

∂β
,
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where

∂vec (Hjt(γj, λ))

∂β
=

∂vec

∂β

[
Γj + α(Xj,t−1X

′
j,t−1 − Γj) + β(Hj,t−1 (γj, λ)− Γj)

]
= vec(Hj,t−1 (γj, λ)− Γj) + β

∂vec(Hj,t−1 (γj, λ))

∂β

=
∞∑
i=0

βivec(Hj,t−1−i (γj, λ)− Γj) + lim
i→∞

βi
∂vec(Hj,t−i (γj, λ))

∂β

=
∞∑
i=0

βivec(Hj,t−1−i (γj, λ)− Γj).

Therefore, by the same arguments as for the score with respect to α,

∂lNT (γ, λ)

∂β
=

1

NT

N∑
j=1

T∑
t=1

[
−
∞∑
i=0

βi(vec (Hj,t−1−i (γj, λ)− Γj))
′(H

−1/2
jt )⊗2vec(ZjtZ

′
jt − I2)

]
︸ ︷︷ ︸

∂ljt(γj ,λ)/∂β

.

(B.27)

Next, we consider γ̂j−γj0. By following the same steps as PR (see the arguments leading

to the final equation on p. 50 of PR), we obtain

(γ̂j − γj0) =
1− β0

1− α0 − β0

1

T

T∑
t=1

(
H

1/2
jt

)⊗2

vec
(
ZjtZ

′
jt − I2

)
+

1

1− α0 − β0

×
(
α0

1

T
vec
(
Xj0X

′
j0 −XjTX

′
jT

)
+ β0

1

T
vec (Hj0 −HjT )

)
. (B.28)

We focus on the second term on the right-hand side of (B.28). By standard results,

∣∣∣∣α0vec
(
Xj0X

′
j0 −XjTX

′
jT

)
+ β0vec (Hj0 −HjT )

∣∣∣∣
≤ α0

∣∣∣∣vec (Xj0X
′
j0 −XjTX

′
jT

)∣∣∣∣
+β0 ||vec (Hj0 −HjT )||

≤ α0

∣∣∣∣vec (Xj0X
′
j0

)∣∣∣∣+ α0

∣∣∣∣vec (XjTX
′
jT

)∣∣∣∣
+β0 ||vec (Hj0)||+ β0 ||vec (HjT )||

= α0 ||Xj0||2 + α0 ||XjT ||2 + β0 ||Hj0||+ β0 ||HjT || . (B.29)
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By Assumption 4.6 and Lemma B.5, we have E[||Xjt||2] < ∞ and E[||Hjt||] < ∞, respec-

tively, for all j and t. Moreover, by Assumption 4.2, α0 and β0 are both finite. Therefore,

by (B.29) we obtain

E
[
||α0vec(Xj0X

′
j0 −XjTX

′
jT ) + β0vec(Hj0 −HjT )||

]
<∞.

Then, by Chebychev’s inequality, for any ε > 0

P

(
1√
T

∣∣∣∣α0vec(Xj0X
′
j0 −XjTX

′
jT ) + β0vec (Hj0 −HjT )

∣∣∣∣ > ε

)
≤

E
[∣∣∣∣α0vec(Xj0X

′
j0 −XjTX

′
jT ) + β0vec (Hj0 −HjT )

∣∣∣∣]
T 1/2ε

= O
(
T−1/2

)
,

as T →∞. Hence,

1√
T

∣∣∣∣α0vec(Xj0X
′
j0 −XjTX

′
jT ) + β0vec (Hj0 −HjT )

∣∣∣∣ = op(1),

and combining this result with (B.28) yields

(γ̂j − γj0) =
1− β0

1− α0 − β0

1

T

T∑
t=1

(H
1/2
jt )⊗2vec(ZjtZ

′
jt − I2) + op

(
1√
T

)
, (B.30)

for all j as T →∞. Bringing (B.26), (B.27) and (B.30) together, we then have γ̂ − γ0

∂lNT (γ0, λ0) /∂λ

 =
1

T

T∑
t=1

YNt (γ0, λ0) + op

(
1√
T

)
,

where

YNt (γ0, λ0) =



1−β0
1−α0−β0 (H

1/2
1t )⊗2vec (Z1tZ

′
1t − I2)

...

1−β0
1−α0−β0 (H

1/2
Nt )⊗2vec (ZNtZ

′
Nt − I2)

N−1
∑N

j=1

[
−
∑∞

i=0 β
i
0vec(Xj,t−1−iX

′
j,t−1−i − Γj0)

]′
(H
−1/2
jt )⊗2vec(ZjtZ

′
jt − I2)

N−1
∑N

j=1 [−
∑∞

i=0 β
i
0vec(Hj,t−1−i (γj0, λ0)− Γj0)]

′
(H
−1/2
jt )⊗2vec(ZjtZ

′
jt − I2)


.
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Notice that YNt (γ0, λ0) stated as such is equivalent to [(QN
t )′, (WN

t )′, (W̃N
t )′]′V N

t , where

QN
t , W

N
t , W̃

N
t and V N

t are as defined in Section B.1. This yields the stated result.

Lemma B.10 E[||((QN
t )′, (WN

t )′, (W̃N
t )′)′V N

t ||2] < ∞, where V N
t , Q

N
t , W

N
t and W̃N

t are

as defined in Section B.1.

Proof of Lemma B.10. To keep the notation concise, in what follows we let Hjt =

Hjt (γj0, λ0). This lemma is the scalar BEKK version of Lemma C.4 (which focusses on

the non-scalar BEKK model of equation (14)). Consequently, a substantial portion of the

arguments made in the Proof of Lemma C.4 can also be used here. In particular, by the

same arguments as in the Proof of Lemma C.4, one can immediately show that for V N
t ,

QN
t , W

N
t and W̃N

t as defined in Section B.1

E[||((QN
t )′, (WN

t )′, (W̃N
t )′)′V N

t ||2] = E[(V N
t )′(QN

t )′QN
t V

N
t ] + E[(V N

t )′(WN
t )′WN

t V
N
t ]

+E[(V N
t )′(W̃N

t )′W̃N
t V

N
t ], (B.31)

and

E[(V N
t )′(QN

t )′QN
t V

N
t ] <∞. (B.32)

Moreover, letting

Gj,t−1 = −
∞∑
i=0

βi0vec(Xj,t−1−iX
′
j,t−1−i−Γj0) and G̃j,t−1 = −

∞∑
i=0

βi0vec(Hj,t−1−i−Γj0),

again by the same arguments that lead to (C.26) and (C.33) in the Proof of Lemma C.4,

it is straightforward to obtain

E[(V N
t )′(WN

t )′WN
t V

N
t ] ≤ K

1

N2

N∑
j=1

N∑
k=1

√
E [||Gj,t−1||2]

√
E
[
||G′k,t−1||2

]
, (B.33)

E[(V N
t )′(W̃N

t )′W̃N
t V

N
t ] ≤ K

1

N2

N∑
j=1

N∑
k=1

√
E
[
||G̃j,t−1||2

]√
E
[
||G̃′k,t−1||2

]
. (B.34)
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Now, by Minkowski’s inequality

{
E
[
||Gj,t−1||2

]}1/2
=

E
∣∣∣∣∣
∣∣∣∣∣
∞∑
i=0

βi0vec(Xj,t−1−iX
′
j,t−1−i − Γj0)

∣∣∣∣∣
∣∣∣∣∣
2


1/2

≤
∞∑
i=0

{
E
[∣∣∣∣βi0vec(Xj,t−1−iX

′
j,t−1−i − Γj0)

∣∣∣∣2]}1/2

≤
∞∑
i=0

βi0

{
E
[∣∣∣∣vec(Xj,t−1−iX

′
j,t−1−i − Γj0)

∣∣∣∣2]}1/2

, (B.35)

and by (A.2) and (A.3){
E
[∣∣∣∣vec(Xj,t−1−iX

′
j,t−1−i − Γj0)

∣∣∣∣2]}1/2

=
{
E
[∣∣∣∣Xj,t−1−iX

′
j,t−1−i − Γj0

∣∣∣∣2]}1/2

≤
{
E
[(∣∣∣∣Xj,t−1−iX

′
j,t−1−i

∣∣∣∣+ ||Γj0||
)2
]}1/2

=
{
E
[(
||Xj,t−1−i||2 + ||Γj0||

)2
]}1/2

=
{
E
[
||Xj,t−1−i||4 + 2 ||Xj,t−1−i||2 ||Γj0||+ ||Γj0||2

]}1/2

≤ K, (B.36)

since E[||Xjt||4] <∞ by Assumption 4.6. Combining (B.35) with (B.36), we then obtain

√
E
[
||Gj,t−1||2

]
≤

∞∑
i=0

Kφi <∞, (B.37)

since 0 < β0 < 1 by assumption. Noting that E[||Hjt||2] < ∞ by Lemma B.5, it can

similarly be proved that

√
E[||G̃j,t−1||2] <∞. (B.38)

Combining (B.33), (B.34), (B.37) and (B.38) yields

E
[(
V N
t

)′ (
WN
t

)′
WN
t V

N
t

]
<∞ and E

[(
V N
t

)′ (
W̃N
t

)′
W̃N
t V

N
t

]
<∞. (B.39)

The stated result now follows from equations (B.31), (B.32) and (B.39).
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Lemma B.11 Let Ω0 be defined as in Section B.1 and let γ̂j be as defined in (13). Then,

as T →∞ we have

√
T

 γ̂ − γ0

∂lNT (γ0, λ0) /∂λ

 d→ N (0,Ω0) .

