
Supplementary Material to: A Fused

Gaussian Process Model for Very Large

Spatial Data

Pulong Ma

Statistical and Applied Mathematical Sciences Institute and Duke University

and

Emily L. Kang

Division of Statistics and Data Science,

Department of Mathematical Sciences, University of Cincinnati

A Illustration of the Timing for Likelihood Evaluations

In what follows, the computational advantages of the proposed method FGP is illustrated by

recording the computing time to evaluate the log-likelihood function. Assuming a Gaussian

process with the exponential function c(h) = σ2 exp(−h/φ)+σ2
ε I(h = 0) with σ2 = 16, φ = 4

and σ2
ε = 4, we simulate data at M regularly spaced locations in the interval [0, 2000] with

M varying between 5,000 and 10 million, using R package RandomFields (Schlather et al.

2015). For the low-rank component in FGP, 16+64+256=336 local bisquare basis functions

are used at three different resolutions; for the GGM component in FGP, the proximity

matrix is constructed based on first order neighbors. As discussed in Section 6, the current

1

FGP model can be extended to allow the assumption of block independence in the GGM

component. The dependence structure across different blocks is controlled by the low-rank

component. We call such method a block fused Gaussian process (Block-FGP) model. In

4-Block-FGP and 8-Block-FGP, the proximity matrices are also constructed based on first

order neighbors, and the size of each block are equal, respectively. The computations are

carried out on a 2-core MacBook Pro with 16 Gigabytes RAM and 2.8 GHz Intel Core i7.

The associated central process unit (CPU) time to evaluate log-likelihood is recorded for

the full Gaussian process, the FGP, 4-Block-FGP, and 8-Block-FGP, respectively when the

number of data points n varies in Figure 1, where the number of data point is chosen to be the

same as the size of graphical model M . Direct computation of the log-likelihood of the full

Gaussian process requires memory O(n2) and computational complexity O(n3). As expected,

when n is large (> 10, 000 in our study), the machine runs out of memory to calculate the

log-likelihood for the full Gaussian process. The associated computation is more efficient

for the FGP and the Block-FGP. For example, as shown in Figure 1, when M = 1 million,

it takes about 14.1, 5.9, and 4.2 seconds for the FGP, 4-Block FGP and 8-Block FGP to

evaluate the associated log-likelihood function, respectively. It is also worth noting that the

for-loop command in MATLAB is used to compute the log-likelihood function sequentially

when the computing time is recorded. Further computational efficiency can be gained by

parallelizing the computation of log-likelihood function in 4-Block-FGP and 8-Block-FGP.

B Covariance Approximations in Section 4.1

We give the covariance plots for simulation examples shown in Section 4.1. As FGP, FRK

and Lattice Krig have nonstationary covariance functions, we only show the estimated covari-

ance matrix on 50-by-50 spatial locations from one simulation experiment for each scenario.

Both Figure 2 and Figure 3 show that the estimated covariance matrices in MK and Lat-

tice Krig have similar patterns as those in EK, while the estimated covariance matrices in

2

5K 10K 50K 100K 500K 1M 2M 5M 10M

M

0.25s

0.8s

3.0s

6.0s

12s

1min

2.5min

C
P

U
 t

im
e

Full GP

FGP

4-Block-FGP

8-Block-FGP

Fig. 1. CPU time for likelihood evaluation. Horizontal axis represents the data size from
5,000 (5K) to 10,000,000 (10M); vertical axis represents the CPU time for likelihood eval-
uation under full Gaussian process, FGP, 4-Block-FGP, and 8-Block-FGP. For Block-FGP,
for-loop command in MATLAB is used to compute the likelihood function. The positions of
dots in the figure are placed based on log transformation for the data size.

FRK and FGP are unstructured. This indicates that FGP is not able to approximate the

target covariance function well, but this does not affect appealing predictive performance

in FGP too much compared to Lattice Krig, since FGP is not designed to approximate a

target covariance function. A limitation in a stochastic model does not necessarily affect the

validity and efficiency of its associated predictive distribution. If the quality of covariance

approximations is the primary target, normalization of basis functions as well as a paramet-

ric covariance assumption for K might be helpful as those in Nychka et al. (2015). We left

this for future research.

C Approximations for the Matérn family

In this section, we give additional examples to investigate the quality of approximations

for the Matérn family through the Kullback-Leibler divergence and predictive performance.

These examples can be served as complements of the simulation results in Section 4.1 in the

main paper. Specifically, we simulate the true field based on the Matérn covariance function

3

Fig. 2. Difference of covariance matrices between each method (MK, FGP, FRK, LK)
and EK on 50-by-50 grid locations in Scenario 1. The parameters in MK, FGP, FRK, LK
are estimated based on 2250 observations as in Section 4.1. White pixels indicate that the
covariance matrix matches the true covariance matrix.

