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A Proofs

Proof: Selection of penalty from M fixed probabilities

We are interested in showing there exists an explicit solution for the following set of

equations, with the constraint that
∑M

m=1 ρm = 1 and ρm ∈ (0, 1] for all m.

2 log(ρ1)− 2 log(ρ1) = Cν1

2 log(ρ2)− 2 log(ρ1) = Cν2

...

2 log(ρM)− 2 log(ρ1) = CνM .

With νm representing the number of degrees of freedom for partition m (with ν1 = 0

(by definition), and ν2 ≤ ν3 ≤ · · · ≤ νM ), and with C representing any real number - in

this case, corresponds to the penalty of choice (ie, for the AIC penalty, C = −2).

Now, it is clear that the first case holds no matter the choice of ρ1, since we are left with

a 0 on both the LHS and RHS. Rearranging the rest of the equations in terms of ρ1, we

are left with the following:

ρm = ρ1e
Cνm for m = 2, . . .M.

Since
∑M

m=1 ρm = 1, we have explicit solutions for all ρv:

ρ1 + ρ2 + · · ·+ ρM = 1

ρ1 + ρ1e
Cν2 + · · ·+ ρ1e

CνM = 1

ρ1(1 + ρ1e
Cν2 + · · ·+ ρ1e

CνM ) = 1

ρ1

M∑
v=1

eCνm = 1
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so that

ρ1 =
1∑M

m=1 e
Cνm

Substituting this back into the expressions for ρm,m > 1, we have:

ρm =
eCνm∑M
`=1 e

Cν`

which is guaranteed to be in (0, 1) since ν1 < ν2 ≤ ν3 ≤ · · · ≤ νM .

Proof of Ẽ = op(1)

Let Xij ∼ pjmj
( · ;θ0jm) for some true parameter vector θ0jm ∈ Rdm . Define the log-

likelihood for variable j and hypothesis m as `jm(θ) =
∑n

i=1 ln pjm(Xij;θjm) with cor-

responding MLE and “pseudo-true” value of θjm as

θ̂jm = arg max
θjm

{`jm(θjm)} and θ∗jm = arg max
θjm

{
E
(
n−1`jm(θjm)

)}
,

respectively. We will assume conditions on the likelihood and parameter space such

that E
[
n−1`jm(θ∗jm)

]
→ `∗jm for 1 ≤ j ≤ p, 1 ≤ m ≤ M . Using the theory summarised

in Ormerod et al. (2017) based on Vuong (1989) and van der Vaart (1998) we have two

main cases to consider.

• [Underfitting case] – Suppose `∗jmj
> `∗jm for some m 6= mj . Then

1
2n

[
λjmj

(Xj)− λjm(Xj)
] P→ `∗jmj

− `∗jm = ∆jm > 0

and so (1/2)λjm(Xj) = n[∆jm + op(1)].

• [Overfitting case] – Suppose `∗jm = `∗jmj
for some m 6= mj and let νm = dm − dmj

.

Then λjm(Xj)− λjmj
(Xj)

D→ χ2
ν̃jm
.

The following lemma will be useful.

Lemma 1 (Gasull et al., 2015): IfXj , j = 1, . . . , p, are independent χ2
ν random variables,

and Mp = max
1≤j≤p

{Xj}, then 1
2
Mp− [ln(p) + (ν/2− 1) ln ln(p)− ln Γ(ν/2)]

D→ G, as p→∞
where G is a Gumbel distributed random variable.
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Define Jm = {j : γ0jm = 1} and Tm = {j : `∗jm = `∗jmj
}. Here Jk is the set of true

variables over the kth set of hypotheses, and Tm is the union of over-fitting and true

models over the kth set of hypotheses. We define and decompose the the error as

E =

p∑
j=1

1− γ̂jmj
(Xj) +

p∑
j=1

∑
m 6=mj

γ̂jm(Xj)

= 2

p∑
j=1

∑
m 6=mj

γ̂jm(Xj) = 2
M∑
m=1

∑
j /∈Jm

γ̂jm(Xj)

= 2
M∑
m=2

∑
j∈Om

γ̂jm(Xj)︸ ︷︷ ︸
Overfitting models

+ 2
M∑
m=1

∑
j∈Um

γ̂jm(Xj)︸ ︷︷ ︸
Underfitting models

4
= EO + EU ,

where Om = J c
m ∩ Tm, and Um = J c

m ∩ T cm.

