
Supplement to “Estimating the number of
clusters using cross-validation”

Wei Fu and Patrick O. Perry
Stern School of Business, New York University

June 30, 2019

1 Clustering scree plot examples

The top row of Figure 1 displays an example where the elbow in Wk corresponds to the

true number k = 4 of mixture components in the data-generating mechanism. The elbow

approach is simple and often performs well, but it requires subjective judgment as to where

the elbow is located, and, as the bottom row of Figure 1 demonstrates, the approach can

easily fail.

2 Self-consistency

An important property of any estimation procedure is that in the absence of noise, the

procedure correctly estimates the truth. This property is called “self-consistency” (Tarpey

and Flury, 1996). We will now show that Gabriel cross-validation is self-consistent. That

is, in the absence of noise, the Gabriel cross-validation procedure finds the optimal number

of clusters.

Self-consistency by itself does not mean that a procedure performs well in practice.

Self-consistency deals only with the no-noise situation. Many other methods for selecting

K are likely self-consistent, but not all perform the same in practice. Self-consistency only

suggests (but does not guarantee) that a procedure might perform reasonably when the

noise level is low.
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Figure 1: Scree plots for two data sets. Left panels show the sets of two-dimensional data

points, generated from four clusters, with plotting symbol indicating the generated cluster.

Right panels show the corresponding values of the within-cluster sum of squares Wk plotted

against the number of clusters, k. The scree plot identifies the correct number of clusters

in the top row, but fails in the bottom row.
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It will suffice to prove self-consistency for a single fold of the cross-validation procedure.

As in section 2.2 of the main article, we assume that the P variables of the data set have

been partitioned into p predictor variables represented in vector X and q response variables

represented in vector Y . The N observations have been divided into two sets: n train

observations and m test observations. We state the assumptions for the self-consistency

result in terms of a specific split; for the result to hold in general, with high probability, these

assumptions would have to hold with high probability for a random split. The following

theorem gives conditions for Gabriel cross-validation to recover the true number of clusters

in the absence of noise.

Proposition 1. Let {(Xi, Yi)}n+m
i=1 be the data from a single fold of Gabriel cross-validation.

For any k, let CV(k) be the cross-validation error for this fold, computed as described in

Section 2.2 of the main article. We will assume that there are K “true cluster centers”

µ(1), . . . , µ(K), with the gth cluster center partitioned as µ(g) =
(
µX(g), µY (g)

)
for g =

1, . . . , K. Suppose that

(i) Each observation i has a true cluster Gi ∈ {1, . . . , K}. There is no noise, so that

Xi = µX(Gi) and Yi = µY (Gi) for i = 1, . . . , n+m.

(ii) The vectors µX(1), . . . , µX(K) are all distinct.

(iii) The vectors µY (1), . . . , µY (K) are all distinct.

(iv) The training set contains at least one member of each cluster: for all g in the range

1, . . . , K, there exists at least one i in the range 1, . . . , n such that Gi = g.

(v) The test set contains at least one member of each cluster: for all g in the range

1, . . . , K, there exists at least one i in the range n+ 1, . . . , n+m such that Gi = g.

Then CV(k) > CV(K) for k < K, and CV(k) = CV(K) for k > K, so that Gabriel

cross-validation correctly chooses k = K.

The proposition states that our method works well in the absence of noise, when each

observation is equal to its cluster center. The assumptions here are not checkable in practice,

but the proposition suggest that Gabriel cross-validation might give a reasonable answer,

at least when the noise level is low.
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The essential assumption here is assumption (i), which states that there is no noise. If we

are willing to assume, say, that the cluster centers µ(g) =
(
µX(g), µY (g)

)
for g = 1, . . . , K

were randomly drawn from a distribution with a density over Rp+q, then assumptions (ii)

and (iii) will hold with probability one for all splits of the data. Likewise, if the clusters

are not too small (relative to n and m), then assumptions (iv) and (v) will likely hold for

a random split of the data into test and train.

Proposition 1 follows from Lemmas 1 and 2, which we now state and prove.

Lemma 1. Suppose that the assumptions of Proposition 1 are in force. If k < K, then

CV(k) > 0.

