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Appendix A. Iterated finite element method

The rational approximation uRh,m of the solution u to (1.2) introduced in §3.3
is defined in terms of the discrete operators P`,h = p`(Lh) and Pr,h = pr(Lh)
via (3.5). Since the differential operator L in (3.1) is of second order, their con-
tinuous counterparts P` = p`(L) and Pr = pr(L) in (3.7) are differential operators
of order 2(m + mβ) and 2m, respectively. Using a standard Galerkin approach
for solving (3.7) would therefore require finite element basis functions {ϕj} in the
Sobolev space Hm+mβ (D), which are difficult to construct in more than one space
dimension. This can be avoided by using a modified version of the iterated Hilbert
space approximation method by Lindgren et al. (2011), and in this section we give
the details of this procedure.

Recall from §3.2 that Vh ⊂ V is a finite element space with continuous piecewise
linear basis functions {ϕj}nhj=1 defined with respect to a regular triangulation Th of
the domain D with mesh width h := maxT∈Th diam(T ).

For computing the finite element approximation, we start by factorizing the
polynomials q1 and q2 in the rational approximation r̂ of f̂(x) = xβ−mβ in terms
of their roots,

q1(x) =

m∑
i=1

cix
i = cm

m∏
i=1

(x− r1i) and q2(x) =

m+1∑
j=1

bjx
j = bm+1

m+1∏
j=1

(x− r2j).

We use these expressions to reformulate (3.9) as

x−β = f(x−1) ≈ r̂(x−1)x−mβ =
cm
∏m
i=1(1− r1ix)

bm+1xmβ−1
∏m+1
j=1 (1− r2ix)

,

where, again, we have expanded the fraction with xm. This representation shows
that we can equivalently define the rational SPDE approximation uRh,m as the so-
lution to (3.5) with P`,h, Pr,h redefined as P`,h = bm+1L

mβ−1
h

∏m+1
j=1 (Idh − r2jLh)

and Pr,h = cm
∏m
i=1(Idh − r1iLh), where Idh denotes the identity on Vh.

We use the formulation of (3.5) as a system outlined in (3.6): First we solve
P`,hxh,m =Wh and we then compute uRh,m = Pr,hxh,m. To this end, we define the
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2 SUPPLEMENTARY MATERIAL FOR THE RATIONAL SPDE APPROACH

functions xk ∈ L2(Ω;Vh) for k ∈ {1, . . . ,m+mβ} iteratively by

bm+1(Idh − r21Lh)x1 =Wh,

(Idh − r2kLh)xk = xk−1, k = 2, . . . ,m+ 1,

Lhxk = xk−1, k = m+ 2, . . . ,m+mβ , if mβ ≥ 2,

noting that xm+mβ = xh,m.
By recalling the bilinear form aL from (3.2) and expanding xk =

∑nh
j=1 xkjϕj

with respect to the finite element basis, we find that the stochastic weights xk =
(xk1, . . . , xknh)> satisfy

nh∑
j=1

x1j bm+1

(
(ϕj , ϕi)L2(D) − r21 aL(ϕj , ϕi)

)
= (Wh, ϕi)L2(D),

nh∑
j=1

xkj
(
(ϕj , ϕi)L2(D) − r2k aL(ϕj , ϕi)

)
=

nh∑
j=1

xk−1,j (ϕj , ϕi)L2(D), 2 ≤ k ≤ m+ 1,

nh∑
j=1

xkj aL(ϕj , ϕi) =

nh∑
j=1

xk−1,j (ϕj , ϕi)L2(D), k = m+ 2, . . . ,m+mβ ,

where each of these equations hold for i = 1, . . . , nh. Recall from §3.2 that Wh

is white noise in Vh. This entails the distribution
(
(Wh, ϕi)L2(D)

)nh
i=1
∼ N(0,C),

where C is the mass matrix with elements Cij = (ϕj , ϕi)L2(D) and, therefore,
xk ∼ N

(
0,P−1

`,kCP−>`,k
)
for every k ∈ {1, ...,m + mβ}. Here, the matrix P`,k is

defined by

P`,k =

{
bm+1CLk, k = 1, . . . ,m+ 1,

bm+1C
(
C−1L

)k−m−1
Lm+1, k = m+ 2, . . . ,m+mβ ,

where Lk :=
∏k
j=1

(
I− r2jC

−1L
)
, with identity matrix I ∈ Rnh×nh , and the entries

of L are given by

Lij := aL(ϕj , ϕi) = (H∇ϕj ,∇ϕi)L2(D) +
(
κ2ϕj , ϕi

)
L2(D)

, i, j = 1, . . . , nh,

cf. (3.1)–(3.2). In particular, the weights x of xh,m have distribution

x ∼ N
(
0,P−1

` CP−>`

)
, where P` := P`,m+mβ . (A.1)

Note also that for the Matérn case, i.e., L = κ2 −∆, we have L = κ2C+G, where
G is the stiffness matrix with elements Gij = (∇ϕj ,∇ϕi)L2(D).

