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1 Yao’s Results and Extension

The following two lemmas are due to Yao (1988).

Lemma 1.1. Suppose Z1, ..., Zn ∼i.i.d. N(0, σ2). Then for any ε > 0 as n→∞:

P

(
max

0≤i<j≤n

(Zi+1 + ...+ Zj)
2

(j − i)
> 2 (1 + ε)σ2 log n

)
→ 0. (1)

Lemma 1.2. Let mU be an upper bound on the number of changes, and let (τ̂1, ..., τ̂m̂) be

the set of estimated changes generated (by Yao’s procedure). For every m̂ s.t. m < m̂ ≤ mU

and 1 ≤ r ≤ m,

P((τ̂1, ..., τ̂m̂) ∈ B2
i (n))→ 0

as n→∞, where:
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Bδ
i (n) = {(ξ1, ..., ξt) : 0 < ξ1 < ... < ξt < n and |ξs − τr| ≥

⌈
(log n)δ

⌉
for 1 ≤ s ≤ m̂}.

Corollary 1.2.1. Lemma 1.2 can be extended to B1+α
i (n), for any α > 0.

Proof of Corollary 1.2.1: The argument for the location accuracy being (log n)2 in Yao

(1988) comes from showing that the residual sum of squares for a segmentation that misses

a change by more than this amount can be reduced by an amount that is greater than

3 (2 + ε) log n with probability tending to 1 as n increases, by adding three changes at the

changepoint plus or minus (log n)2. Thus such a segmentation cannot be optimal as the

penalised cost for the latter segmentation will be less than the original one. We therefore

need only show that this argument holds if we replace an accuracy of (log n)2 with (log n)1+α

for any α > 0.

To do this it suffices to show that a segmentation τ̂1, ..., τ̂m̂ which misses a particular change τi

by at least
⌈
(log n)1+α

⌉
has a residual sum of squares between the points τi−

⌈
(log n)1+α

⌉
and

τi+
⌈
(log n)1+α

⌉
which when normalised by the true fit has term of leading order

⌈
(log n)1+α

⌉
.

For a segmentation τ̂1:m̂ define RSS(ys:t; τ̂1:m̂) to be the residual sum of squares obtained if

we fit the changepoints to the subset of data ys:t. Note that this will only depend on the

changepoints, if any, that lie between timepoints s and t. Then for any τ̂1:m̂ ∈ B1+α
i (n):

RSS(y1:n; τ̂1:m̂) ≥ RSS
(
y1:n; τ̂1:m̂, τ1, . . . , τi−1, τi −

⌈
(log n)1+α

⌉
, τi +

⌈
(log n)1+α

⌉
, τi+1, . . . , τm

)
.

(2)

As Yao (1988) remarks, RHS of (2) can be decomposed as:

RSS(y1:τ1 ; T1) + . . .+ RSS
(
yτi−1+1:τi−d(logn)1+αe; Ti

)
+ RSS

(
yτi−d(logn)1+αe+1:τi+d(logn)1+αe; ∅

)
+RSS

(
yτi+d(logn)1+αe+1:τi+1

; Ti+1

)
+ . . .+ RSS (yτm+1:n; Tm+1),

where Th is the subset of τ̂1:m̂ which falls inside the corresponding segment of the univariate

time series. By Lemma 1.1, each term in this decomposition involving Th is such that:
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RSS(ya+1:b; Th) =
b∑

j=a+1

Z2
j +Op(log n),

while, if without loss of generality we assume that the mean at the changepoint τi changes

from 0 to µ, then letting c
(α)
n =

⌈
(log n)1+α

⌉
:

RSS
(
y
τi−c

(α)
n +1:τi+c

(α)
n

; ∅
)

=

τi+c
(α)
n∑

j=τi−c
(α)
n +1

(
Yi − Ȳ

(
τi − c(α)n + 1, τi + c(α)n

))2

=

τi+c
(α)
n∑

j=τi−c
(α)
n +1

Z2
j +

µ2

2
c(α)n −

1

2c
(α)
n

 τi+c
(α)
n∑

j=τi−c
(α)
n +1

Zj

2

+D,

where D ∼ N
(

0, 2σ2c
(α)
n µ2

)
. Therefore:


τi+c

(α)
n∑

j=τi−c
(α)
n +1

Z2
j − RSS

(
y
τi−c

(α)
n +1:τi+c

(α)
n

; ∅
) /c(α)n =

µ2

2
− 1

2
(
c
(α)
n

)2
 τi+c

(α)
n∑

j=τi−c
(α)
n +1

Zj

2

+D/c(α)n

→ µ2

2
by Lemma 1.1.