Proof. By definition,

CV(k) =
n+m∑
i=n+1

‖Yi − µ̄Y (ĜX
i )‖2,

where µ̄Y (g) is the center of cluster g returned from applying k-means to Y1, . . . , Yn. As-

sumptions (i) and (v), imply that as i ranges over the test set n + 1, . . . , n + m, the

response Yi ranges over all distinct values in {µY (1), . . . , µY (K)}. Assumption (iii) implies

that there are exactly K such distinct values. However, there are only k distinct values of

µ̄Y (g). Thus, at least one summand ‖Yi− µ̄Y (ĜX
i )‖2 is nonzero. Therefore, CV(k) > 0.

Lemma 2. Suppose that the assumptions of Proposition 1 are in force. If k ≥ K, then

CV(k) = 0.

Proof. From assumptions (i), (iii), and (iv), we know the cluster centers gotten from ap-

plying k-means to Y1, . . . , Yn must include µY (1), . . . , µY (K). Without loss of generality,

suppose that µ̄Y (g) = µY (g) for g = 1, . . . , K. This implies that ĜY
i = Gi for i = 1, . . . , n.

Thus, employing assumption (i) again, we get that µ̄X(g) = µX(g) for g = 1, . . . , K.

Since assumption (ii) ensures that µX(1), . . . , µX(K) are all distinct, we must have

that ĜX
i = Gi for all i = 1, . . . ,m + n. In particular, this implies that µ̄Y (ĜX

i ) = Yi for

i = 1, . . . ,m+ n, so that CV(k) = 0.
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3 Analysis of single cluster in more than two dimen-

sions

Proposition 2. Suppose that {(Xi, Yi)}n+m
i=1 is data from a single fold of Gabriel cross-

validation, where each (X, Y ) pair in Rp+q is an independent draw from a mean-zero

multivariate normal distribution with covariance matrix Σ =
(

ΣXX ΣXY
ΣY X ΣY Y

)
, with ΣY Y has

leading eigenvalue λ1 and corresponding eigenvector u1. In this case, the data are drawn

from a single cluster; the true number of clusters is 1. If
√
λ1
2

>
uT1 ΣY XΣXY u1√
uT1 ΣY XΣXXΣXY u1

, then

CV(1) < CV(2) with probability tending to one as m and n increase.

Proof. Let X and Y be jointly multivariate normal distributed with mean 0 and covariance

matrix Σ, i.e.

(X, Y ) ∼ N (0,Σ)

where Σ =

ΣXX ΣXY

ΣY X ΣY Y

.

Let ΣY Y = UΛUT be the eigendecomposition of ΣY Y , with leading eigenvalue λ1 and

corresponding eigenvector u1. Then the centroid of k-means applying on (y1, .., yn) is on

the first principal component of Y ,

E(uT1 Y |uT1 Y > 0) = µ̄Y1 =
√

2λ1/πu1

and

E(uT1 Y |uT1 Y < 0) = µ̄Y2 = −
√

2λ1/πu1

where uT1 Y ∼ N (0, λ1).

To compute µ̄X1 = E(X|uT1 Y > 0), we need to know the conditional distribution X|uT1 Y .

Since (X, Y ) has multivariate normal distribution, (X, uT1 Y ) also has a multivariate normal

distribution with mean 0 and covariance matrix

ΣX,uT1 Y
=

 ΣXX ΣXY u1

uT1 ΣY X λ1


The conditional distribution X|uT1 Y is hence normal with mean

µX|uT1 Y = ΣXY u1λ
−1
1 uT1 Y
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Therefore,

µ̄X1 = E(X | uT1 Y > 0)

= E
(
E[X | uT1 Y ] | uT1 Y > 0

)
= E

(
ΣXY u1λ

−1
1 uT1 Y | uT1 Y > 0

)
= λ−1

1 ΣXY u1E(uT1 Y | uT1 Y > 0)