To calculate the final approximation uRh,m = Pr,hxh,m, we apply a similar itera-
tive procedure. Let u1, . . . , um be defined by

u1 = cm(Idh − r11Lh)xh,m,

uk = (Idh − r1kLh)uk−1, k = 2, . . . ,m.

Then uRh,m = cm
(∏m

i=1(Id − r1iLh)
)
xh,m = um and the weights uk of uk can be

obtained from the weights of xh,m via uk = Pr,k x, where

Pr,k := cm

k∏
i=1

(
I− r1iC

−1L
)
.
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By (A.1), the distribution of the weights u of the final rational approximation uRh,m
is thus given by

u ∼ N
(
0,PrP

−1
` CP−>` P>r

)
, where Pr := Pr,m.

To obtain sparse matrices P` and Pr, we approximate the mass matrix C by a
diagonal matrix C̃ with diagonal elements C̃ii =

∑nh
j=1 Cij . The effect of this “mass

lumping” was motivated theoretically by Lindgren et al. (2011), and was empirically
shown to be small by Bolin and Lindgren (2013).

Appendix B. Convergence analysis

In this section we give the details of the convergence result stated in Theorem 3.3.
As mentioned in §3.4, we choose r̂ = r̂h as the L∞-best rational approximation of
f̂(x) = xβ−mβ on the interval Jh for each h. We furthermore assume that the
operator L in (3.1) is normalized such that λ1 ≥ 1 and, thus, Jh ⊂ J ⊂ [0, 1].

Recall that Proposition 3.2 provides a bound for ‖u−uh‖L2(Ω;L2(D)). Therefore,
it remains is to estimate the strong error between uRh,m and uh induced by the
rational approximation of f(x) = xβ . To this end, recall the construction of the
rational approximation uRh,m from §3.3: We first decomposed f as f(x) = f̂(x)xmβ ,
where f̂(x) = xβ−mβ , and then used a rational approximation r̂ = q1

q2
of f̂ on the

interval Jh =
[
λ−1
nh,h

, λ−1
1,h

]
with q1 ∈ Pm(Jh) and q2 ∈ Pm+1(Jh) to define the

approximation r(x) := r̂(x)xmβ of f . Here, Pm(Jh) denotes the set of polynomials
q : Jh → R of degree deg(q) = m. In the following, we assume that r̂ = r̂h is the
best rational approximation of f̂ of this form, i.e.,

‖f̂ − r̂h‖C(Jh) = inf
{
‖f̂ − ρ̂‖C(Jh) : ρ̂ = q1

q2
, q1 ∈ Pm(Jh), q2 ∈ Pm+1(Jh)

}
,

where ‖g‖C(J) := supx∈J |g(x)|.
For the analysis, we treat the two cases β ∈ (0, 1) and β ≥ 1 separately. If β ≥ 1,

then β̂ := β−mβ ∈ [0, 1). Thus, if r̂∗ denotes the best rational approximation of f̂
on the interval [0, 1], we find (Stahl, 2003, Theorem 1)

‖f̂ − r̂h‖C(Jh) ≤ sup
x∈[0,1]

|f̂(x)− r̂∗(x)| ≤ Ĉe−2π
√
β̂m,

where the constant Ĉ > 0 is continuous in β̂ and independent of h and the degreem.
Since xmβ ≤ 1 for all x ∈ Jh, we obtain for rh(x) := r̂h(x)xmβ the same bound,

‖f − rh‖C(Jh) ≤ sup
x∈Jh

|f̂(x)− r̂h(x)| ≤ Ĉe−2π
√
β̂m. (B.1)