Proof of Lemma B.11. Let QN
t , W

N
t , W̃

N
t and V N

t be as defined in Section B.1. Define

ANt = ((QN
t )′, (WN

t )′, (W̃N
t )′)′V N

t . Notice that QN
t , W

N
t and W̃N

t are all Ft−1-measurable

(remember that Ft is the sigma algebra generated by the collection of all returns at and

before time t). Moreover, V N
t is independent of Ft−1. Therefore, (ANt ,Ft) yields an ergodic

martingale difference sequence. Observe that by Lemma B.10 ANt is square-integrable.

Then, by the same arguments as in the Proof of Lemma B.10 of PR an appropriate CLT

exists and

1√
T

T∑
t=1

ANt
d→ N (0,Ω0) as T →∞, (B.40)

where Ω0 is as defined in Section B.1. Finally, invoking Lemma B.9 and using it together

with (B.40) yields the stated result.

Lemma B.12 Let λ1 = α and λ2 = β. Then, for i = 1, 2,

√
T

1

NT

N∑
j=1

T∑
t=1

∣∣∣∣∂ljt (γj0, λ0)

∂λi
− ∂ljt,h (γj0, λ0)

∂λi

∣∣∣∣ = op(1), as T →∞.

Proof of Lemma B.12. To keep the notation concise, in what follows we will omit

the arguments of a function whenever it is evaluated at the true parameter values; e.g.

ljt = ljt (γj0, λ0) , Hjt = Hjt (γj0, λ0) etc. First, notice that inequality (B.32) of Hafner and

Preminger (2009) can be modified to accommodate our two-dimensional setting with the

indices (j, t). Then, for some r such that 0 < r < 1,

E

[∣∣∣∣∂ljt∂λi
− ∂ljt,h

∂λi

∣∣∣∣r]
≤ KE

[(
K +K ||Xjt||2r

) ∣∣∣∣∣∣∣∣∂Hjt

∂λi
− ∂Hjt,h

∂λi

∣∣∣∣∣∣∣∣r]
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+KE

[(
K +K ||Xjt||2r

)
×
∣∣∣∣∣∣∣∣∂Hjt,h

∂λi
H−1
jt,h

∣∣∣∣∣∣∣∣r × ||Hjt −Hjt,h||r
]

+KE

[
||Xjt||2r ||Hjt −Hjt,h||r ×

∣∣∣∣∣∣∣∣∂Hjt,h

∂λi
H−1
jt,h

∣∣∣∣∣∣∣∣r] . (B.41)

We note that supθj ||H
−1
jt,h(γj, λ)|| <∞ and E[||Xjt||6] <∞ by (B.9) and Assumption 4.6,

respectively. Then, by (B.41) and Hölder’s inequality it can be shown that if

E [||Hjt −Hjt,h||] = O
(
φt
)
, (B.42)

E

[∣∣∣∣∣∣∣∣∂Hjt

∂λi
− ∂Hjt,h

∂λi

∣∣∣∣∣∣∣∣] = O
(
tφt
)
, (B.43)

E

[∣∣∣∣∣∣∣∣∂Hjt,h

∂λi

∣∣∣∣∣∣∣∣] <∞. (B.44)

then

E

[∣∣∣∣∂ljt∂λi
− ∂ljt,h

∂λi

∣∣∣∣1/4
]

= O
(
tφt
)
, (B.45)

We start with (B.42): by Lemma B.5

E

[
sup
θj

||Hjt (γj, λ)||

]
<∞ and E

[
sup
θj

∣∣∣∣∣∣∣∣∂Hjt (γj, λ)

∂θi

∣∣∣∣∣∣∣∣
]
<∞, (B.46)

for all j and i, where θi is as defined in Lemma B.5. Next, by a recursion argument

Hjt (γj, λ)−Hjt,h (γj, λ) = β (Hj,t−1 (γj, λ)−Hj,t−1,h (γj, λ))

= βt (Hj0 (γj, λ)− hj) . (B.47)

Then,

E

[
sup
θj

||Hjt (γj, λ)−Hjt,h (γj, λ)||

]
= E

[
sup
θj

∣∣∣∣βt (Hj0 (γj, λ)− hj)
∣∣∣∣]

= O
(
φt
)
, (B.48)

which follows from (B.46), (B.47), Assumption 4.2 and the fact that hj is a constant. This
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proves (B.42). Next, we consider (B.43):

E

[
sup
θj

∣∣∣∣∣∣∣∣∂Hjt (γj, λ)

∂λi
− ∂Hjt,h (γj, λ)

∂λi

∣∣∣∣∣∣∣∣
]

= E

[
sup
θj

∣∣∣∣∣∣∣∣ ∂∂λi [βt (Hj0 (γj, λ)− hj)
]∣∣∣∣∣∣∣∣
]

= O
(
tφt
)
, (B.49)

where the first equality follows from (B.47) whereas the second equality is due to (B.46); see

also the argument leading to equation (B.48) in PR. Hence, (B.43) holds. Finally, (B.44)

holds by Lemma B.5. Hence, the conditions (B.42)-(B.44) are satisfied and (B.45) holds.

Now, notice that limT→∞
∑T

t=1 O (tφt) < ∞ since φt converges to 0 exponentially

whereas t diverges to ∞ linearly. Then, following PR, we use the generalised Cheby-

chev’s inequality, the cr inequality (see White (2001), p.35) and (B.45) to obtain that for

any ε > 0,

P

(
√
T

1

NT

N∑
j=1

T∑
t=1

∣∣∣∣∂ljt∂λi
− ∂ljt,h

∂λi

∣∣∣∣ > ε

)

≤ 1

ε1/4N1/4T 1/8
E

( N∑
j=1

T∑
t=1

∣∣∣∣∂ljt∂λi
− ∂ljt,h

∂λi

∣∣∣∣
)1/4


≤ 1

ε1/4N1/4T 1/8

N∑
j=1

T∑
t=1

E

[∣∣∣∣∂ljt∂λi
− ∂ljt,h

∂λi

∣∣∣∣1/4
]

≤ 1

ε1/4N1/4T 1/8

N∑
j=1

T∑
t=1

O
(
tφt
)

≤ 1

ε1/4N1/4T 1/8

N∑
j=1

K,

which is O(T−1/8) since N is fixed. The desired result follows.

Lemma B.13 Let θi be the ith entry of θ, where i = 1, ..., 4N + 2. Then,

sup
θ

1

NT

N∑
j=1

T∑
t=1

∣∣∣∣∂2ljt (γj, λ)

∂θi∂θi′
− ∂2ljt,h (γj, λ)

∂θi∂θi′

∣∣∣∣ = oa.s(1), as T →∞,

for all i and i′.

Proof of Lemma B.13. The proof follows the same ideas as the Proof of Lemma B.12
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above. Modifying the inequality (B.36) of Hafner and Preminger (2009) for our particular

case with both cross-section and time indices, and using Hölder’s inequality, we observe

that if

E
[
||Xjt||2

]
<∞, (B.50)

E

[
sup
θj

||vec (Hjt (γj, λ))− vec (Hjt,h (γj, λ))||

]
= O

(
φt
)
, (B.51)

E

[
sup
θj

∣∣∣∣∣∣∣∣∂vec (Hjt (γj, λ))

∂θi
− ∂vec (Hjt,h (γj, λ))

∂θi

∣∣∣∣∣∣∣∣
]

= O
(
tφt
)
, (B.52)

E

[
sup
θj

∣∣∣∣∣∣∣∣∂2vec (Hjt (γj, λ))

∂θi∂θi′
− ∂2vec (Hjt,h (γj, λ))

∂θi∂θi′

∣∣∣∣∣∣∣∣
]

= O
(
t2φt

)
, (B.53)

E

[
sup
θj

∣∣∣∣∣∣∣∣∂vec (Hjt (γj, λ))

∂θi

∣∣∣∣∣∣∣∣
]
<∞, (B.54)

E

[
sup
θj

∣∣∣∣∣∣∣∣∂vec (Hjt,h (γj, λ))

∂θi

∣∣∣∣∣∣∣∣
]
<∞, (B.55)

E

[
sup
θj

∣∣∣∣∣∣∣∣∂2vec (Hjt,h (γj, λ))

∂θi∂θi′

∣∣∣∣∣∣∣∣
]
<∞, (B.56)

then

E

[
sup
θj

∣∣∣∣∂2ljt (γj, λ)

∂θi∂θi′
− ∂2ljt,h (γj, λ)

∂θi∂θi′

∣∣∣∣1/4
]

= O
(
t2φt

)
. (B.57)

We now verify (B.50)-(B.56). First, E[||Xjt||2] < ∞ by Assumption 4.6. From (B.48)

we already know that (B.51) holds. By (B.49) we also know that (B.52) holds when the

derivative is taken with respect to α or β. However, from (B.47) it is obvious that, given

Lemma B.5, we can obtain the same result for the derivative with respect to γj, as well.