In particular, ∀τ̂1:m̂ ∈ B1+α
i (n):

{
RSS

(
x1:n; τ̂1:m̂, τ

−i
1:n, τi − c(α)n , τi + c(α)n

)
−

n∑
j=1

Z2
j

}
/c(α)n →

µ2

2
.

Thus, as any segmentation from B1+α
i (n) is strictly worse than a corresponding segmen-

tation, which in turn is worse (in probability) than fitting the truth under a penalty of

β = 2 (1 + ε) log n, uniformly in B1+α
i (n), P(τ̂1:m̂ ∈ B1+α

i (n))→ 0. �
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2 Unparallelised Consistency Results

Proof of Proposition 3.1: Let m̂ be the number of changes estimated by the procedure.

The aim is firstly to show that:

(a): P(m̂ > m)→ 0,

(b): P(m̂ < m)→ 0.

Proof of (a): Under Corollary 1.2.1, for m̂ > m, with probability 1 as n → ∞ it must

be the case that m of the estimated changes are within (log n)1+α, some α > 0, of the true

changes. We will now show that with probability tending to 1 these segmentations cannot

be optimal.

To do this we will compare the penalised cost of any such segmentation with the pe-

nalised cost of the true segmentation. The latter cost can be bounded above by
n∑
t=1

Z2
t +

m (2 + ε) log n. Our approach is to split the comparison of the residual sum of squares of a

segmentation τ̂1:m̂ with
n∑
t=1

Z2
t into comparisons for a fixed number of regions of data. To do

this, define c
(α)
n =

⌈
(log n)1+α

⌉
, u0 = 0, lm+1 = n, and for i = 1, . . . ,m, li = τi − c(α)n and

ui = τi + c
(α)
n . We can partition the time points 1, . . . , n into regions Bi = {ui−1 + 1, . . . , li},

for i = 1, . . . ,m+1 and regions Li = {li+1, . . . , τi} andRi = {τi+1, . . . , ui} for i = 1, . . . ,m.

These can be viewed as regions more than c
(α)
n from a changepoint, and regions of length

c
(α)
n that are respectively left and right of a changepoint.

It is straightforward to show that for any segmentation:

RSS(y1:n; τ̂1:m̂) ≥
m+1∑
i=1

RSS(yBi ; τ̂1:m̂) +
m+1∑
i=1

RSS(yLi ; τ̂1:m̂) +
m+1∑
i=1

RSS(yRi ; τ̂1:m̂).

The proof proceeds by showing that on each region Bi if we have k = k(τ̂1:m̂) changepoints

that lie within this region then with probability tending to 1:
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max
τ̂1:m̂

{
RSS(yBi ; τ̂1:m̂) + 2 (1 + ε/2) k log n−

li∑
t=ui+1

Z2
t

}
> −4 log log n.

Then we show that on each region Li (and similarly each region Ri) that if there are k =

k(τ̂1:m̂) changepoints, then with probability tending to 1:

max
τ̂1:m̂

{
RSS(yLi ; τ̂1:m̂)−

li∑
t=ui+1

Z2
t

}
> −4 (k + 1) log log n.

Taken together we have, with probability tending to 1, a uniform bound on the difference in

cost between any segmentation with more than m changepoints, that has one change within

c
(α)
n of each true change, and the true segmentation. As such a segmentation can only have,

at most, m̂−m changes in regions Bi this difference is bounded by:

(m̂−m)ε log n− 4(2m+ 3) log log n > ε log n− 4(2m+ 3) log log n,

which is positive for large enough n.