4

Fig. 3. Difference of covariance matrices between each method (MK, FGP, FRK, LK)
and EK on 50-by-50 grid locations in Scenario 2. The parameters in MK, FGP, FRK, LK
are estimated based on 2250 observations as in Section 4.1. White pixels indicate that the
covariance matrix matches the true covariance matrix.

5

with different smoothness parameters and effective range. The variance parameter is set as

σ2 = 16. The smoothness parameter ν takes values from 0.5, 1, 2. The effective range is set

as 10, 20, 30. Then we simulate M = 2500 data points in the domain D ≡ [0, 50]×[0, 50] with

the measurement-error variance σ2
ε = 4. To implement FGP, we choose two resolutions of

basis functions obtained from the R package FRK. The basis functions are equally-spaced over

the domain and are chosen to be the same across the all simulation experiments. The GGM

component is constructed with a CAR model based on first-order neighborhood structure.

Among 2500 simulated data points, we hold out 10% to assess predictive performance, and

use the remaining 90% to estimate model parameters.

To measure the quality of approximations to the covariance structure of spatial data,

we focus on evaluating the influence of the covariance structure on the Kullback-Leibler

(KL) divergence. For two nonsingular multivariate normal distributions N0 ≡ N (µ0,Σ0)

and N1 ≡ N (µ1,Σ1) on Rn with positive definite covariance matrices Σ0 and Σ1, the KL

divergence of N (µ1,Σ1) from N (µ0,Σ0) is

KL(N0,N1) = {tr(Σ−1
1 Σ0) + (µ1 − µ0)′Σ−1(µ1 − µ0)− log |Σ−1

1 Σ0| − n}/2. (C.1)

Since we consider the zero-mean spatial process in the simulation examples here, the second

term on the right-hand side of (C.1) drops out. Figure 4 shows that the KL divergence

(in log scale) varies according to the effective range, and there are some discrepancies when

FGP is used to approximate the Matérn covariance function. We can also see that if ν is

small, FGP can better approximate the Matérn covariance function. If the correlation in the

true process is weak, FGP can better approximate the Matérn covariance function. Table 1

shows the summary of prediction results. We can see that FGP can give better prediction

results when ν = 0.5 is used in the Matérn covariance function. When the correlation in the

true process is weak, FGP can give better prediction results.

6

10 12 14 16 18 20 22 24 26 28 30
effective range

4.5

5

5.5

6

6.5

7
lo

g(
KL

)

=0.5
=1
=2

Figure 4: Kullback-Leibler divergence for approximating the Matérn family.

Table 1. Prediction results under the Matérn family.

Effective Range = 10

ν = 0.5 ν = 1 ν = 2

MSPE
EK 4.8380 5.4859 5.8809

FGP 5.0870 5.8253 6.4003

CRPS
EK 1.2299 1.3061 1.3496

FGP 1.2561 1.3463 1.4134

Effective Range = 20

ν = 0.5 ν = 1 ν = 2

MSPE
EK 2.7337 2.1815 1.6532

FGP 2.9420 2.5004 2.1806

CRPS
EK 0.9252 0.8247 0.7181

FGP 0.9559 0.8889 0.8463

Effective Range = 30

ν = 0.5 ν = 1 ν = 2

MSPE
EK 1.9694 1.2847 0.8341

FGP 2.1637 1.5513 1.1703

CRPS
EK 0.7857 0.6332 0.5112

FGP 0.8208 0.7026 0.6247

7

D Performance Under a Nonstationary Spatial Field

To generate a nonstationary random field with a rough sample path, we simulate the hidden

process Y (·) as follows. The hidden process Y (·) is defined as Y (s) = −3f(s1)f(s2)g(s)

in the domain D = [−1500, 1500] × [−1500, 1500], where s = (s1, s2)T ∈ D; f(·) is the

same as in Section 4.2; and g(·) is a Gaussian random field with the exponential covariance

function cov(g(s), g(u)) = exp(−‖s− u‖/200). We first generate the true process Y (·) at a

100×100 regular grid in D; see the upper-left panel of Figure 5. The data are then obtained

by adding a measurement-error process ε(·) such that the signal-to-noise ratio is 10. To

evaluate predictive performance, we hold out data falling into the same rectangular region

as in Section 4.2, and then we hold out 2,000 randomly selected remaining locations. These

two types of testing locations can be used to test long-range and short-range prediction skills,

respectively.