Notice that (B.52) also holds if θi is not one of the parameters contained in (γ′j, λ
′)′, as

in that case the derivatives are identically equal to zero. Hence, (B.52) holds. Next, we

consider (B.53). Using (B.47), the triangle inequality and Lemma B.5

E

[
sup
θj

∣∣∣∣∣∣∣∣∂2vec (Hjt (γj, λ))

∂θi∂θi′
− ∂2vec (Hjt,h (γj, λ))

∂θi∂θi′

∣∣∣∣∣∣∣∣
]
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= E

[
sup
θj

∣∣∣∣∣∣∣∣ ∂2

∂θi∂θi′
βtvec [(Hj0 (γj, λ)− hj)]

∣∣∣∣∣∣∣∣
]

≤ E

[
sup
θj

∣∣∣∣∣∣∣∣ ∂2

∂θi∂θi′
βtvecHj0 (γj, λ)

∣∣∣∣∣∣∣∣
]

+ E

[
sup
θj

∣∣∣∣∣∣∣∣ ∂2

∂θi∂θi′
βtvec (hj)

∣∣∣∣∣∣∣∣
]

= O
(
t2φt

)
;

see also the arguments on page 54 of PR who obtain the same result in their equation

(B.52). The bounds in (B.54), (B.55) and (B.56) follow from Lemma B.5. Hence, (B.57)

holds. Now, by the triangle and cr inequalities, and (B.57), we have

E

[
sup
θ

∣∣∣∣∂2lNt (γ, λ)

∂θi∂θi′
− ∂2lNt,h (γ, λ)

∂θi∂θi′

∣∣∣∣1/4
]
≤ 1

N

N∑
j=1

E

[
sup
θj

∣∣∣∣∂2ljt (γj, λ)

∂θi∂θi′
− ∂2ljt,h (γj, λ)

∂θi∂θi′

∣∣∣∣1/4
]

= O
(
t2φt

)
,

since N is fixed. Notice that this is akin to equation (B.51) of PR with r = 1/4, except

that here we have lNt (γ, λ) and lNt,h (γ, λ) , rather than ljt (γj, λ) and ljt,h (γj, λ) , due to

the averaging across pairs. This averaging does not affect the asymptotic arguments since

N is fixed. Then, by the same arguments as in the last part of the Proof of Lemma B.11

of PR, the stated result follows.
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C Non-scalar BEKK

In this section we provide the consistency and asymptotic normality of the composite like-

lihood estimator when the pairwise likelihood functions are based on the non-scalar BEKK

model given in (14). The only required change is that Assumptions 4.2 and 4.4 be replaced

by Assumptions C.1 and C.2 below, respectively. The latter is a simple modification of

Assumption 4.4 to accommodate the change in the number of parameters.

In what follows, for a (K ×K) matrix Z with eigenvalues ξ1, ..., ξK , we define ρ(Z) =

max1≤k≤K |ξk|.

Assumption C.1 The parameter matrices A and B are such that ρ(A⊗2 +B⊗2) < 1.

Assumption C.2 For every pair j, γj ∈ Θγ and λ ∈ Θλ where Θγ and Θλ are compact

subsets of R4 and R8, respectively.

Theorem C.1 follows, which we provide below. In Section C.1 we define some additional

notation, while consistency and asymptotic normality are proved in Sections C.2 and C.3.

Required lemmas are presented and proved in Section C.4.

Theorem C.1 Suppose Assumptions 4.1, 4.3, 4.5–4.7, C.1 and C.2 hold. Let θ̂ = (γ̂′1, ..., γ̂
′
N , λ̂

′)′

be the composite likelihood estimator as defined in (13), with Hjt(γj, λ) given by the non-

scalar BEKK model in (14). Then, as T →∞ we have θ̂ − θ0
a.s.→ 0 and

√
T

γ̂ − γ0

λ̂− λ0

 d→

 I4N 04N×8

−J−1
N (θ0)KN(θ0) −J−1

N (θ0)

N (0,Ω0) ,

where JN(θ0), KN(θ0) and Ω0 are as defined in Section C.1.

C.1 Definitions

Throughout Section C we use

Hjt(γj, λ) = Γj − AΓjA
′ −BΓjB

′ + AXj,t−1X
′
j,t−1A

′ +BHj,t−1(γj, λ)B′, (C.1)

Hjt,h(γj, λ) = Γj − AΓjA
′ −BΓjB

′ + AXj,t−1X
′
j,t−1A

′ +BHj,t−1,h(γj, λ)B′,
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where γj = vec(Γj), λ = (vec(A)′, vec(B)′)′. As in Section B, Hj0,h(γj, λ) = hj > 0, where

hj is the starting value.

As for the remaining definitions: We first note that the definitions for JN(θ0) and

KN(θ0) made in (B.6) are still valid, except that ljt (γj, λ) is now based on the non-scalar

BEKK model in (C.1). The definition of the asymptotic variance matrix also remains the

same as in Section B.1:

Ω0 = E
[
((QN

t )′, (WN
t )′, (W̃N

t )′)′V N
t (V N

t )′((QN
t )′, (WN

t )′, (W̃N
t )′)

]
;

however, the definitions of some of the variables V N
t , W

N
t , W̃

N
t and QN

t are now different.

To start with, they are now based on Hjt(γj, λ) as defined in (C.1). Moreover, although

QN
t is still a (4N × 4N) block diagonal matrix with the jth diagonal block given by Qjt =

D(H
1/2
jt )⊗2, we now have D = (I4 − A⊗2

0 − B⊗2
0 )−1(I4 − B⊗2

0 ). The definitions of Wjt and

W̃jt are also different now due to the presence of matrix valued parameters A and B :

Wjt =

[
−
∞∑
i=0

(
B⊗2

0

)i
Mj,t−1−i (γj0, λ0)

]′ (
H
−1/2
jt (γj0, λ0)

)⊗2

, (C.2)

W̃jt =

[
−
∞∑
i=0

(
B⊗2

0

)i
M̃j,t−1−i (γj0, λ0)

]′ (
H
−1/2
jt (γj0, λ0)

)⊗2

, (C.3)

where

Mjt (γj, λ) = {[A(XjtX
′
jt − Γj)]⊗ I2}+ {I2 ⊗ [A(XjtX

′
jt − Γj)]}K2,2,

M̃jt (γj, λ) = {[B(Hjt(γj, λ)− Γj)]⊗ I2}+ {I2 ⊗ [B(Hjt(γj, λ)− Γj)]}K2,2.

Here, K2,2 is the (4 × 4) commutation matrix. In particular, for any (2 × 2) matrix M,

we have K2,2vec(M) = vec(M ′). Notice that Mjt (γj, λ) and M̃jt (γj, λ) as defined here are

analogous to the definitions in equations (B.28) and (B.29) in PR.

The definitions of V N
t , WN

t and W̃N
t remain otherwise the same as in Section B.1. In

particular, Vjt = vec(ZjtZ
′
jt − I2), V N

t = (V ′1t, ..., V
′
Nt)
′, WN

t = N−1 (W1t,W2t, ...,WNt) and

W̃N
t = N−1(W̃1t, W̃2t, ..., W̃Nt) for Wjt and W̃jt as defined in equations (C.2) and (C.3).
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C.2 Proof of consistency

First, notice that under the maintained assumptions all results of PR hold for every indi-

vidual pair j = 1, ..., N . In particular for each j we have

||γ̂j − γj0|| = oa.s. (1) as T →∞, (C.4)

sup
λ
|ljT (γj0, λ)− ljT,h (γ̂j, λ)| = oa.s. (1) as T →∞, (C.5)

sup
θj

|ljT (γj, λ)− E [ljt (γj, λ)]| = oa.s. (1) as T →∞, (C.6)

E [ljt (γj0, λ)] > E [ljt (γj0, λ0)] if λ 6= λ0. (C.7)

The consistency result of (C.4) follows from equation (A.6) of PR, whereas (C.5)-(C.7) are

due to Lemmas B.1-B.3 of PR. By using the same arguments as in Section B.2 above, since

N is fixed (C.5)-(C.7) are sufficient to establish

sup
λ
|lNT (γ0, λ)− lNT,h(γ̂, λ)| = oa.s.(1) as T →∞,

sup
θ
|lNT (γ, λ)− E [lNt(γ, λ)]| = oa.s.(1) as T →∞,

E[lNt(γ0, λ)] > E[lNt(γ0, λ0)] for any λ 6= λ0.

Then, the remaining arguments in Section B.2 above hold and one obtains λ̂−λ0 = oa.s.(1)

as T →∞. Together with (C.4) this establishes

θ̂ − θ0 = oa.s.(1) as T →∞,

as desired.

C.3 Proof of asymptotic normality

Starting with the same expansion as in (B.5), one can use Lemmas C.1, C.2, C.5 and C.6

to proceed in exactly the same way as in Section B.3 and prove the asymptotic normality

result of Theorem C.1.
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C.4 Lemmas

Remark 2 Throughout Section C.4 we assume that Assumptions 4.1, 4.3, 4.5–4.7, C.1

and C.2 hold.

Lemma C.1 Let θi be the ith entry of θ, where i = 1, ..., 4N + 8. Then, as T →∞

sup
θ

∣∣∣∣∂2lNT (γ, λ)

∂θi∂θi′
− E

[
∂2lNt (γ, λ)

∂θi∂θi′

]∣∣∣∣ = oa.s. (1) for all i and i′.

