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A. Iterative algorithms for univariate linear mixed

models in Section 3.1

A.1. DTA-based iterative algorithms

To sample the full posterior p(A,β|yobs) ∝ L(A,β; yobs)IA>0, Kelly (2014) proposes the
following DTA-based Gibbs-type algorithm that iteratively samples [yaug|yobs, A,β] and
[A,β|yaug]. These two conditional distributions can be directly sampled from standard
family distributions:

[yaugi | yobsi , A,β] ∼ N1

(
(1− wiBi)y

obs
i + wiBix

>
i β, wiVmin + w2

i Vi(1−Bi)
)
,

[A | yaug] ∼ IG
(

(k −m− 2)/2, (yaug −Xβ̂)>(yaug −Xβ̂)/2
)

for A > Vmin,

[β | A, yaug] ∼ Nm

(
β̂, (A+ Vmin)(X>X)−1

)
,

(20)

where wi = 1 − Vmin/Vi, Bi = Vi/(Vi + A), yaug = (yaug1 , . . . , yaugk )>, IG(a, b) denotes the
inverse-Gamma distribution with shape parameter a and scale parameter b, X is a k by m
matrix whose row vector is x>i , and β̂ = (X>X)−1X>yaug. The second step in (20) can be
achieved by repeatedly sampling A from the inverse-Gamma distribution until A > Vmis or
by an inverse CDF sampling method if its cumulative distribution function and quantile
function are available; also see Appendix of Everson and Morris (2000).

Kelly (2014) also derives the corresponding DTA-based EM algorithm for the poste-
rior modes (or maximum likelihood estimates) of A and β by constructing the following
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Q function in the E-step: Since [yaugi |A,β] ∼ N1(x
>
i β, A+ Vmin) under DTA,

Q(A, β | A∗,β∗) =
k∑

i=1

E(log(f(yaugi | A,β)) | yobs, A∗,β∗),

= −k
2

log(A+ Vmin)−
∑k

i=1E
(
(yaugi − x>i β)2 | yobs, A∗,β∗

)
2(A+ Vmin)

,

where A∗ and β∗ are the values that have maximized the Q function in the previous
iteration. The conditional expectation in the second equality can be computed by

E
(
(yaugi − x>i β)2 | yobs, A∗,β∗

)
=
(
E(yaugi | yobs, A∗,β∗)− x>i β

)2
+Var(yaugi | yobs, A∗,β∗),

where the conditional mean and variance on the right-hand side, i.e., E(yaugi | yobs, A∗,β∗)
and Var(yaugi | yobs, A∗,β∗), are specified in (20). Maximizing this Q function with respect
to β and A results in the following M-step with closed-form updates for β and A:

Step 1: β′ ← (X>X)−1X>E(yaug | yobs, A∗,β∗),

Step 2: A′ ← max

{
1

k

k∑
i=1

E
(
(yaugi − x>i β′)2 | yobs, A∗,β∗

)
− Vmin, 0

}
,

Step 3: (β∗, A∗)← (β′, A′).

A.2. DA-based iterative algorithms

We treat the random effects θ = (θ1, . . . , θk)> as missing data, which is typical in fitting
hierarchical or mixed-effects models via DA-based iterative algorithms (van Dyk, 2000).
The resulting DA-based Gibbs algorithm iteratively samples

[θi | yobsi , A,β] ∼ N1

(
(1−Bi)y

obs
i +Bix

>
i β, Vi(1−Bi)

)
,

[A | θ, yobs] ∼ IG
(

(k −m− 2)/2, (θ −Xβ̂DA)>(θ −Xβ̂DA)/2
)
,

[β | A, θ, yobs] ∼ Nm

(
β̂DA, A(X>X)−1

)
,

(21)
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where β̂DA = (X>X)−1X>θ. Kelly (2014) also shows a DA-based EM algorithm that
corresponds to the Gibbs sampler in (21). Its E-step computes the Q function as follows:

Q(A,β | A∗,β∗) =
k∑

i=1

E(log(f(θi | A,β)) | yobs, A∗,β∗)

= −k
2

log(A)−
∑k

i=1E
(
(θi − x>i β)2 | yobs, A∗,β∗

)
2A

,

where

E
(
(θi − x>i β)2 | yobs, A∗,β∗

)
=
(
E(θi | yobs, A∗,β∗)− x>i β

)2
+Var(θi | yobs, A∗,β∗). (22)

The conditional mean and variance on the right-hand side of (22) are specified in (21).
The resulting M-step sets β∗ and A∗ to the values that maximize this Q function and these
values are also closed-form updates as follows:

Step 1: β′ ← (X>X)−1X>E(θ | yobs, A∗,β∗),

Step 2: A′ ← 1

k

k∑
i=1

E
(
(θi − x>i β)2 | yobs, A∗,β∗

)
,

Step 3: (β∗, A∗)← (β′, A′).