Following Section 4.2, we fit six models CAR, NNGP, Lattice Krig, FRK with r = 9+81 =

90 regularly-spaced basis functions at two different resolutions, FRK with r = 9+81+687 =

777 regularly-spaced basis functions at three different resolutions, and FGP with r = 90

basis functions and first order neighborhood structure in GGM component. Notice that

the FRK is implemented with regularly-spaced basis functions using the R package FRK

in this example, since using the default setting in FRK will give numerical instabilities

and hence the results with default setting in the R package FRK are not reported here.

The other models are implemented in the same way as in Section 4.2. In this example,

we also found that FGP gives the best prediction results among all six models. As the

simulated true field is inherited from a stationary exponential field, we can expect better

results for local methods such as the NNGP and the CAR model, but the NNGP and the

CAR model cannot capture the nonstationary dependence structure. Lattice Krig gives

much better results than CAR, NNGP, and FRK, but it does not perform as well as FGP in

this example. The results from FRK show similar conclusions as in Section 4.2. So, FGP is

8

better to capture nonstationary dependence structures. Figure 5 shows that FGP can well

capture the nonstationary structure for this non-smooth underlying true field. Overall, these

numerical results imply that FGP performs well to capture complicated spatial dependence

structure and provides a competing approach to existing methods for analyzing very large

spatial data.

Simulated true field

-1500 0 1500

-1500

0

1500

-10

-5

0

5
Simulated observations

-1500 0 1500

-1500

0

1500

-10

-5

0

5

Predictions in FGP

-1500 0 1500

-1500

0

1500

-10

-5

0

5
Standard errors in FGP

-1500 0 1500

-1500

0

1500

0

1

2

Fig. 5. A simulated dataset and prediction results from FGP. The upper-left panel shows
the underlying true field Y (·) evaluated at 100×100 locations. The upper-right panel shows
the observations by adding random measurement errors to Y (·). Locations with observations
held out are colored white. The bottom-left panel shows the spatial predictions from Y (·)
in FGP, while the bottom-right panel plots the corresponding standard errors.

E Proof of Proposition 1

For any n×n invertible matrix E and r× r invertible matrix F, we have Sherman-Morrison-

Woodbury formula (Henderson and Searle 1981),

(E + UFV)−1 = E−1 − E−1U(F−1 + VE−1U)−1VE−1.

Then the first equation for matrix inversion can be derived by letting E = D, U = S,V = S′.

D can be inverted using Sherman-Morrison-Woodbury formula as well. According to the

9

Table 2. Results under a non-smooth true field. The average of RMSPEs and the average
of CRPSs over 15 simulations are reported for each model with corresponding standard
deviations included in the parenthesis. The average computing time over 15 simulations for
each model is also reported.

Model CAR NNGP Lattice Krig
FRK FGP

r = 90 r = 777 r = 90

RMSPE
1.3491 1.2907 1.2653 1.3123 1.7398 1.1050

(0.002) (0.009) (0.004) (0.007) (0.183) (0.032)

CRPS
0.7127 1.0773 1.0601 1.1980 1.2260 0.5936

(0.002) (0.018) (0.010) (0.026) (0.066) (0.012)

Time (mins) 0.20 42.3 1.90 0.21 0.85 1.73

Matrix Determinant Lemma, the determinant of matrix E + UFV can be calculated as

follows:

|E + UFV| = |F−1 + VE−1U||F||E|.

Thus, the log-determinant equation can also be easily verified after taking the logarithm of

both sides.

F The EM Algorithm in the FGP Model

This section gives details for EM algorithm to estimate parameters. Recall that the variance

of measurement error is not estimated in EM algorithm, since this quantity is usually known

from the experiment in advance. If it is unknown, a straight line can be fitted near origin for

the empirical semivariograms as suggested in Kang et al. (2010). We treat the random vector

η as “missing data”. The EM algorithm attempts to maximize the complete log-likelihood

function lnL(θ|η,Z) iteratively, by replacing it with its conditional expectation of η given

the observed data Z. The complete twice negative log-likelihood function is given by

−2 lnL(θ|η,Z) = (n+ r) ln(2π) + ln |AQ−1A′ + Vε|+ ln |K|

+ (Z−Xβ)′D(Z−Xβ)− 2(Z−Xβ)′DSη + η′S′DSη + η′K−1η.