Proof of Lemma C.1. Under the maintained assumptions we can invoke Lemma B.6 of

PR to obtain

sup
θj

∣∣∣∣∂2ljT (γj, λ)

∂θi∂θi′
− E

[
∂2ljT (γj, λ)

∂θi∂θi′

]∣∣∣∣ = oa.s. (1) , as T →∞

for each pair j = 1, ..., N (note that when θi and/or θi′ is not one of the parameters

contained in (γ′j, λ
′), the above result holds trivially since ∂2ljT (γj, λ) /∂θi∂θi′ = 0). Since

N is fixed, this result and the triangle inequality are sufficient to obtain the statement of

Lemma C.1.

Lemma C.2 E [∂2lNt (γ0, λ0) /∂λ∂λ′] is non-singular.

Proof of Lemma C.2. This is a straightforward extension of Lemma B.7 of PR to the

specific case of composite likelihood function. Consequently, the proof is almost identical

to the Proof of Lemma B.7 of PR.

To keep the notation concise, in what follows we use Hjt = Hjt (γj0, λ0). Let λi be the

ith entry of λ, where i = 1, ..., 8. Remembering that E
[
XjtX

′
jt|Fj,t−1

]
= Hjt, and modifying

equation (B.22) of PR by adding the pair index j, we have

E

[
∂2ljt (γj0, λ0)

∂λi∂λi′

∣∣∣∣∣Fj,t−1

]
= tr

(
H−1
jt

∂Hjt

∂λi′
H−1
jt

∂Hjt

∂λi

)
. (C.8)

Next, we define hjt,i = (H
−1/2
jt )⊗2kjt,i and kjt,i = vec (∂Hjt/∂λi). Then, (C.8) can be

30



written as

E

[
∂2ljt (γj0, λ0)

∂λi∂λi′

∣∣∣∣∣Fj,t−1

]

= tr

(
H−1
jt

∂Hjt

∂λi′
H−1
jt

∂Hjt

∂λi

)
=

[
vec

(
∂Hjt

∂λi

)]′ [
H−1
jt ⊗H−1

jt

]
vec

(
∂Hjt

∂λi′

)
=

[
vec

(
∂Hjt

∂λi

)]′
(H
−1/2
jt )⊗2 × (H

−1/2
jt )⊗2vec

(
∂Hjt

∂λi′

)
= h′jt,ihjt,i′ , (C.9)

where the second equality follows from result 7.2(11) of Lütkepohl (1996). Then, by (C.9)

we obtain

E

[
∂2lNt (γ0, λ0)

∂λi∂λi′

]
=

1

N

N∑
j=1

E

[
∂2ljt (γj0, λ0)

∂λi∂λi′

]

=
1

N

N∑
j=1

E

{
E

[
∂2ljt (γj0, λ0)

∂λi∂λi′

∣∣∣∣∣Fj,t−1

]}

=
1

N

N∑
j=1

E
[
h′jt,ihjt,i′

]
.

Next, letting Hjt = (H
−1/2
jt )⊗2, hjt = (hjt,1, hjt,2, ..., hjt,8) and kjt = (kjt,1, kjt,2, ..., kjt,8) we

have hjt = Hjtkjt. Notice that since in our particular case where the composite likelihood

is based on the non-scalar BEKK model in (14), λ is (8 × 1). Consequently, hjt and kjt

are (1 × 8). Now, for E [∂2lNt (γ0, λ0) /∂λ∂λ′] to be singular we must have some non-zero

(8× 1) vector c = (c1, ..., c8)′ , such that

c′E

[
∂2lNt (γ0, λ0)

∂λ∂λ′

]
c =

1

N

N∑
j=1

c′E

[
∂2ljt (γj0, λ0)

∂λ∂λ′

]
c

=
1

N

N∑
j=1

c′E
[
(hjt,1, ..., hjt,8)′ (hjt,1, ..., hjt,8)

]
c

=
1

N

N∑
j=1

E
[
c′h′jthjtc

]
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=
1

N

N∑
j=1

E
[
c′k′jtH2

jtkjtc
]

= 0, (C.10)

which is possible only if

kjtc =
8∑
i=1

ci
∂

∂λi
[vec (Hjt(γj, λ)]

∣∣∣∣∣
θj=θj0

= 0, (C.11)

for all j and t. Using notation similar to that of the Proof of Lemma B.7 of PR, we define

ωj =
(
I4 − A⊗2 −B⊗2

)
γj, ωj0 =

(
I4 − A⊗2

0 −B⊗2
0

)
γj0,

ω̃j0 =
8∑
i=1

ci
∂

∂λi
ωj

∣∣∣∣∣
θj=θj0

, Ã0 =
8∑
i=1

ci
∂

∂λi
A⊗2

∣∣∣∣∣
θj=θj0

, B̃0 =
8∑
i=1

ci
∂

∂λi
B⊗2

∣∣∣∣∣
θj=θj0

.

Now, if (C.11) holds, then

0 =
8∑
i=1

ci
∂

∂λi

{
ωj + A⊗2vec

(
Xj,t−1X

′
j,t−1

)
+B⊗2vec [Hj,t−1 (γj, λ)]

} ∣∣∣∣∣
θj=θj0

= ω̃j0 + Ã0vec
(
Xj,t−1X

′
j,t−1

)
+ B̃0vec(Hj,t−1)

+B⊗2
0

8∑
i=1

ci

 ∂

∂λi
vec [Hj,t−1 (γj, λ)]

∣∣∣∣∣
θj=θj0


= ω̃j0 + Ã0vec

(
Xj,t−1X

′
j,t−1

)
+ B̃0vec(Hj,t−1), (C.12)

where the last line follows from kj,t−1c = 0 by (C.11). Subtracting (C.12), which is equal

to zero, from vec (Hjt) yields another expression for vec (Hjt), given by

vec(Hjt) = ωj0 + A⊗2
0 vec

(
Xj,t−1X

′
j,t−1

)
+B⊗2

0 vec(Hj,t−1)

−ω̃j0 − Ã0vec
(
Xj,t−1X

′
j,t−1

)
− B̃0vec(Hj,t−1)

= (ωj0 − ω̃j0) + (A⊗2
0 − Ã0)vec

(
Xj,t−1X

′
j,t−1

)
+ (B⊗2

0 − B̃0)vec(Hj,t−1),

in terms of the new parameters (ωj0 − ω̃j0), (A⊗2
0 − Ã0) and (B⊗2

0 − B̃0). Since c1, ..., c8

cannot be equal to zero, these parameters are different from (ωj0, A
⊗2
0 , B⊗2

0 ). By the same

argument as in the Proof of Lemma B.7 of PR, this violates the condition that vec (Hjt)
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has a unique representation. This holds for all j and t, independent of N and T . Therefore,

Assumption 4.5 is violated. This means that (C.11) and, therefore, (C.10) cannot hold,

implying that E [∂2lNt (γ0, λ0) /∂λ∂λ′] is non-singular.

Lemma C.3 Let QN
t , W

N
t , W̃

N
t and V N

t be as defined in Section C.1. Then, for γ̂j as

defined in (13), we have

 γ̂ − γ0

∂lNT (γ0, λ0) /∂λ

 =
1

T

T∑
t=1


QN
t

WN
t

W̃N
t

V N
t + op

(
1√
T

)
as T →∞.

Proof of Lemma C.3. To keep the notation concise, in what follows we use Hjt =

Hjt (γj0, λ0). Under the maintained assumptions we can invoke Lemma B.8 of PR to obtain γ̂j − γj0
∂ljT (γj0, λ0) /∂λ

 =
1

T

T∑
t=1

Yjt (γj0, λ0) + op

(
1√
T

)
, (C.13)

for each pair j as T →∞, where

Yjt (γj0, λ0) =


D(H

1/2
jt )⊗2vec

(
ZjtZ

′
jt − I2

)[
−
∑∞

i=0

(
B⊗2

0

)i
Mj,t−1−i (γj0, λ0)

]′
(H
−1/2
jt )⊗2vec

(
ZjtZ

′
jt − I2

)[
−
∑∞

i=0

(
B⊗2

0

)i
M̃j,t−1−i (γj0, λ0)

]′
(H
−1/2
jt )⊗2vec

(
ZjtZ

′
jt − I2

)


and Mjt (γj, λ) and M̃jt (γj, λ) are as defined in Section C.1. Next, let

YNt (γ0, λ0) =



D(H
1/2
1t )⊗2vec (Z1tZ

′
1t − I2)

...

D(H
1/2
Nt )⊗2vec (ZNtZ

′
Nt − I2)

N−1
∑N

j=1

[
−
∑∞

i=0

(
B⊗2

0

)i
Mj,t−1−i (γj0, λ0)

]′
(H
−1/2
jt )⊗2vec

(
ZjtZ

′
jt − I2

)
N−1

∑N
j=1

[
−
∑∞

i=0

(
B⊗2

0

)i
M̃j,t−1−i (γj0, λ0)

]′
(H
−1/2
jt )⊗2vec

(
ZjtZ

′
jt − I2

)


,

and notice that YNt (γ0, λ0) = [(QN
t )′, (WN

t )′, (W̃N
t )′]′V N

t for QN
t , W

N
t , W̃

N
t and V N

t as
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defined in Section C.1. Then, since N is fixed, by the result in (C.13) we have

 γ̂ − γ0

∂lNT (γ0, λ0) /∂λ

 =
1

T

T∑
t=1


QN
t

WN
t

W̃N
t

V N
t + op

(
1√
T

)
,

as T →∞, as stated.