Note that on each region Bi,Li,Ri there are no true changes so any estimated changes we

do fit inside these regions will involve fitting changes to the noise. Take a generic region of

length ñ which contains no true changes. We examine the reduction in the residual sum of

squares when we add 0 and k > 0 estimated changes. Note that in the former case it is true

that:

−RSS(yAi ; τ̂1:m̂) +

ai+ñ∑
t=ai+1

Z2
t =

1

ñ

(
ai+ñ∑
t=ai+1

Zt

)2

,

where A is used as a placeholder to refer to any of the three types of region such that

Ai = {ai + 1, . . . , ai + ñ}. Thus, the negative of the expression of interest is distributed

according to χ2
1. Therefore, for sufficiently large n, the probability that this quantity is

greater than 4 log log n tends to 0.
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So we need focus only on the case where k > 0. Label, without loss of generality, the

estimated changes which lie in the region Ai as τ̂1, . . . , τ̂k, and let:

Diff = RSS(yAi ; τ̂1:m̂)−
ai+ñ∑
t=ai+1

Z2
t .

Then:

Diff =
1

τ̂1 − ai

(
τ̂1∑

t=ai+1

Zt

)2

+ . . .+
1

ai + ñ− τ̂k

(
ai+ñ∑
t=τ̂k+1

Zt

)2

We demonstrate that this difference is less than 2k(1 + ε) log ñ, for any ε > 0. Note that,

collectively, the positive terms in the expression follow a χ2
k+1 distribution. By Laurent and

Massart (2000), for any quantity U which follows a chi-squared distribution with D degrees

of freedom, then for any x > 0:

P
(
U −D ≥ 2

√
Dx+ 2x

)
≤ exp(−x). (3)

Letting D = k+ 1 and x =
d log ñ−

√
(2d log ñ−(k+1))(k+1)

2
, for some d > 0 such that ñ ≥ e

k+1
2d . In

practice d > k (see below) so almost all positive integer values of ñ will be sufficient. With

this choice of x, the LHS of (3) corresponds to P(U > d log ñ), and for large enough ñ (3)

becomes:

P(U ≥ d log n) ≤ ñ−
d
2
+δ, for any δ > 0 (4)

There are then
(
ñ
k

)
possible segmentations of these (incorrectly) fitted changes in this region.

Given that
(
ñ
k

)
< ñk

k!
then by employing a Bonferroni correction, for the best segmentation

involving k changes in the region:
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P(Diff ≥ d log ñ) ≤ ñ−
d
2
+δñk

= ñk+δ−
d
2 → 0 for d = 2k(1 + ε), if we set, for example, δ = ε/2.

(For d = 2k(1 + ε), if δ = ε/2 - as (4) permits any strictly positive value of δ - then

k + δ − d
2

= − (2k − 1) ε/2 < 0.)

Note that this establishes the appropriate bound only in the case where k is fixed and

positive. To obtain the uniform bound over all k, we must sum over all k = 1, ..., ñ.

So for a given ñ and ε:

ñ∑
k=1

P(Diff ≥ 2k (1 + ε) log ñ) ≤
ñ∑
k=1

ñ−(2k−1)ε/2

=
ñ−ε/2

(
1− ñ−ñε

)
1− ñ−ε

→ 0, ∀ε > 0.

This establishes the required results for both regions of type Bi and Li (Ri) by substituting

ñ = λn, λ ≤ 1 and ñ =
⌈
(log n)1+α

⌉
(for α < 1 to obtain the constant 4 in the two initial

statements) respectively.

Hence P(m̂ > m)→ 0.

Proof of (b): Now have that m̂ < m. For n sufficiently large, it is guaranteed that there is

at least one true change (which shall be labelled τ) such that the closest estimated change

is at least
⌈
(log n)1+α

⌉
time points away. Thus, by the proof of Corollary 1.2.1, given that

a change has been missed by this error, adding in estimated changes to the model at the

points τ −
⌈
(log n)1+α

⌉
, τ , τ +

⌈
(log n)1+α

⌉
gives that the reduction in the RSS is greater

than the incurred penalty for adding 3 changes. Thus, the original segmentation was not

optimal.