If β ∈ (0, 1), then β̂ ∈ (−1, 0) and we let r̃ be the best approximation of
f̃(x) := x|β̂| on [0, 1]. A rational approximation of f̃ on the different interval
J̃h := [λ1,h, λnh,h] is then given by R̃h(x̃) := λ

|β̂|
nh,h

r̃(λ−1
nh,h

x̃) with error

sup
x̃∈J̃h

|f̃(x̃)− R̃h(x̃)| ≤ λ|β̂|nh,h sup
x∈[0,1]

|f̃(x)− r̃(x)| ≤ C̃λ|β̂|nh,he
−2π
√
|β̂|m,
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where the constant C̃ > 0 depends only on |β̂|. On Jh =
[
λ−1
nh,h

, λ−1
1,h

]
the function

R̃h(x−1) is an approximation of f̂(x) = xβ̂ = f̃(x−1) and

‖f̂ − r̂h‖C(Jh) ≤ sup
x∈Jh

|f̂(x)− R̃h(x−1)| ≤ sup
x̃∈J̃h

|f̃(x̃)− R̃h(x̃)| ≤ C̃λ|β̂|nh,he
−2π
√
|β̂|m.

Finally, we use again the estimate xmβ ≤ 1 on Jh to derive

‖f − rh‖C(Jh) ≤ ‖f̂ − r̂h‖C(Jh) ≤ C̃λ
|β̂|
nh,h

e−2π
√
|β̂|m. (B.2)

Proposition 3.2 and the estimates (B.1)–(B.2) yield Theorem 3.3, which is proven
below.

Proof of Theorem 3.3. By Proposition 3.2, it suffices to bound E‖uh− uRh,m‖2L2(D).
To this end, let Wh =

∑nh
j=1 ξjej,h be a Karhunen–Loève expansion of Wh, where

{ej,h}nhj=1 are L2(D)-orthonormal eigenvectors of Lh corresponding to the eigenval-
ues {λj,h}nhj=1 and ξj ∼ N(0, 1) i.i.d..

By construction and owing to boundedness and invertibility of Lh, we have
for uRh,m in (3.5) that uRh,m = P−1

`,hPr,hWh = rh(L−1
h )Wh and we estimate

E‖uh − uRh,m‖2L2(D) = E
nh∑
j=1

ξ2
j

(
λ−βj,h − rh(λ−1

j,h)
)2

≤ nh max
1≤j≤nh

∣∣λ−βj,h − rh(λ−1
j,h)
∣∣2.

By (B.1) and (B.2), we can bound the last term by

max
1≤j≤nh

∣∣λ−βj,h − rh(λ−1
j,h)
∣∣2 ≤ ( sup

x∈Jh
|f(x)− rh(x)|

)2

. λ2 max{(1−β),0}
nh,h

e−4π
√
|β−mβ |m.

By (Strang and Fix, 2008, Theorem 6.1) we have λnh,h . λnh . n
2/d
h , for sufficiently

small h ∈ (0, 1), where the last bound follows from the Weyl asymptotic (3.3).
Finally, nh . h−d by quasi-uniformity of the triangulation Th. Thus, we conclude

E‖uh − uRh,m‖2L2(D) . h
−4 max{(1−β), 0}−de−4π

√
|β−mβ |m,

which combined with Proposition 3.2 proves Theorem 3.3. �

Appendix C. A comparison to the quadrature approach

Bolin et al. (2018) proposed another method which can be applied to simulate the
solution u to (1.2) numerically. The approach therein is to express the discretized
equation (3.4) as Lβ̃hL

bβc
h uh = Wh, where β̃ = β − bβc ∈ [0, 1). Since Lbβch uh = f

can be solved by using non-fractional methods, the focus was on the fractional case
β ∈ (0, 1) when constructing the approximative solution. From the Dunford–Taylor
calculus (Yosida, 1995, §IX.11) one has in this case the following representation of
the discrete inverse,

L−βh =
sin(πβ)

π

∫ ∞
0

λ−β (λ Idh + Lh)
−1

dλ.

Bonito and Pasciak (2015) introduced a quadrature approximation Qβh,k of this
integral after a change of variables λ = e−2y and based on an equidistant grid for
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y with step size k > 0, i.e.,

Qβh,k :=
2k sin(πβ)

π

K+∑
j=−K−

e2βyj
(
Idh + e2yjLh

)−1
, where yj := jk.

Exponential convergence of order O
(
e−π

2/(2k)
)
of the operator Qβh,k to the discrete

fractional inverse L−βh was proven for K− :=
⌈

π2

4βk2

⌉
and K+ :=

⌈
π2

4(1−β)k2

⌉
.