B. Iterative algorithms for multivariate linear mixed

models in Section 3.2

B.1. DTA-based iterative algorithms

The joint posterior distribution p(A,β|yaug) factors into the following two conditional
distributions, p(A,β|yaug) = p1(A, |yaug)p2(β|A,yaug), and these can be directly sampled
via inverse-Wishart and multivariate Gaussian distributions in a homoscedastic case. A
DTA-based Gibbs-type algorithm specified in (3) iteratively samples the following three
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conditional distributions.

[yaug
i | yobs

i ,A,β] ∼ Np

(
(1−WiBi)y

obs
i +WiBiXiβ, VminW

>
i +Wi(1−Bi)V iW

>
i

)
,

[A+ Vmin | yaug] ∼ IW

(
k −m− p− 1,

k∑
i=1

(yaug
i −Xiβ̂DTA)(yaug

i −Xiβ̂DTA)>

)
,

[β | A,yaug] ∼ Nmp

β̂DTA,

(
k∑

i=1

X>i (A+ Vmin)−1Xi

)−1 ,

(23)

where Bi = V i(V i+A)−1, IW(a, b) indicates the inverse-Wishart distribution with a degrees
of freedom and scale matrix b, and

β̂DTA =

(
k∑

i=1

X>i (A+ Vmin)−1Xi

)−1 k∑
i=1

X>i (A+ Vmin)−1yaug
i .

To sample A instead of A + Vmin in the middle of (23), we repeatedly draw a random
sample K from the inverse-Wishart distribution in (23) until |K −Vmin| > 0, and then set
A to K − Vmin.

We specify the corresponding DTA-based EM algorithm by constructing the Q function
for the E-step, using the marginal distribution [yaug

i |A,β] ∼ Np(Xiβ, A+ Vmin):

Q(A,β | A∗,β∗) =
k∑

i=1

E
(
log(f(yaug

i | A,β)) | yobs,A∗,β∗
)

= −k
2

log(|A+ Vmin|)−
1

2

k∑
i=1

E
(
(yaug

i −Xiβ)>(A+ Vmin)−1(yaug
i −Xiβ) | yobs,A∗,β∗

)
.

(24)

The conditional expectation of a quadratic form in the second equality is equivalent to

E
(
(yaug

i −Xiβ)>(A+ Vmin)−1(yaug
i −Xiβ) | yobs,A∗,β∗

)
=
(
E(yaug

i | yobs,A∗,β∗)−Xiβ
)>

(A+ Vmin)−1
(
E(yaug

i | yobs,A∗,β∗)−Xiβ
)

== + trace
[
(A+ Vmin)−1Cov(yaug

i | yobs,A∗,β∗)
]
.

(25)

The conditional expectation and covariance of yaug
i on the right-hand side in (25), i.e.,

E(yaug
i | yobs,A∗,β∗) and Cov(yaug

i | yobs,A∗,β∗), are specified in (23).
The M-step updates A∗ and β∗ by the values that maximize the Q function in (24),
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which results in the following four steps for closed-form updates:

Step 1: β′ ←

(
k∑

i=1

X>i Xi

)−1 k∑
i=1

X>i E(yaug
i | yobs,A∗,β∗).

Step 2: Atemp ←
1

k

k∑
i=1

{(
E(yaug

i | yobs,A∗,β∗)−Xiβ
′) (E(yaug

i | yobs,A∗,β∗)−Xiβ
′)>

========== + Cov
(
yaug
i | yobs,A∗,β∗

)}
− Vmin.

Step 3: A′ ← Atemp if |Atemp| > 0 and A∗ ← 0p otherwise.

Step 4: (β∗,A∗)← (β′,A′).

The notation 0p in Step 3 indicates a p by p matrix filled with zeros.