Lemma C.4 Let V N
t , Q

N
t , W

N
t and W̃N

t be as defined in Section C.1. Then, we have

E[||((QN
t )′, (WN

t )′, (W̃N
t )′)′V N

t ||2] <∞.

Proof of Lemma C.4. To keep the notation concise, in what follows we use Hjt =

Hjt (γj0, λ0). We first note that under the maintained assumptions we have

sup
θj

||H−1/2
jt (γj, λ)|| = sup

θj

√
tr[H−1

jt (γj, λ)] ≤
√

sup
θj

tr[(Γj − AΓjA′ −BΓjB′)−1] ≤ K,

(C.14)

where the first inequality follows from (A.5) and the last inequality follows from Assumption

C.2; see also the second-to-last equation on page 42 of PR. Moreover, we also have

E[||Hjt||2] <∞ (C.15)

by the same arguments as those leading to equation (B.20) of PR.

Next, we derive some simple results which will be used later. First,

∣∣∣∣∣∣H−1/2
jt ⊗H−1/2

jt

∣∣∣∣∣∣ =

√
tr
(

(H
−1/2
jt ⊗H−1/2

jt )(H
−1/2
jt ⊗H−1/2

jt )
)

=
√
tr
((
H−1
jt ⊗H−1

jt

))
=

√
tr
(
H−1
jt

)
tr
(
H−1
jt

)
=

∣∣tr (H−1
jt

)∣∣
=

∣∣tr (H−1
jt I2

)∣∣
≤

∣∣∣∣H−1
jt

∣∣∣∣ ||I2||

=
√

2
∣∣∣∣H−1

jt

∣∣∣∣
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≤ K, (C.16)

since ||H−1
jt || ≤ ||H

−1/2
jt ||2, and ||H−1/2

jt || < ∞ by (C.14). Note that the second equality in

(C.16) follows from (A.8), while the third equality is due to (A.7). Second, for two (m× 1)

matrices A and B,

||AB′|| =
√
tr (AB′BA′)

=
√
tr (A′AB′B)

≤
√
||A′A|| ||B′B||

≤
√
||A||2 ||B||2

= ||A|| ||B|| , (C.17)

where the first inequality follows from (A.6), while the second inequality is due to (A.3).

Third,

E
[∣∣∣∣∣∣vec (ZjtZ ′jt − I2

)
vec
(
ZjtZ

′
jt − I2

)′∣∣∣∣∣∣]
= E

[∣∣∣∣vec (ZjtZ ′jt − I2

)∣∣∣∣2]
= E

[∣∣∣∣(ZjtZ ′jt − I2

)∣∣∣∣2]
≤ E

[(∣∣∣∣ZjtZ ′jt∣∣∣∣+ ||I2||
)2
]

= E
[(
||Zjt||2 + ||I2||

)2
]

= E
[
||Zjt||4 + 2

√
2 ||Zjt||2 + 2

]
where we have used (A.2), (A.3) and the triangle inequality. Notice that,

E[||Zjt||4] = E[||H−1/2
jt Xjt||4] ≤ E[||H−1/2

jt ||4||Xjt||4] ≤ KE[||Xjt||4] <∞, (C.18)

since ||H−1/2
jt || < ∞ by (C.14) and E[||Xjt||4] < ∞ by Assumption 4.6. Also, the first

inequality in (C.18) follows from (A.4). It then follows that

E[||vec(ZjtZ ′jt − I2)vec(ZjtZ
′
jt − I2)′||] ≤ K. (C.19)

35



Finally, for any j, k = 1, ..., N, by Hölder’s inequality and similar arguments as before

E[||ZktZ ′kt − I2|| × ||ZjtZ ′jt − I2||] ≤
√
E[||ZktZ ′kt − I2||2]

√
E[||ZjtZ ′jt − I2||2] <∞.

We now focus on the main proof. We have∣∣∣∣∣∣∣∣((QN
t

)′
,
(
WN
t

)′
,
(
W̃N
t

)′)′
V N
t

∣∣∣∣∣∣∣∣2
≤

∣∣tr[(V N
t )′(QN

t )′QN
t V

N
t ]
∣∣+
∣∣tr[(V N

t )′(WN
t )′WN

t V
N
t ]
∣∣+
∣∣∣tr[(V N

t )′(W̃N
t )′W̃N

t V
N
t ]
∣∣∣

= (V N
t )′(QN

t )′QN
t V

N
t + (V N

t )′(WN
t )′WN

t V
N
t + (V N

t )′(W̃N
t )′W̃N

t V
N
t . (C.20)

We consider the expectation of each term in (C.20) individually. First, using the definitions

in Section C.1 we have

E[(V N
t )′(QN

t )′QN
t V

N
t ]

=
N∑
j=1

E[vec(ZjtZ
′
jt − I2)′(H

1/2
jt )⊗2D′D(H

1/2
jt )⊗2vec(ZjtZ

′
jt − I2)]. (C.21)

Now,

E
[
vec(ZjtZ

′
jt − I2)′(H

1/2
jt )⊗2D′D(H

1/2
jt )⊗2vec(ZjtZ

′
jt − I2)

]
= E

{
tr
[
vec
(
ZjtZ

′
jt − I2

)′
(H

1/2
jt )⊗2D′D(H

1/2
jt )⊗2vec

(
ZjtZ

′
jt − I2

)]}
≤ E

{∣∣∣tr [(H1/2
jt )⊗2D′D(H

1/2
jt )⊗2vec

(
ZjtZ

′
jt − I2

)
vec
(
ZjtZ

′
jt − I2

)′]∣∣∣}
≤ E

{∣∣∣∣∣∣(H1/2
jt )⊗2D′D(H

1/2
jt )⊗2

∣∣∣∣∣∣× ∣∣∣∣∣∣vec (ZjtZ ′jt − I2

)
vec
(
ZjtZ

′
jt − I2

)′∣∣∣∣∣∣}
= ||D||2E[||(H1/2

jt )⊗2||2]× E
[∣∣∣∣∣∣vec (ZjtZ ′jt − I2

)
vec
(
ZjtZ

′
jt − I2

)′∣∣∣∣∣∣]
= ||D||2E

[∣∣∣tr[(H1/2
jt )⊗2(H

1/2
jt )⊗2]

∣∣∣]×K
= K ||D||2E

[∣∣tr [(Hjt)
⊗2]∣∣]

= K ||D||2E
[
(tr (Hjt))

2]
≤ K ||D||2 2E

[
||Hjt||2

]
< ∞ (C.22)

where we use (A.6) to obtain the second inequality, (A.4) to obtain the second equality,
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(C.19) to obtain the third equality, (A.7) to obtain the fifth equality, and (C.15) to obtain

the last inequality. By (C.21) and (C.22), and since N is fixed, we finally obtain

E
[(
V N
t

)′ (
QN
t

)′
QN
t V

N
t

]
<∞. (C.23)

Next, we focus on the expectations of the remaining two terms in (C.20). First, letting

Gj,t−1 = −
∞∑
i=0

(
B⊗2

0

)i
Mj,t−1−i (γj0, λ0) ,

G̃j,t−1 = −
∞∑
i=0

(
B⊗2

0

)i
M̃j,t−1−i (γj0, λ0) ,

we notice that

E
[
||W ′

jtWkt||
]

= E
[
||(H−1/2

jt ⊗H−1/2
jt )′Gj,t−1G

′
k,t−1(H

−1/2
kt ⊗H−1/2

kt )||
]

≤ E
[
||(H−1/2

jt )⊗2|| × ||Gj,t−1|| ×
∣∣∣∣G′k,t−1

∣∣∣∣× ||(H−1/2
jt )⊗2||

]
≤ K

√
E [||Gj,t−1||2]

√
E
[
||G′k,t−1||2

]
, (C.24)

and similarly,

E
[
||W̃ ′

jtW̃kt||
]
≤ K

√
E
[
||G̃j,t−1||2

]√
E
[
||G̃′k,t−1||2

]
, (C.25)

where we have used (A.4), (C.16) and Hölder’s inequality. Now,

E
[(
V N
t

)′ (
WN
t

)′
WN
t V

N
t

]

= E

tr


vec (Z1tZ

′
1t − I2)

...

vec (ZNtZ
′
Nt − I2)


′

(
WN
t

)′
WN
t


vec (Z1tZ

′
1t − I2)

...

vec (ZNtZ
′
Nt − I2)





=
1

N2
E

(
tr

{
N∑
j=1

N∑
k=1

[
vec
(
ZjtZ

′
jt − I2

)]′
W ′
jtWktvec (ZktZ

′
kt − I2)

})

≤ 1

N2
E

(
N∑
j=1

N∑
k=1

∣∣∣tr{W ′
jtWktvec (ZktZ

′
kt − I2)