= λ−1
1 ΣXY u1

√
2λ1/π

=
√

2/(λ1π)ΣXY u1

Similar calculation yields µ̄X2 = −
√

2/(λ1π)ΣXY u1. The decision rule to classify any ob-

served value of X to µ̄X1 is therefore

(µ̄X1 )TX > 0 or uT1 ΣY XX > 0

Since uT1 ΣY XX is a linear combination of X, it also has normal distribution

N
(
0, uT1 ΣY XΣXXΣXY u1

)
And (Y, uT1 ΣY XX) also have multivariate normal distribution with mean 0 and covariance

matrix  ΣY Y ΣY XΣXY u1

uT1 ΣY XΣXY uT1 ΣY XΣXXΣXY u1


The conditional distribution of Y |uT1 ΣY XX is also multivariate normal with mean

µY |uT1 ΣY XX
= ΣY XΣXY u1(uT1 ΣY XΣXXΣXY u1)−1uT1 ΣY XX

The Y center for uT1 ΣY XX > 0 is

µ̂Y1 = E(Y |uT1 ΣY XX > 0)

= ΣY XΣXY u1(uT1 ΣY XΣXXΣXY u1)−1E(uT1 ΣY XX | uT1 ΣY XX > 0)

Note that uT1 ΣY XX has normal distribution N
(
0, uT1 ΣY XΣXXΣXY u1

)
, so

E(uT1 ΣY XX | uT1 ΣY XX > 0) =
√

2/π ·
√
uT1 ΣY XΣXXΣXY u1
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Therefore, we have the Y center for uT1 ΣY XX > 0 be

µ̂Y1 =
√

2/π ·
√
uT1 ΣY XΣXXΣXY u1 ΣY XΣXY u1(uT1 ΣY XΣXXΣXY u1)−1

=

√
2/π√

uT1 ΣY XΣXXΣXY u1

ΣY XΣXY u1

Recall that µ̄Y1 =
√

2λ1/πu1, to judge if CV(2) > CV(1), one only need to compare the

distance between µ̂Y1 and µ̄Y1 with distance between µ̂Y1 and grand mean 0. By the variance

and bias decomposition of prediction MSE, when variance is the same, only bias influences

the MSE.

After some linear algebra manipulation, we get ‖µ̂Y1 − µ̄Y1 ‖2 > ‖µ̂Y1 ‖2 or CV(2) > CV(1)

if and only if √
λ1

2
>

uT1 ΣY XΣXY u1√
uT1 ΣY XΣXXΣXY u1

The condition that ensures CV(1) < CV(2) is tight but difficult to understand intu-

itively. We make understand this condition better by noting that it is equivalent to a

condition on the correlation between the two linear combinations of X and Y variables:

cor(uT1 ΣY XX, u
T
1 Y ) < 1/2. (1)

A stronger condition that is easier to understand, then, is that the canonical correlation be-

tween X and Y is below 1/2; when the latter is true the former follows and CV(1) < CV(2).

A necessary but not sufficient guarantee of the stronger condition is that all correlations

between variables are below 1/2.

One might object to the condition (1) being stated in terms of a particular (X, Y ) split

of the data. In practice, one might want the condition to hold for all possible splits of the

data. A sufficient guarantee that (1) holds for any (X, Y ) split of the data is that the data

covariance matrix Σ is diagonal. The ad-hoc adjustment we propose in Section 4 of the

main articleattempts to transform the data to this form.
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4 Analysis of two clusters in more than two dimen-

sions

Proposition 3. Suppose that {(Xi, Yi)}n+m
i=1 is data from a single fold of Gabriel cross-

validation, where each (X, Y ) pair in with X ∈ RP and Y ∈ RQ is an independent draw from

an equiprobable mixture of two multivariate normal distributions with identity covariance.

Suppose that the first mixture component has mean µ = (µX , µY ) and the second has mean

−µ = (−µX ,−µY ), where µX ≥ 0 and µY ≥ 0. If the cluster centers are well separated,

specifically such that 2ϕ(µY ) + µY + 2µY Φ(µY ) < 4µY Φ(µX), then CV(2) < CV(1) with

probability tending to one as m and n increase.