Note that for EO the index m is summation does not include m = 1 since the null

model cannot be an overfitting model. Next, we consider EO where the true model is

used as the null hypothesis and rewrite EO as

EO = 2
M∑
m=2

∑
j∈Om

exp
[
1
2
λ̃jm(Xj)− ν̃m {ln(n) + 2 ln(p)}

]
∑M

`=1 exp
[
1
2
λ̃j`(Xj)− ν̃` {ln(n) + 2 ln(p)}

]
where λ̃jm(Xj) = λjm(Xj) − λjmj

(Xj). Using a chi-square approximation over the set

of overfitting models in place of LRT statistics with Ujm
iid∼ χ2

ν̃m
we obtain an approxi-

mation ẼO of EO given by

ẼO = 2
M∑
m=1

∑
j∈J c

m∩Tm

exp
[
1
2
Ujm − ν̃m {ln(n) + 2 ln(p)}

]∑M
`=1 exp

[
1
2
λj`(Xj)− ν̃` {ln(n) + 2 ln(p)}

]
≤ 2

M∑
m=1

∑
j∈Om

exp
[
1
2
Ujm − ν̃m {ln(n) + 2 ln(p)}

]
≤ 2

M∑
m=1

p1m exp

[
max
j∈Om

1
2
Zjm − ν̃k {ln(n) + 2 ln(p)}

]
→

M∑
m=1

(
p21m

p2ν̃m ln(p1m)

)(
ln(p1m)1/2

n

)ν̃m
2 exp(Gm)

Γ(ν̃m/2)

where p1k = |Om|, the last line follows from Lemma 1 with G1, . . . , Gm being indepen-

dent Gumbel distributions. Note that EO = op(1) provided ln(p)/n→ 0. Similarly, for
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EU we have

EU ≤ 2
M∑
m=1

∑
j∈Um

exp
[
1
2
λ̃jm(Xj)− ν̃m{ln(n) + 2 ln(p)}

]
= 2

M∑
m=1

∑
j∈Um

exp
[
−1

2
n{∆̃jm + op(1)} − ν̃m{ln(n) + 2 ln(p)}

]
≤ 2

M∑
m=1

p0m
p2ν̃m

exp

[
−1

2
n

{
min
j∈Um

∆̃jm

}
− ν̃m ln(n)

]
+ smaller terms

= op(1)

where ∆̃jm = ∆jmj
− ∆jm > 0, the above ν̃m may be positive or negative, and p0m =

|Um|. The only potentially problematic term occurs for when m = 1 since ν1 = 0. For

this case EU = op(1) provided

p01 exp

[
−1

2
n

{
min
j∈U1

∆̃j1

}]
= o(1).

Which is true provided ln(p)/n→ 0. Hence, ẼO + EU = op(1).

B Competing Methods

Competing methods are listed in Table 1 below.

Method Paper R Implementation

DLDA/DQDA Dudoit et al. (2002) sparsediscrim - Ramey (2017)

Penalized LDA Witten and Tibshirani (2011) penalizedLDA - Witten (2015)

Nearest Shrunken Centroids Tibshirani et al. (2003) pamr - Hastie et al. (2014)

Random Forest Breiman (2001) randomForest - Liaw and Wiener (2002)

Support Vector Machine (SVM) Cortes and Vapnik (1995) e1071 - Meyer et al. (2017)

Multinomial logistic regression with

LASSO regularization
Tibshirani (1996) glmnet - Friedman et al. (2010)

K nearest neighbours classifier (K=1) Cover and Hart (1967) class - Venables and Ripley (2002)

Table 1: ML methods used in our comparisons

For the ML methods that required hyper-parameter tuning we detail such tuning as

follows:

• Random Forest was tuned following guidelines for Microarray data from Dı́az-

Uriarte and Alvarez de Andrés (2006).
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• Default parameters were used for SVM.

• cv.glmnet was used to select the best value of the regularisation parameter λ

for multinomial logistic regression with LASSO regularisation.

• K = 1 was used for KNN as this produced the best prediction results.

• In Nearest Shrunken Centroids, the shrinkage parameter ∆ was tuned follow-

ing procedures from Tibshirani et al. (2003) - we first trained using pamr.train

before using pamr.adaptthresh to adaptively search for a set of good threshold

scales to use in further retraining.

• Penalized LDA - optimal parameters K (number of discriminant vectors to be

used) and λ (regularisation paramter) were determined running PenalizedLDA.cv

before training (as guided by the PenalizedLDA vignette).