[
vec
(
ZjtZ

′
jt − I2

)]′}∣∣∣)
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≤ 1

N2

N∑
j=1

N∑
k=1

E
[∣∣∣∣W ′

jtWkt

∣∣∣∣× ∣∣∣∣∣∣vec (ZktZ
′
kt − I2)

[
vec
(
ZjtZ

′
jt − I2

)]′∣∣∣∣∣∣]
≤ 1

N2

N∑
j=1

N∑
k=1

E
[∣∣∣∣W ′

jtWkt

∣∣∣∣]× E [∣∣∣∣∣∣vec (ZktZ
′
kt − I2)

[
vec
(
ZjtZ

′
jt − I2

)]′∣∣∣∣∣∣]
≤ 1

N2

N∑
j=1

N∑
k=1

E
[∣∣∣∣W ′

jtWkt

∣∣∣∣]E [||ZktZ ′kt − I2|| ×
∣∣∣∣ZjtZ ′jt − I2

∣∣∣∣]
≤ K

1

N2

N∑
j=1

N∑
k=1

E
[∣∣∣∣W ′

jtWkt

∣∣∣∣]
≤ K

1

N2

N∑
j=1

N∑
k=1

√
E [||Gj,t−1||2]

√
E
[
||G′k,t−1||2

]
(C.26)

where the second inequality follows from (A.6), the third inequality follows from
∣∣∣∣W ′

jtWkt

∣∣∣∣
being measurable with respect to Ft−1, the fourth inequality follows from (A.2) and (C.17),

the second-to-last inequality follows from (C.19) and the final inequality follows from

(C.24). Next, we investigate
√
E[||Gj,t−1||2]. Using Minkowski’s inequality and the already

utilised matrix algebra results,√
E[||Gj,t−1||2]

=

E
∣∣∣∣∣
∣∣∣∣∣
∞∑
i=0

(
B⊗2

0

)i
Mj,t−1−i (γj0, λ0)

∣∣∣∣∣
∣∣∣∣∣
2


1/2

≤

E
( ∞∑

i=0

||(B⊗2
0 )iMj,t−1−i(γj0, λ0)||

)2


1/2

≤
∞∑
i=0

{
E
[∣∣∣∣(B⊗2

0 )iMj,t−1−i (γj0, λ0)
∣∣∣∣2]}1/2

≤
∞∑
i=0

{
E
[∣∣∣tr{[(B⊗2

0 )iMj,t−1−i (γj0, λ0)
]′ [

(B⊗2
0 )iMj,t−1−i (γj0, λ0)

]}∣∣∣]}1/2

≤
∞∑
i=0

{
E
[∣∣∣tr{[(B⊗2

0 )i
]′ (

B⊗2
0

)i
Mj,t−1−i (γj0, λ0)Mj,t−1−i (γj0, λ0)′

}∣∣∣]}1/2

≤
∞∑
i=0

{
E
[∣∣∣∣∣∣[(B⊗2

0 )i
]′

(B⊗2
0 )i

∣∣∣∣∣∣× ∣∣∣∣Mj,t−1−i (γj0, λ0)Mj,t−1−i (γj0, λ0)′
∣∣∣∣]}1/2
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=
∞∑
i=0

∣∣∣∣(B⊗2
0 )i

∣∣∣∣ {E [||Mj,t−1−i (γj0, λ0)||2
]}1/2

. (C.27)

Next,

{
E
[
||Mj,t−1−i (γj0, λ0)||2

]}1/2

=
{
E
[∣∣∣∣{[A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]
⊗ I2

}
+
{
I2 ⊗

[
A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]}
K2,2

∣∣∣∣2]}1/2

≤
{
E
[(∣∣∣∣[A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]
⊗ I2

∣∣∣∣+
∣∣∣∣{I2 ⊗

[
A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]}
K2,2

∣∣∣∣)2
]}1/2

≤
{
E
[∣∣∣∣[A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]
⊗ I2

∣∣∣∣2]}1/2

+
{
E
[∣∣∣∣{I2 ⊗

[
A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]}
K2,2

∣∣∣∣2]}1/2

, (C.28)

and

E
[∣∣∣∣[A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]
⊗ I2

∣∣∣∣2]
= E

[∣∣∣tr ({[A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]
⊗ I2

}′ {[
A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]
⊗ I2

})∣∣∣]
= E

[∣∣tr ({[(Xj,t−1−iX
′
j,t−1−i − Γj0

)
A′0
]
⊗ I2

}{[
A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]
⊗ I2

})∣∣]
= E

[∣∣tr {[(Xj,t−1−iX
′
j,t−1−i − Γj0

)
A′0A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]
⊗ I2

}∣∣]
= E

[∣∣tr [(Xj,t−1−iX
′
j,t−1−i − Γj0

)
A′0A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]
tr (I2)

∣∣]
= 2E

[∣∣tr [(Xj,t−1−iX
′
j,t−1−i − Γj0

)
A′0A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]∣∣]
≤ 2E

[∣∣∣∣(Xj,t−1−iX
′
j,t−1−i − Γj0

)∣∣∣∣2 × ||A0||2
]

= 2 ||A0||2E
[∣∣∣∣(Xj,t−1−iX

′
j,t−1−i − Γj0

)∣∣∣∣2]
≤ 2 ||A0||2E

[(∣∣∣∣Xj,t−1−iX
′
j,t−1−i

∣∣∣∣+ ||Γj0||
)2
]

= 2 ||A0||2E
[(
||Xj,t−1−i||2 + ||Γj0||

)2
]

≤ K (C.29)

since E[||Xjt||4] <∞ by Assumption 4.6. By a similar reasoning, one can also prove that

E
[∣∣∣∣{I2 ⊗

[
A0

(
Xj,t−1−iX

′
j,t−1−i − Γj0

)]}
K2,2

∣∣∣∣2] ≤ K. (C.30)
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Combining (C.28), (C.29) and (C.30) with (C.27) we obtain

√
E
[
||Gj,t−1||2

]
≤

∞∑
i=0

∣∣∣∣∣∣(B⊗2
0

)i∣∣∣∣∣∣K ≤ ∞∑
i=0

Kφi <∞, (C.31)

where we used equation (B.15) of PR. Hence, by (C.26) and (C.31) we finally obtain

E
[(
V N
t

)′ (
WN
t

)′
WN
t V

N
t

]
<∞. (C.32)

Finally, we consider E[(V N
t )′(W̃N

t )′W̃N
t V

N
t ]. Notice that the only difference between

E[(V N
t )′(W̃N

t )′W̃N
t V

N
t ] andE[(V N

t )′(WN
t )′WN

t V
N
t ] is that the former is based on M̃jt(γj0, λ0)

instead of Mjt(γj0, λ0). Hence, it is straightforward to modify the arguments leading to

(C.26) and obtain

E[(V N
t )′(W̃N

t )′W̃N
t V

N
t ] ≤ K

1

N2

N∑
j=1

N∑
k=1

E
[∣∣∣∣∣∣W̃ ′

jtW̃kt

∣∣∣∣∣∣]
≤ K

1

N2

N∑
j=1

N∑
k=1

√
E
[
||G̃j,t−1||2

]√
E
[
||G̃′k,t−1||2

]
, (C.33)

where the last line follows from (C.25). Similarly, (C.27) can be modified to yield

√
E[||G̃j,t−1||2] ≤

∞∑
i=0

||(B⊗2
0 )i||{E[||M̃j,t−1−i(γj0, λ0)||2]}1/2. (C.34)

Now, {
E

[∣∣∣∣∣∣M̃j,t−1−i (γj0, λ0)
∣∣∣∣∣∣2]}1/2

≤
{
E
[
||{[B0 (Hjt − Γj0)]⊗ I2}||2

]}1/2

+
{
E
[
||{I2 ⊗ [B0 (Hjt − Γj0)]}K2,2||2

]}1/2

and notice that,

E
[
||{[B0 (Hjt − Γj0)]⊗ I2}||2

]
= E

[∣∣tr ({[B0 (Hjt − Γj0)]⊗ I2}′ {[B0 (Hjt − Γj0)]⊗ I2}
)∣∣]

= E [|tr ({[(Hjt − Γj0)B′0B0 (Hjt − Γj0)]⊗ I2})|]

≤ 2E [|tr {[(Hjt − Γj0)B′0B0 (Hjt − Γj0)]}|]
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= 2E [|tr {[(Hjt − Γj0) (Hjt − Γj0)B′0B0]}|]

≤ 2E
[
||Hjt − Γj0||2 ||B0||2

]
= 2 ||B0||2E

[
(||Hjt||+ ||Γj0||)2]

< ∞,

since E[||Hjt||2] < ∞ by (C.15). E[||{I2 ⊗ [B0(Hjt − Γj0)]}K2,2||2] can be bounded in a

similar way. Hence {E[||M̃j,t−1−i(γj0, λ0)||2]}1/2 <∞ and together with (C.34) this implies

that

√
E[||G̃j,t−1||2] ≤

∞∑
i=0

||(B⊗2
0 )i||{E[||M̃j,t−1−i(γj0, λ0)||2]}1/2 <∞, (C.35)

using the same arguments as those leading to (C.31). Consequently, combining (C.33) and

(C.35) we have

E
[
(V N

t )′(W̃N
t )′W̃N

t V
N
t

]
<∞. (C.36)

Finally, taking the expectation of (C.20) and combining this with (C.23), (C.32) and (C.36)

yields the stated result.