Proof. There are two clusters G1 and G2, where observations from G1 are distributed as

N

µX
µY

 , I


and observations from G2 are distributed as

N

−µX
−µY

 , I


here µX and µY are all vectors. Let Gi be the true cluster where observation i is generated

from, by assumption

P (Gi = G1) = P (Gi = G2) = 1/2

To simplify the notation, letX1

Y1

 ∼ N
µX

µY

 , I


denote the observations from G1 andX2

Y2

 ∼ N
−µX
−µY

 , I


denote the observations from G2
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Further, let’s denote µX = λxex where λx is a scalar denotes the distance of µX from

origin and ex is the unit vector point at the same direction as µX ; µY = λyey has the same

interpretation.

Apply K-mean on the Y -space, where the two clusters are N
(
µY , I

)
and N

(
−µY , I

)
,

the K-mean centroids are µ̄Y1 and µ̄Y2 with µ̄Y1 = −µ̄Y2 . Note that the boundary between

the two clusters are eTy Y > 0. So

µ̄Y1 = E(Y | Y > 0) (2)

= E(Y1 | eTy Y1 > 0) · P (eTy Y1 > 0) + E(Y2 | eTy Y2 > 0) · P (eTy Y2 > 0) (3)

Note that eTy Y1 projects vector Y1 on the direction of ey. And because the ey is the same

direct as µY , it goes through the center of the sphere N
(
µY , I

)
. Because the covariance

matrix is I, the sphere is symmetric around ey. Therefore,

E(Y1 | eTy Y1 = a) = aey (4)

Also, Y1 ∼ N
(
µY , I

)
so eTy Y1 ∼ N (λy, 1). We have

E(Y1 | eTy Y1 > 0) = E
[
E
(
Y1 | eTy Y1

)
| eTy Y1 > 0

]
(5)

from (3) above = E(eTy Y1ey | eTy Y1 > 0) (6)

= eyE(eTy Y1 | eTy Y1 > 0) (7)

Because eTy Y1 ∼ N (λy, 1) = λy + Z, where Z is standard normal, by Lemma 3 from

Appendix C we have

E(eTy Y1 | eTy Y1 > 0) = E(λy + Z | Z > −λy) (8)

= λy + E(Z | Z > −λy) (9)

= λy +
ϕ(λy)

Φ(λy)
(10)

where ϕ() and Φ() are the standard normal probability and cumulative distribution

function respectively. So, by (6) we have
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E(Y1 | eTy Y1 > 0) =

[
λy +

ϕ(λy)

Φ(λy)

]
ey (11)

Similarly, we can have

E(Y2 | eTy Y2 > 0) = −E(Y1 | eTy Y1 < 0) (12)

= −eyE(eTy Y1 | eTy Y1 < 0) (13)

=

[
ϕ(λy)

1− Φ(λy)
− λy

]
ey (14)

Because eTy Y1 ∼ N (λy, 1) = λy + Z, it’s easy to get

P (eTy Y1 > 0) = P (Z > −λy) (15)

= Φ(λy) (16)

By symmetry, we can get

P (eTy Y2 > 0) = 1− Φ(λy) (17)

Put everything together, we have

µ̄Y1 = E(Y1 | eTy Y1 > 0) · P (eTy Y1 > 0) + E(Y2 | eTy Y2 > 0) · P (eTy Y2 > 0) (18)

=

[
λy +

ϕ(λy)

Φ(λy)

]
· Φ(λy)ey +

[
ϕ(λy)

1− Φ(λy)
− λy

]
· (1− Φ(λy)) ey (19)

= [2λyΦ(λy) + 2ϕ(λy)− λy]ey (20)

After training the classifier, because of the identity covariance matrix, the classification

boundary is eTxX > 0. So the Y center for observation with eTxX > 0 is

10



µ̂Y1 = E(Y1 | eTxX1 > 0) · P (eTxX1 > 0) + E(Y2 | eTxX2 > 0) · P (eTxX2 > 0)

(21)

X independent of Y = E(Y1) · P (eTxX1 > 0) + E(Y2) · P (eTxX2 > 0) (22)

= µY · P (eTxX1 > 0)− µY · P (eTxX2 > 0) (23)

= µY
(
P (eTxX1 > 0)− P (eTxX2 > 0)

)
(24)

= µY [Φ(λx)− (1− Φ(λx))] (25)

= (2Φ(λx)− 1)µY (26)

= (2Φ(λx)− 1)λyey (27)

Because of symmetry and P (Gi = G1) = P (Gi = G2) = 1/2, it’s sufficient to show that

for observations with eTxX > 0, if CV (2) < CV (1) then the Gabriel CV method correctly

picks k = 2 over k = 1.