10

Given the parameter estimates θt, the EM algorithm consists of an E-step followed by an

M-step defined as follows, for t = 0, 1, . . .:

E-step: Compute Q(θ;θt):

−2Q(θ;θt) = Eη|Zt,θt [−2 lnL(θ|η,Z)]

= (n+ r) ln(2π) + ln |AQ−1A′ + Vε|+ ln |K|+ (Z−Xβ)′D(Z−Xβ)

− 2(Z−Xβ)′DSµη|Z,θt
+ tr{(K−1 + S′DS)Ση|Z,θt}

+ µ′η|Z,θt
(K−1 + S′DS)µη|Z,θt

,

where µη|Z,θt
= E(η|Z,θt) = KtS

′C−1
t (Z − Xβt), and Ση|Z,θt = var(η|Z,θt) = Kt −

KtS
′C−1

t SK′t, with Ct ≡ SKtS
′+AQ−1

t A′+Vε, Qt ≡∆−1(I−γtH)/τ 2
t , and D ≡ (AQ−1A′+

Vε)
−1

M-step: Find θt+1 in parameter space Θ such that

θt+1 = Arg sup
θ∈Θ

Q(θ;θt).

The E-step and the M-step are repeated alternately until convergence, for example, the

iteration procedure can be stopped if ‖θt+1 − θt‖2 < ζ for some pre-specified value ζ > 0,

e.g., ζ = 10−6r2. In M-step, taking derivative of −2Q(θ;θt) with respect to β and K, and

setting it to zero, we get

β̂ = (X′DX)−1X′D(Z− Sµη|Z,θt
) (F.1)

Kt+1 = Ση|Z,θt + µη|Z,θt
· µ′η|Z,θt

(F.2)

where close-form formula is available to update K. β̂ depends on τ 2 and γ through D.

The formula of β̂ in Eq. (F.1) can be plugged into the optimization function −2Q(θ;θt) to

obtain a function that only depends on parameters τ 2, γ. So, to obtain parameter updates

11

for τ 2
t+1, γt+1, it suffices to minimize the following function with respect to τ 2 and γ:

f(τ 2, γ) = ln |AQ−1A′ + Vε|+ Z̃′DZ̃− 2Z̃′DSµη|Z,θt
(F.3)

+ tr{S′DSΣη|Z,θt}+ µ′η|Z,θt
S′DSµη|Z,θt

,

where Z̃ ≡ Z − Xβ̂. The optimal values for τ 2 and γ can be plugged into the formula

Eq. (F.1) to obtain parameter updates for βt+1 in the EM algorithm.

The minimization of the function f(τ 2, γ) is carried out in each iteration of EM algorithm,

which requires more time for the EM algorithm to converge. In order to make the EM

algorithm converge faster, the SQUAREM algorithm can be used for parameter estimation,

which accelerates EM algorithm through Akein’s acceleration (for details, see Berlinet and

Roland 2007; Varadhan and Roland 2008).

The initial value for parameter τ 2 can be set to 0.1σ̂2
Z, where σ̂2

Z is the empirical variance

in the data Z. The initial value for γ is restricted to the fixed interval (1/λ1, 1/λM), where

λ1, λM are smallest and largest eigenvalues for the proximity matrix H. Initial value for

matrix K can be set to a r×r diagonal matrix 0.9σ̂2
ZIr, which can ensure that the covariance

matrix K is updated with a positive definite matrix in every iteration of EM algorithm. Given

these initial values for the parameters, the EM algorithm will update these parameters in

each iteration. The convergence of the EM algorithm can be determined by monitoring

the negative log-likelihood function or the difference of parameter values at two consecutive

iterations.

References

Berlinet, A. and Roland, C. (2007). “Acceleration schemes with application to the EM

algorithm”. Computational Statistics and Data Analysis, 51(8):3689–3702.

Henderson, H. V. and Searle, S. R. (1981). “On deriving the inverse of a sum of matrices”.

Siam Review, 23(1):53–60.

12

Kang, E. L., Cressie, N., and Shi, T. (2010). “Using temporal variability to improve spatial

mapping with application to satellite data”. Canadian Journal of Statistics, 38(2):271–289.

Nychka, D., Bandyopadhyay, S., Hammerling, D., Lindgren, F., and Sain, S. (2015). “A

multiresolution Gaussian process model for the analysis of large spatial datasets”. Journal

of Computational and Graphical Statistics, 24(2):579–599.

Schlather, M., Malinowski, A., Menck, P. J., Oesting, M., and Strokorb, K. (2015). “Analysis,

simulation and prediction of multivariate random fields with package RandomFields”.

Journal of Statistical Software, 63(8).

Varadhan, R. and Roland, C. (2008). “Simple and globally convergent methods for ac-

celerating the convergence of any EM algorithm”. Scandinavian Journal of Statistics,

35(2):335–353.

13

	Illustration of the Timing for Likelihood Evaluations
	Covariance Approximations in Section 4.1
	Approximations for the Matérn family
	Performance Under a Nonstationary Spatial Field
	Proof of Proposition 1
	The EM Algorithm in the FGP Model