Lemma C.5 Let Ω0 be as defined in Section C.1. Then, for γ̂j as defined in (13), we have

√
T

 γ̂ − γ0

∂lNT (γ0, λ0) /∂λ

 d→ N (0,Ω0) as T →∞.

Proof of Lemma C.5. Let V N
t , Q

N
t , W

N
t and W̃N

t be as defined in Section C.1. Notice

that V N
t is independent of Ft−1, the information set at time t−1.Also, ((QN

t )′, (WN
t )′, (W̃N

t )′)′is

measureable with respect to Ft−1. Therefore, (((QN
t )′, (WN

t )′, (W̃N
t )′)′V N

t ,Ft), t = 1, ..., T,

is an ergodic martingale difference sequence for any N. Moreover, under the maintained

assumptions ((QN
t )′, (WN

t )′, (W̃N
t )′)′V N

t is square integrable by Lemma C.4. Hence, by the

same arguments as in the Proof of Lemma B.10 of PR a CLT applies and

1√
T

T∑
t=1

((QN
t )′, (WN

t )′, (W̃N
t )′)′V N

t
d→ N(0,Ω0), as T →∞. (C.37)
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Lemma C.3 and (C.37) together yield the desired result.

Lemma C.6 Let λi be the ith entry of λ, where i = 1, ..., 8. Also, let θi be the ith entry of

θ, where i = 1, ..., 4N + 8. Then,∣∣∣∣√T (∂lNT (γ0, λ0)

∂λi
− ∂lNT,h (γ0, λ0)

∂λi

)∣∣∣∣ p→ 0 for i = 1, ..., 8,

sup
θ

∣∣∣∣∂2lNT (γ, λ)

∂θi∂θi′
− ∂2lNT,h (γ, λ)

∂θi∂θi′

∣∣∣∣ a.s.→ 0 for i, i′ = 1, ..., 4N + 8,

as T →∞.

Proof of Lemma C.6. Under the maintained assumptions we can invoke Lemma B.11

of PR to obtain∣∣∣∣√T (∂ljT (γj0, λ0)

∂λi
− ∂ljT,h (γj0, λ0)

∂λi

)∣∣∣∣ = op (1) , (C.38)

sup
θj

∣∣∣∣∂2ljT (γj, λ)

∂θi∂θi′
− ∂2ljT,h (γj, λ)

∂θi∂θi′

∣∣∣∣ = oa.s. (1) , (C.39)

for each pair j = 1, ..., N as T → ∞. Notice that (C.39) also holds when θi and/or θi′ is

not any of the parameters contained in (γ′j, λ
′)′, since in that case the derivatives are both

identically equal to zero. Hence, given that N is fixed, the desired results follow by (C.38),

(C.39) and the triangle inequality.
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D Additional material

D.1 Additional material for Section 4.2

In this part we provide heuristic proofs for the consistency and asymptotic normality of

the composite likelihood estimator discussed in Section 4.2. In what follows, in addition to

the definitions made in Section 4.2 we also use θ̂ = (θ̂′1, ..., θ̂
′
N)′, θ0 = (θ′10, ..., θ

′
N0)′.

D.1.1 Consistency

Our argument follows along the same lines of Section 3.2 of Aielli (2013). In particular, we

assume that

sup
θj ,φ

∣∣∣∣∣∣Ŝj(θj, φ)− Sj0(θj, φ)
∣∣∣∣∣∣ p→ 0, (D.1)

sup
θj ,Sj ,φ

|ljT (θj, Sj, φ)− E[ljT (θj, Sj, φ)]| p→ 0, (D.2)

for all j as T →∞. We also assume that it has already been established that

θ̂j
p→ θj0, (D.3)

for all j as T →∞.

We start with the consistency of φ̂. First, (D.1) and (D.3) can be used to obtain

sup
φ
||Ŝj(θ̂j, φ)− Sj0(θj0, φ)|| p→ 0, (D.4)

for all j as T →∞ (see, e.g., Theorem 3.7 of White (1994)). By (D.4) and (D.2) we have

sup
φ

∣∣∣∣∣∣ŝ(θ̂, φ)− s(θ0, φ)
∣∣∣∣∣∣ p→ 0, (D.5)

sup
θ,s,φ
|lNT (θ, s, φ)− E [lNT (θ, s, φ)]| p→ 0, (D.6)

respectively. Then (again by Theorem 3.7 of White (1994) or a similar result), one can use
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(D.3), (D.5) and (D.6) together to obtain

sup
φ

∣∣∣lNT (θ̂, ŝ(θ̂, φ), φ)− E [lNT (θ0, s(θ0, φ), φ)]
∣∣∣ p→ 0. (D.7)

Remember that φ̂ = arg maxφ lNT (θ̂, ŝ(θ̂, φ), φ).Hence, if one can show that E[lNT (θ0, s(θ0, φ), φ)]

is uniquely maximised at φ0, then under certain conditions (D.7) would be sufficient to yield

φ̂
p→ φ0 (e.g., Theorem 3.4 of White (1994)).

Finally, φ̂
p→ φ, (D.1) and (D.3) can together be used to obtain ŝj(θ̂j, φ̂)

p→ sj(θj0, φ0)

for all j as T → ∞ - for a typical example of such a result see Lemma A.1 of Wooldridge

(1994).

D.1.2 Inference

In discussing inference, in addition to the notation defined in Section 4.2 , we use the fol-

lowing notation: first, ŝj(θj, φ), sj(θj, φ) and sj are vectorised versions of Ŝj(θj, φ), Sj(θj, φ)

and Sj, where Sj is some (2 × 2) matrix. We also let θ = (θ′1, ..., θ
′
N)′, and define θ̂ and

θ0 similarly. Moreover, ŝ(θ, φ) = (ŝ1(θ1, φ)′, ..., ŝN(θN , φ)′)′, and s(θ, φ), and s are defined

similarly. Next, we define the population estimating equation. First, let

M(θ) = (M1(θ1)′, ...,MN(θN)′)′,

where

Mj(θj) = (dl̇j1T (ηj1)/dη
′
j1
, dl̇j2T (ηj2)/dη

′
j2

)′.

Under standard conditions, E[M(θ0)] = 06N . Second, we define,

G(θ, s, φ) = (G1(θ1, s1, φ)′, ..., GN(θN , sN , φ)′)′,

where

Gj(θj, sj, φ) = ŝj(θj, φ)− sj.

44



Notice that under stationarity E[ŝj(θj, φ)] = sj(θj, φ) for any (θj, φ) and j; therefore,

E[G(θ0, s(θ0, φ0), φ0)] = 04N . Third, we define

lNT (θ, s(θ, φ), φ) =
1

NT

N∑
j=1

T∑
t=1

ljt(θj, Sj(θj, φ), φ).

From the identification condition for φ0, it follows that E[dlNT (θ0, s(θ0, φ0), φ0)/dφ] = 02.

Then, the population estimating equation is given by

gNT (θ, s, φ) = (M(θ)′,G(θ, s, φ)′, dlNT (θ, s(θ, φ), φ)/dφ′)′,

where E[gNT (θ0, s(θ0, φ0), φ0)] = 010N+2.

Our argument is based on a series of mean-value expansions. In what follows, the

“∼” sign denotes a mean value; e.g. φ̃ is a mean value between φ̂ and φ0. Moreover,

R is a generic remainder term, the exact value of which may differ from line to line.

Also, to keep the notation concise we use the following shorthand notation for derivatives:

dφ = d/dφ, dφφ′ = d2/dφdφ′, dφθ′j = d2/dφdθ′j etc. Finally, we define lNT (θ, ŝ(θ, φ), φ) =

(NT )−1
∑N

j=1

∑T
t=1 ljt(θj, Ŝj(θj, φ), φ).

We start with the expansion of dφlNT (θ̂, ŝ(θ̂, φ̂), φ̂) about φ̂ = φ0:

dφlNT (θ̂, ŝ(θ̂, φ̂), φ̂) = dφlNT (θ̂, ŝ(θ̂, φ0), φ0) + [dφφ′lNT (θ̂, ŝ(θ̂, φ̃), φ̃)](φ̂− φ0)

= dφlNT (θ̂, ŝ(θ̂, φ0), φ0)

+E[dφφ′lNT (θ0, s (θ0, φ0) , φ0)](φ̂− φ0) +R, (D.8)

where, remembering that θ̂
p→ θ0, φ̂

p→ φ0 and ŝ(θ̂, φ̂)
p→ s(θ0, φ0) as obtained in Section

D.1.1, we assume that

dφφ′lNT (θ̂, ŝ(θ̂, φ̃), φ̃)− E[dφφ′lNT (θ0, s (θ0, φ0) , φ0)]
p→ 02×2.