Similar as in the proof of Proposition 2, by the variance and bias decomposition of MSE,

the variance is the same, so only the bias influences the result. Note the predicted center

is grand 0 for CV (1), so to see if CV (2) < CV (1) one only need to see if ||µ̄Y1 − µ̂Y1 ||2 <

||µ̂Y1 − 0||2, which is true if

2Φ(λy) + 2
ϕ(λy)

λy
< 4Φ(λx)− 1

this result reduces to the original result of Proposition 2 of the main article if one sets

λx = µX and λy = µY .

5 Technical Lemmas

Lemma 3. If Z is a standard normal random variable, then

E(Z | a < Z < b) = −ϕ(b)− ϕ(a)

Φ(b)− Φ(a)

and

E{(Z − δ)2 | a < Z < b} = δ2 + 1− (b− 2δ)ϕ(b)− (a− 2δ)ϕ(a)

Φ(b)− Φ(a)

11



for all constants a, b, and δ, where ϕ(z) and Φ(z) are the standard normal probability

density and cumulative distribution functions. These expressions are valid for a = −∞ or

b =∞ by taking limits.

Proof. We will derive the expression for the second moment. Integrate to get

E[(Z − δ)21{Z < b}] =

∫ b

−∞
(z − δ)2ϕ(z) dz

= (δ2 + 1)Φ(b)− (b− 2δ)ϕ(b).

Now,

E{(Z − δ)2 | a < Z < b} =
E[(Z − δ)21{Z < b}]− E[(Z − δ)21{Z < a}]

Φ(b)− Φ(a)
.

Lemma 3 has some important special cases:

E{Z | Z > 0} = 2ϕ(0) =
√

2/π,

E{(Z − δ)2 | Z > 0} = δ2 + 1− 4δϕ(0),

E{(Z − δ)2 | Z < 0} = δ2 + 1 + 4δϕ(0).

6 Wold cross-validation

In Wold cross-validation, we perform “speckled” hold-outs in each fold, leaving out a ran-

dom subset of the entries of the data matrix X ∈ RN×P . For each value of k and each fold,

we perform the following set of actions to get an estimate of cross-validation error, CV(k),

which we average over all folds.

1. Randomly partition the set of indices {1, 2, . . . , N} × {1, 2, . . . , P} into a train set

Strain and a test set Stest.

2. Apply a k-means fitting procedure that can handle missing data to the training data

{Xi,j : (i, j) ∈ Strain}. This gives a set of cluster means µ(1), . . . , µ(k) ∈ RP and

cluster labels for the rows, G1, G2, . . . , GN .

12



Table 1: Biological process enrichment within gene clusters

Cluster Cluster Size Process Category (In Cluster/Total Genes) p-value

1 550 response to oxidative stress (24/55) 1.5× 10−5

response to chemical (64/213) 2.2× 10−5

2 590 mitochondrion organization (79/159) 1.1× 10−16

mitochondrial translation (28/51) 2.9× 10−8

generation of precursor metabolites and energy (37/80) 7.3× 10−8

3 654 transcription from RNA polymerase II promoter (75/214) 5.5× 10−6

mRNA processing (30/67) 2.7× 10−5

mitotic cell cycle (63/183) 6.2× 10−5

4 634 cytoplasmic translation (105/134) 3.3× 10−47

ribosomal subunit biogenesis (73/138) 7.7× 10−17

rRNA processing (61/131) 5.7× 10−11

ribosome assembly (21/36) 1.5× 10−6

5 517 chromosome segregation (53/106) 6.0× 10−15

cellular response to DNA damage stimulus (71/172) 3.6× 10−14

DNA repair (64/147) 3.7× 10−14

DNA replication (42/78) 1.8× 10−13

mitotic cell cycle (70/183) 4.8× 10−12

3. Compute the cross-validation error as

CV(k) =
∑

(i,j)∈Stest

{Xi,j − µj(Gi)}2,

where µj(Gi) denotes the jth component of µ(Gi).