Hence P(m̂ < m)→ 0.
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Lastly, we need to establish that when m̂ = m, the event that each of the estimated changes is

within
⌈
(log n)1+α

⌉
of a true change tends to 1. Suppose we have a segmentation with m̂ = m

which contains a true change, τi, with no estimated changes within
⌈
(log n)1+α

⌉
. Then by

comparing this segmentation to an equivalent segmentation which also fits estimated changes

at τi −
⌈
(log n)1+α

⌉
, τi, τi +

⌈
(log n)1+α

⌉
, we again obtain a saving of greater than the cost

of adding 3 changes by Yao (1988) and Corollary 1.2.1. �

Note that this result extends naturally to a multivariate analogue:

Lemma 2.1. Take a procedure which exactly minimises the squared error loss for the mul-

tivariate problem:

Yi = εi + µk, for τk−1 + 1 ≤ i ≤ τk, and k ∈ {1, ...,m+ 1}, (5)

where Yi =
(
Y

(1)
i , ..., Y

(d)
i

)T
, ∀i ∈ {1, ..., n}; µk 6= µk+1, ∀k ∈ {1, ...,m}; εi ∼i.i.d.

Nd (0, σ2I), some d. In addition, take the penalty for fitting a change to be (d+ 1) (1 + ε) log n,

for any ε > 0. Then defining Eαn as for Proposition 3.1 for any α > 0 again gives that

P(Eαn )→ 1 as n→∞.

Proof of Lemma 2.1: We define the natural extension of the residual sum of squares in

the multivariate case as:

RSS(y1:n; τ̂1:m̂) =

τ̂1∑
i=1

(yi − µ̂1)
T (yi − µ̂1) + ...+

n∑
i=τ̂m̂+1

(yi − µ̂m̂+1)
T (yi − µ̂m̂+1)

=
m̂+1∑
j=1

τ̂j∑
i=τ̂j−1+1

d∑
k=1

(yi,k − µ̂j,k)2 , with µ̂j,k =
1

τ̂j − τ̂j−1

τ̂j∑
i=τ̂j−1+1

yi,k = ȳj,k.

Using this, we proceed along the same trajectory as for the previous proof. Suppose that m̂

changes are detected by the procedure. Then we first show that:

(a): P(m̂ > m)→ 0,
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(b): P(m̂ < m)→ 0.

Proof of (a): Again let c
(α)
n =

⌈
(log n)1+α

⌉
. Note first that an equivalent result to Corol-

lary 1.2.1 holds in the multivariate case as the residual sum of squares between the points

τi − c
(α)
n and τi + c

(α)
n (where τi is some true change missed by the procedure as before)

satisfies:

RSS
(
y
τi−c

(α)
n +1:τi+c

(α)
n

; ∅
)
−

d∑
k=1

τi+c
(α)
n∑

j=τi−c
(α)
n +1

Z2
j,k

c
(α)
n

=
d∑

k=1

(
µ
(i)
k − µ

(i+1)
k

)2
2

− 1

2c
(α)
n

d∑
k=1

(∑
j

Zj,k

)2

+
Dk

c
(α)
n

→
d∑

k=1

(
µ
(i)
k − µ

(i+1)
k

)2
2

as n→∞,

where Dk is normally distributed with a variance equivalent to the deterministic term scaled

by 4σ2.

Hence, as per the previous proof, we can compare the residual sum of squares of the fit of

a set of estimated changes with m̂ > m across (equivalent) regions Bi,Li,Ri to the null

fit. Across a region bounded by the points (a, b) containing estimated changes τ̂1, ..., τ̂p, the

relevant difference term is:

Diff =
d∑

k=1

 1

τ̂1 − a

(
τ̂1∑

j=a+1

Zj,k

)2

+ ...+
1

b− τ̂p

 b∑
j=τ̂p+1

Zj,k

2 ,
giving that Diff ∼ χ2

d(p+1). A similar argument to before then gives that:

P(Diff ≥ p (d+ 1) (1 + ε) log n)→ 0,

9



and in particular:

n∑
p=1

P(Diff ≥ p (d+ 1) (1 + ε) log n)→ 0.

Hence P(m̂ > m)→ 0.

Proof of (b): This follows immediately from considering the multivariate equivalent to

Corollary 1.2.1 shown above, inferring the presence of a missed change, τi, and fitting three

estimated changes at τi −
⌈
(log n)1+α

⌉
, τi, τi +

⌈
(log n)1+α

⌉
. This segmentation will produce

a lower residual sum of squares than the original with probability approaching 1.

Hence P(m̂ < m)→ 0.

All that remains is to show that this correct number of changes falls within
⌈
(log n)1+α

⌉
.

However, this again follows the same line of reason as for the univariate case by the result

established above. �
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