R code implementation

We include general format of the R code used in this paper for complete trans-

parency.

• Discriminant Analysis methods

– DLDA sparsediscrim

res = dlda(mX.train, vy.train)

vals = as.numeric(predict(res, newdata = mX.test)$class)

– DQDA sparsediscrim

res = dqda(mX.train, vy.train)

vals = as.numeric(predict(res, newdata = mX.test)$class)

– Penalized LDA penalizedLDA

cv.out = PenalizedLDA.cv(mX.train,vy.train,type=“standard”,

lambdas=c(1e-4,1e-3,1e-2,.1,1,10))

vals = PenalizedLDA(mX.train,vy.train,type=“standard”,

xte=mX.test, lambda=cv.out$bestlambda,K=cv.out$bestK)

– NSC pamr

mydata = list(x=t(mX.train),y=as.factor(vy.train), geneid=1:p)
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res = pamr.train(mydata)

new.scales = pamr.adaptthresh(res)

res = pamr.train(mydata, threshold.scale=new.scales)

vals = as.numeric(pamr.predict(res, t(mX.test), threshold=new.scales))

• Random Forest randomForest

res = randomForest(mX.train, vy.train, ntree=500,

mtry=floor(sqrt(p)),nodesize=1)

vals = as.numeric(predict(res, newdata = mX.test))

• Support Vector Machine e1071

res = svm(mX.train, vy.train, probability=FALSE)

vals = predict(res,mX.test, decision.values=TRUE, probability=FALSE)

• Multinomial Response LASSO glmnet

res = cv.glmnet(mX.train,vy.train,family=“multinomial”)

vals = predict(cv, newx = mX.test, s = ”lambda.min”, type = ”class”)

• K nearest neighbours class

vals = knn(mX.train, mX.test, vy.train, k=1)

Generation of covariance matrix for simulations

genZeroMeanSparceCovNormal = function(n,nBlocks,blockSize,perc,symmetric,

permute=TRUE,seed)

{
set.seed(seed)

p = nBlocks*blockSize

nnz = round(nBlocks*blockSize*perc)

mX = c()

lmSigma = list()

lmZ = list()

for (b in 1:nBlocks)
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{
randRows = sample(1:blockSize, nnz, replace = TRUE)

randCols = sample(1:blockSize, nnz, replace = TRUE)

if (symmetric) {
vr = c(1:blockSize,randRows,randCols)

vc = c(1:blockSize,randCols,randRows)

} else {
vr = c(1:blockSize,randRows)

vc = c(1:blockSize,randCols)

}

vals = rnorm(length(vr))

mA = sparseMatrix(x=vals, i=vr, j=vc)

lmSigma[[b]] = t(mA)%*%mA

mZ = t(mA%*%matrix(rnorm(n*blockSize),blockSize,n))

mZ = matrix(mZ,n,blockSize)

lmZ[[b]] = mZ

mX = cbind(mX,mZ)

}

if (permute) {
ord = sample(p)

mX = mX[,ord]

}

return(list(mX=mX,lmSigma=lmSigma,lmZ=lmZ,ord=ord))

}
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C Tables

Wilcoxin Signed Rank Test

The Wilcoxin Signed Rank Test was performed to see if the population mean ranks

differed for classification performance between two competing ML methods. A one-

sided test was performed to see if the mean ranks for the multiDA methods were

lower than those of those competitors. p-values from these tests are reported in the

tables below.

multiLDA multiQDA DLDA DQDA penLDA NSC RF KNN SVM LASSO

multiLDA - 0.7264 3.607e-10 3.688e-10 4.165e-09 5.63e-10 6.037e-10 3.831e-10 3.747e-10 1.889e-06

multiQDA 0.271 - 3.607e-10 3.504e-10 3.093e-09 5.32e-10 7.54e-10 3.832e-10 3.72e-10 1.846e-07

Table 2: p-values for Wilcoxin Signed Rank test for TCGA dataset

multiLDA multiQDA DLDA DQDA penLDA NSC RF KNN SVM LASSO

multiLDA - 0.02553 8.64e-10 3.175e-10 7.936e-10 1.77e-08 3.114e-10 0.8967 3.397e-10 0.9989

multiQDA 0.9755 - 7.508e-09 3.247e-10 3.162e-08 2.884e-5 3.077e-10 0.9963 5.419e-10 0.9998

Table 3: p-values for Wilcoxin Signed Rank test for SRBCT dataset
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