7 Enrichment analysis

To further validate our clusters, we follow Tavazoie et al. (1999), performing an enrichment

analysis to discover which functional gene groups are significantly over-represented in each

cluster. In the Saccharomyces Genome Database, each gene is mapped to a set of Gene

Ontology categories. We focus on the 103 biological process categories.

For each category and each cluster, we compute a p-value for the null hypothesis that
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genes from the category are distributed across all clusters without any bias towards the

particular cluster in question. Under the null hypothesis, the number of genes from the

category that end up in the cluster is distributed as a hypergeometric random variable.

For each cluster, we compute p-values for all 103 biological process categories, and we

report those that are significantly enrigched in Table 1. Using a Bonferroni correction to

control the family-wise error rate at level 5%, we only report p-values that are less than

0.05/103 = 4.8× 10−4.

From Table 1, we can see that Cluster 1 is enriched with genes that somatize cell stress,

such as oxidative heat-induce proteins. Cluster 2 contains genes that govern mitochondrial

translation and mitochondrion organization. Cluster 3, the first period cluster, contains

cell cycle genes related to budding and cell polarity, along with genes that govern RNA

processing and transcription. Cluster 4 contains genes related to cytoplasmic translation

and genes encoding ribosomes. Cluster 5, the second periodic cluster, contains genes that

participate cell-cycle processes, along with DNA replication and DNA repair.

8 Comparison with Tavazoie clusters

In the Tavazoie et al. (1999) analysis, those authors performed k-means clustering with

k = 30; they found 23 of the clusters to be uninterpretable, and they found 7 clusters

to be meaningful. To compare our clusters with the Tavazoie et al. clusters, we prepared

a confusion matrix comparing our clusters with the 7 interpretable Tavazoie clusters in

Table 2. Entry (i, j) of the confusion matrix gives the number of genes in Tavazoie’s

Cluster i and our Cluster j.

Figure 8 of the main article provides a more in-depth comparison with the Tavazoie

clusters, using a graphical confusion matrix. The plot in cell (i, j) of the upper left part

of this figure gives the mean expression level for genes in the intersection of Tavazoie’s

Cluster i and our Cluster j; the plots in the margins give the mean expression levels for

Tavazoie’s clusters (top right) and our clusters (bottom left). In Figure 8 (main article),

we only include a plot for cell (i, j) if the number of genes in that cell is greater than 20.

Our Cluster 1 mainly consists of genes that Tavazoie et al. found to be in uninterpretable

clusters. Our Cluster 2 contains high concentrations of Tavazoie’s Clusters 4 and 8. Our

14



Table 2: Confusion matrix comparing the 5 clusters found by Gabriel cross-validation to

the 7 interpretable clusters found by the Tavazoie et al. (1999) analysis

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total

Cluster 1 0 0 1 161 2 164

Cluster 2 1 0 0 0 185 186

Cluster 3 0 0 91 11 2 104

Cluster 4 0 102 2 66 0 170

Cluster 7 1 10 83 7 0 101

Cluster 8 3 145 0 0 0 148

Cluster 14 0 1 29 6 38 74

Other 545 332 448 383 290 1998

Total 550 590 654 634 517 2945

first periodic cluster, Cluster 3, contains high concentrations of Tavazoie’s Clulsters 3, 7,

and 14; this is notable, because Tavazoie et al. highlighted their Clusters 7 and 14 as being

periodic. Our Cluster 4 contains almost all of Tavazoie’s Cluster 1, along with part of

Tavazoie’s Cluster 4. Finally, our second periodic cluster, Cluster 5, contains almost all

of Tavazoie’s Cluster 2, along with part of Tavazoie’s Cluster 14; this, again, is notable,

because Tavazoie et al. highlited these clusters as being periodic.

For the clusters that Tavazoie et al. were able to characterize, our analysis broadly

agrees with the earlier clustering. The major difference between our analysis and that of

Tavazoie et al. (1999) is that we are able to identify meaningful groups of genes with a

much smaller value of k (k = 5 instead of k = 30), and we are able to interpret all of the

clusters found by our analysis.
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