In the following expansions we will implicitly assume that similar convergence results hold

for the terms evaluated at parameter estimates and/or mean values. Next, by similar ideas,
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expanding dφljT (θ̂j, Ŝj(θ̂j, φ0), φ0) around θ̂j = θj0 yields

dφljT (θ̂j, Ŝj(θ̂j, φ0), φ0) = dφljT (θj0, Ŝj(θj0, φ0), φ0) + dφθ′j ljT (θ̃j, Ŝj(θ̃j, φ0), φ0)(θ̂j − θj0),

= dφljT (θj0, Ŝj(θj0, φ0), φ0)

+E
[
dφθ′j ljT (θj0, Sj(θj0, φ0), φ0)

]
(θ̂j − θj0) +R. (D.9)

Next, we expand dφljT (θj0, Ŝj(θj0, φ0), φ0) around ŝj(θj0, φ0) = sj(θj0, φ0) and obtain,

dφljT (θj0, Ŝj(θj0, φ0), φ0) = dφljT (θj0, Sj(θj0, φ0), φ0)

+dφs′j ljT (θj0, S̃j(θj0, φ0), φ0)[ŝj(θj0, φ0)− sj(θj0, φ0)]

= dφljT (θj0, Sj(θj0, φ0), φ0)

+E
[
dφs′j ljT (θj0, Sj(θj0, φ0), φ0)

]
Gj(θj0, sj(θj0, φ0), φ0)

+R, (D.10)

where in obtaining the second equality we used Gj(θj0, sj(θj0, φ0), φ0) = ŝj(θj0, φ0) −

sj(θj0, φ0). Next, expanding dηj1 l̇j1T (η̂j1) around η̂j1 = ηj10, by similar arguments as be-

fore we have

dηj1 l̇j1T (η̂j1) = dηj1 l̇j1T (ηj10) + E[dηj1η′j1
l̇j1T (ηj10)](η̂j1 − ηj10) +R,

and similarly for dηj2 l̇j2T (η̂j2). Then, remembering that dηj1 l̇j1T (η̂j1) = dηj2 l̇j2T (η̂j2) = 03

and θj = (η′j1 , η
′
j2

)′, we have

(θ̂j − θj0) =

{E[−dηj1η′j1 l̇j1T (ηj10)]
}−1

dηj1 l̇j1T (ηj10){
E[−dηj2η′j2 l̇j2T (ηj20)]

}−1

dηj2 l̇j2T (ηj20)

+R. (D.11)

Bringing (D.8)-(D.11) together and remembering that dφlNT (θ̂, ŝ(θ̂, φ̂), φ̂) = 02, by defini-

tion, leads to

02 = dφlNT (θ0, s(θ0, φ0), φ0)
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+
1

N

N∑
j=1

E
[
dφs′j ljT (θj0, Sj(θj0, φ0), φ0)

]
Gj(θj0, sj(θj0, φ0), φ0)︸ ︷︷ ︸

AjT

− 1

N

N∑
j=1

E
[
dφθ′j ljT (θj0, Sj(θj0, φ0), φ0)

]{E[dηj1η′j1
l̇j1T (ηj10)]

}−1

dηj1 l̇j1T (ηj10){
E[dηj2η′j2

l̇j2T (ηj20)]
}−1

dηj2 l̇j2T (ηj20)


︸ ︷︷ ︸

BjT

+E[dφφ′lNT (θ0, s (θ0, φ0) , φ0)](φ̂− φ0) +R. (D.12)

Notice that,

1

N

N∑
j=1

AjT = E[dφs′lNT (θ0, s(θ0, φ0), φ0)]G(θ0, s(θ0, φ0), φ0), (D.13)

and

1

N

N∑
j=1

BjT = E[dφθ′lNT (θ0, s(θ0, φ0), φ0)]{E[dθ′M(θ0)]}−1M(θ0). (D.14)

Then, solving (D.12) for (φ̂− φ0), and using (D.13) and (D.14) yields

φ̂− φ0 = −{E[dφφ′lNT (θ0, s(θ0, φ0), φ0)]}−1dφlNT (θ0, s(θ0, φ0), φ0)

−{E[dφφ′lNT (θ0, s(θ0, φ0), φ0)]}−1E[dφs′lNT (θ0, s(θ0, φ0), φ0)]G(θ0, s(θ0, φ0), φ0)

+{E[dφφ′lNT (θ0, s(θ0, φ0), φ0)]}−1E[dφθ′lNT (θ0, s(θ0, φ0), φ0)]{E[dθ′M(θ0)]}−1M(θ0)

+R

= JNTgNT (θ0, s(θ0, φ0), φ0) +R, (D.15)

where

JNT =
[
J−1
NT ;φφ′JNT ;φθ′{E[dθ′M(θ0)]}−1 −J−1

NT ;φφ′JNT ;φs′ −J−1
NT ;φφ′

]
,

and

JNT ;φφ′ = E[dφφ′lNT (θ0, s(θ0, φ0), φ0)],
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JNT ;φs′ = E[dφs′lNT (θ0, s(θ0, φ0), φ0)],

JNT ;φθ′ = E[dφθ′lNT (θ0, s(θ0, φ0), φ0)].

Now, letting

ΣN = lim
T→∞

V ar(
√
TgNT (θ0, s(θ0, φ0), φ0)), (D.16)

JN = lim
T→∞

JNT , (D.17)

if (i) the remainder R in expansion (D.15) is op(T
−1/2), and (ii) gNT (θ0, s(θ0, φ0), φ0)

d→

N(010N×2,ΣN), then (D.15) yields,

√
T (φ̂− φ0)

d→ N(02, JNΣNJ
′
N) as T →∞,

as desired. The final asymptotic expansion in (D.15) is a combination of a multitude of

expansions. As such, its remainder has a complicated form and obtaining its rate will

require substantial work. As for the second requirement, since E[gNT (θ0, s(θ0, φ0), φ0)] =

010N+2 it is reasonable to expect that this term satisfies a central limit theorem. However,

proving that such a result exists will, again, be subject of substantial work. We note that

these comments are not peculiar to the composite likelihood method - similar conditions

would also be required for obtaining the asymptotic distribution for the maximum likelihood

estimator of the DCC/cDCC model. The complications arise not due to the estimation

method employed, but rather due to the underlying model itself (DCC/cDCC).

D.2 Additional material for Section 5.2

In this section we provide the additional Figure D.1, which presents the results of the

efficiency analysis of Section 5.2 for the BEKK model.

D.3 Additional material for Section 5.4

Figures D.2 and D.3 replicate Figure 2 in Section 5.4 in the main paper by reducing the

sample size from 2000 to 500 (Figure D.2) and increasing the cross-sectional dimension to

200 (Figure D.3). Reducing the sample size increases the bias in the estimates of β when
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Figure D.1: Standard deviation for the CL estimator based on all pairs (2MCLE) and on a
subset of pairs (2MSCLE), as L varies from 2 to 100. Calculated from simulated data for
the scalar BEKK model with α = .05, β = .93.

the number of moments is 6 or 8. When the number of moments is only 4, decreasing

the sample size reduces the bias, suggesting that the asymptotic bias term may dominate

the distribution when out theory does not apply. Figure D.4 produces similar Q-Q plots

for parameters estimated using 2MLE. While these parameters appear to lie along the 45-

degree line, they are severely biased. The bias is reflected in the y-axis values which range

from -6 to -26 for α and 0 to 13 for β, depending on the model configuration.

D.4 Additional material for Section 5.5

To measure the effects of changing L and T on the conditioning numbers of the 2MLE and

2MCLE estimators in Section 5.5, we consider a simple regression specification,

yLT,r = β0 + β1 lnL+ β2 lnT + ηLT,r,

where yLT,r is one of the two measures, ūLT or ūc,LT and r is the replication index. The

idea here is that β1 and β2 are measures of the exponents of L and T, in the sense that

yLT,r = O(lnLβ1T β2). The estimates are β̂1 = 1.0046 and β̂2 = −0.8383 for 2MLE, and

β̂1 = 0.0487 and β̂2 = −0.1448 for 2MCLE. Hence, in line with our earlier observation,
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Figure D.2: Q-Q plots of estimates of α and β from scalar BEKK models parameterised
to have 8, 6 and 4 finite moments. The normalised parameter errors are plotted along the
y-axis. All estimates were produced from models with L = 50 and T = 500 using 2MCLE.
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T = 2000, L = 200
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Figure D.3: Q-Q plots of estimates of α and β from scalar BEKK models parameterised
to have 8, 6 and 4 finite moments. The normalised parameter errors are plotted along
the y-axis. All estimates were produced from models with L = 200 and T = 2000 using
2MCLE. 51
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Figure D.4: Q-Q plots of estimates of α and β from scalar BEKK models parameterised
to have 8, 6 and 4 finite moments. The normalised parameter errors are plotted along the
y-axis. All estimates were produced from models with L = 50 and T = 2000 using 2MLE.
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for both methods, larger values of L increase the estimation error while larger values of

T decrease the error. The long-run estimator is an important source of noise in these

problems, and an ill-conditioned target influences the precision of the dynamic parameters.

In extreme cases, when the cross-section size is larger than the time-series dimension, the

2MLE estimator is not feasible. This is reflected in β̂1 and β̂2: for 2MLE the effect of L

is of a greater magnitude than T , whereas it is the other way around for 2MCLE. These

indicate that diagonally increasing both the cross-section size and the sample size will not

ruin the 2MCLE estimator by creating large errors in the fitted values of Hjt. On the

other hand, for the 2MLE, growing the cross-section size along with the sample length will

produce large errors. This is consistent with our Monte Carlo findings.
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