By calibrating the number of quadrature nodes with the number of basis func-
tions in the FEM, an explicit rate of convergence for the strong error of the ap-
proximation uQh,k = Qβh,kWh was derived (Bolin et al., 2018, Theorem 2.10). Mo-
tivated by the asymptotic convergence of the method, it was suggested to choose
k ≤ − π2

4β ln(h) in order to balance the errors induced by the quadrature and by
a FEM of mesh size h (Bolin et al., 2018, Table 1). This corresponds to a total
number of K = K− + K+ + 1 > 4β ln(h)2

π2(1−β) quadrature nodes. The analogous result
for the degree m of the approximation uRh,m is given in Remark 3.4, suggesting the

lower bound m ≥ ln(h)2

π2(1−β) , i.e., K = 4βm asymptotically.
Furthermore, if we let cj := e2yj and

PQ`,h :=

K+∏
j=−K−

c−βj (Idh + cjLh) , PQr,h :=
2k sin(πβ)

π

K+∑
i=−K−

∏
j 6=i

c−βj (Idh + cjLh) ,

we find that the quadrature-based approximation uQh,k can equivalently be defined
as the solution to the non-fractional SPDE

PQ`,hu
Q
h,k = PQr,hWh in D. (C.1)

Remark C.1. A comparison of (C.1) with (3.5) illustrates that uQh,k can be seen as
a rational approximation of degree K− + K+, where the specific choice of the co-
efficients is implied by the quadrature. In combination with the remark above that
K = 4βm quadrature nodes are needed to balance the errors, this shows that the
computational cost for achieving a given accuracy with the rational approximation
from §3.3 is lower than with the quadrature method, since β > d/4.

Appendix D. Parameter identifiability

This section contains the proof of Theorem 6.1. For the proof, we will use the
Feldman–Hájek theorem which we restate here from (Da Prato and Zabczyk, 2014,
Theorem 2.25) for convenience.

Theorem D.1 (Felman–Hájek). Two Gaussian measures µ1 = N(m1, C1) and
µ2 = N(m2, C2) on a Hilbert space H are either singular or equivalent. They are
equivalent if and only if the following three conditions are satisfied:

I. Im
(
C1/2

1

)
= Im

(
C1/2

2

)
:= E,

II. m1 −m2 ∈ E,
III. the operator T :=

(
C−1/2

1 C1/2
2

)(
C−1/2

1 C1/2
2

)∗ − I is Hilbert-Schmidt in Ē,
where ∗ denotes the H-adjoint operator, and I the identity on H.

Proof of Theorem 6.1. Since the two Gaussian measures have the same mean, we
only have to verify conditions I. and III. of Theorem D.1.
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We first prove that condition I. can hold only if β1 = β2. To this end, we use the
equivalence of condition I. with the existence of two constants c′, c′′ > 0 such that

(v, C1v)L2(D) ≤ c′(v, C2v)L2(D) and (v, C2v)L2(D) ≤ c′′(v, C1v)L2(D), (D.1)

see, e.g., (Stuart, 2010, Lemma 6.15), where in our case

Ci := Q−1
i = τ−2

i (κ2
i −∆)−2βi , i ∈ {1, 2}.

Let λ∆
j , j ∈ N, denote the positive eigenvalues (in nondecreasing order, counting

multiplicity) of the Dirichlet or Neumann Laplacian −∆: D(∆) → L2(D), where
the type of homogeneous boundary conditions is the same as for L1 and L2. By
Weyl’s law (3.3), there exist constants c, C̄ > 0 such that

c j2/d ≤ λ∆
j ≤ C̄j2/d ∀j ∈ N.

Furthermore, we let {ej}j∈N denote a system of eigenfunctions corresponding to{
λ∆
j

}
j∈N which is orthonormal in L2(D).

Now assume that β2 > β1 and let j0 ∈ N be sufficiently large such that κ2
1 <

C̄j
2/d
0 . Then, we have

(κ2
2 + λ∆

j )2β2

(κ2
1 + λ∆

j )2β1
>

c2β2

(2C̄)2β1
j4(β2−β1)/d ∀j ∈ N, j ≥ j0.

For any N ∈ N, we can thus choose j∗ = j∗(N) ∈ N sufficiently large such that

(ej∗ , C1ej∗)L2(D) = τ−2
1 (κ2

1 + λ∆
j∗)−2β1 > Nτ−2

2 (κ2
2 + λ∆

j∗)−2β2 = N(ej∗ , C2ej∗)L2(D),

in contradiction with the first relation in (D.1), and µ1, µ2 are not equivalent if
β1 6= β2. Furthermore, condition I. is satisfied if β1 = β2 = β > d/4, since then, for
all v ∈ L2(D),

(v, C1v)L2(D) =
∑
j∈N

τ−2
1 (κ2

1 + λ∆
j )−2β(v, ej)

2
L2(D)

≤ τ−2
1 τ2

2

(
min

{
1, κ2

1κ
−2
2

})−2β∑
j∈N

τ−2
2 (κ2

2 + λ∆
j )−2β(v, ej)

2
L2(D)

= τ−2
1 τ2

2 max
{

1, κ−4β
1 κ4β

2

}
(v, C2v)L2(D),

and, similarly, (v, C2v)L2(D) ≤ τ−2
2 τ2

1 max
{

1, κ−4β
2 κ4β

1

}
(v, C1v)L2(D). Thus, (D.1)

and condition I. of Theorem D.1 hold.
Assuming that β1 = β2 = β > d/4, it remains now to show that condition III.

of Theorem D.1 is satisfied if and only if τ1 = τ2. To this end, we first note that
the operator T := C−1/2

1 C2C−1/2
1 − I has eigenfunctions {ej}j∈N and eigenvalues

τ2
1 τ
−2
2 (κ2

1 + λ∆
j )2β(κ2

2 + λ∆
j )−2β − 1, j ∈ N.

Therefore, T is Hilbert–Schmidt in Ē if and only if∑
j∈N

(
τ2
1 τ
−2
2 (κ2

1 + λ∆
j )2β(κ2

2 + λ∆
j )−2β − 1

)2
<∞. (D.2)

Since x 7→ (1 + x)1/(2β) is monotonically increasing in x > 0, again by the Weyl
asymptotic, for any ε0 > 0, we can find an index j0 ∈ N such that

κ2
2

λ∆
j

+ 1 ≤ (1 + ε0)1/(2β) ∀j ∈ N, j ≥ j0. (D.3)
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Assume that τ1 6= τ2 and without loss of generality let τ1 > τ2. Then pick ε0 > 0
such that τ2

1 τ
−2
2 ≥ 1 + 2ε0, and j0 ∈ N such that (D.3) holds. These choices give

τ2
1 τ
−2
2

(
κ2

1 + λ∆
j

κ2
2 + λ∆

j

)2β

≥ τ2
1 τ
−2
2 (κ2

2/λ
∆
j + 1)−2β ≥ (1 + 2ε0)(1 + ε0)−1 > 1,

for all j ∈ N with j ≥ j0. Thus, the series in (D.2) is unbounded,∑
j∈N

(
τ2
1 τ
−2
2 (κ2

1 + λ∆
j )2β(κ2

2 + λ∆
j )−2β − 1

)2 ≥∑
j≥j0

(
(1 + 2ε0)(1 + ε0)−1 − 1

)2
=
∑
j≥j0

ε2
0 (1 + ε0)

−2
=∞.

We conclude that condition III. of Theorem D.1 is not satisfied if τ1 6= τ2.
Finally, let β1 = β2 = β, τ1 = τ2 and assume without loss of generality that

κ2 > κ1 (if κ1 = κ2, (D.2) is evident). By the mean value theorem, applied for the
function x 7→ x2β , for every j ∈ N, there exists κ̃j ∈ (κ1, κ2) such that

(κ2
2 + λ∆

j )2β − (κ2
1 + λ∆

j )2β = 2β(κ̃2
j + λ∆

j )2β−1(κ2
2 − κ2

1).

Hence, we can bound the series in (D.2) as follows,

∑
j∈N

(
(κ2

1 + λ∆
j )2β − (κ2

2 + λ∆
j )2β

(κ2
2 + λ∆

j )2β

)2

= 4β2(κ2
2 − κ2

1)2
∑
j∈N

(
(κ̃2
j + λ∆

j )2β−1

(κ2
2 + λ∆

j )2β

)2

≤ 4β2(κ2
2 − κ2

1)2
∑
j∈N

(κ̃2
j + λ∆

j )−2 ≤ 4β2(κ2
2 − κ2

1)2c−2
∑
j∈N

j−4/d <∞.

Here,
∑
j∈N j

−4/d converges, since 4/d > 1 for d ∈ {1, 2, 3}. This proves equivalence
of the Gaussian measures if β1 = β2 and τ1 = τ2. �
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