B.2. DA-based iterative algorithms

In a typical DA scheme, we treat the random effects, θ ≡ {θ1, . . . ,θk}, as missing data,
and thus the augmented data in this case are yaug = (yobs,θ). The full posterior density
function of [θ,β,A|yobs] can be derived up to a constant multiplication, i.e.,

π(θ,β,A | yobs) ∝
k∏

i=1

f(yobs
i | θi)p(θi | β,A)I|A|>0,

where [yobs
i |θi] and [θi|A,β] are defined in (11). Similarly to the DTA-based Gibbs sampler

in (23), the DA-based one iteratively samples the following conditional distributions:

[θi | yobs
i ,A,β] ∼ Np

(
(1−Bi)y

obs
i +BiXiβ, (1−Bi)V i

)
,

[A | θ,yobs] ∼ IW

(
k −m− p− 1,

k∑
i=1

(θi −Xiβ̂DA)(θi −Xiβ̂DA)>

)
,

[β | A,θ,yobs] ∼ Nmp

β̂DA,

(
k∑

i=1

X>i A
−1Xi

)−1 ,

(26)

where Bi = V i(V i +A)−1 and

β̂DA =

(
k∑

i=1

X>i A
−1Xi

)−1 k∑
i=1

X>i A
−1θi.
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The corresponding DA-based EM algorithm adopts the following Q function for the
E-step, using the distribution of missing data, [θi|A,β] ∼ Np(Xiβ, A):

Q(A,β |A∗,β∗) =
k∑

i=1

E(log(f(θi | A,β)) | yobs,A∗,β∗),

= −k
2

log(|A|)− 1

2

k∑
i=1

E
(
(θi −Xiβ)>A−1(θi −Xiβ) | yobs,A∗,β∗

)
.

(27)

The conditional expectation of a quadratic form on the right-hand side in (27) can be
computed by

E
(
(θi −Xiβ)>A−1(θi −Xiβ) | yobs,A∗,β∗

)
=
(
E(θi | yobs,A∗,β∗)−Xiβ

)>
A−1

(
E(θi | yobs,A∗,β∗)−Xiβ

)
== + trace

[
A−1Cov(θi | yobs,A∗,β∗)

]
.

(28)

The conditional expectation and covariance of θi given yobs,A,β in (28) are specified
in (26).

Like the M-step under DTA in (24), the M-step under DA updates A∗ and β∗ by the
values that maximize the Q function in (27) via the following three steps:

Step 1: β′ ←

(
k∑

i=1

X>i Xi

)−1 k∑
i=1

X>i E(θi | yobs,A∗,β∗).

Step 2: A′ ← 1

k

k∑
i=1

{(
E(θi | yobs,A∗, β∗)−Xiβ

′) (E(θi | yobs,A∗,β∗)−Xiβ
′)>

======== + Cov
(
θi | yobs,A∗,β∗

)}
.

Step 3: (β∗,A∗)← (β′,A′).

C. The DTA scheme for the Beta-Binomial model in

Section 4

Given the homoscedastic augmented data yaug, we reproduce the approximate marginal
posterior density p∗(β | yaug) from (17): With g(l) = nk + c+ l,

p∗(β | yaug) =
st∑

i=s1

ft∑
j=f1

km1+m2∑
l=0

aibjc
∗
lB(g(l)− i− 1, i+ 1)

βj

(β + nmax)g(l)−i−1
,
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where s1 denotes the number of groups with at least one success, st is the total number
of successes (st =

∑k
i=1 y

aug
i ), f1 indicates the number of groups with at least one failure,

and ft is the total number of failures (ft =
∑k

i=1(n − yaugi )). If we transform β into
B = β/(β + nmax), the corresponding density function with respect to B is as follows:
With the Jacobean J = nmax/(1−B)2,

p∗(B | yaug) =
st∑

i=s1

ft∑
j=f1

km1+m2∑
l=0

aibjc
∗
lB(g(l)− i− 1, i+ 1)

Bj(1−B)g(l)−i−j−3

n
g(l)−i−j−1
max

.

Thus, each mixture component is composed of the Beta(j + 1, g(l) − i − j − 2) density
function and the corresponding coefficient (that is proportional to its weight) equal to

aibjc
∗
lB(g(l)− i− 1, i+ 1)B(j + 1, g(l)− i− j − 2)n−(g(l)−i−j−1)max . (29)

We can easily generate B = β/(β+nmax) via a two-step procedure; (i) we randomly choose
a combination of (i, j, l) according to its weight defined in (29), and (ii) given the selected
values of (i, j, l), we can generate B from the Beta(j + 1, g(l) − i − j − 2) distribution.
Finally, we set β = nmaxB/(1−B) that is a random number generated from p∗(β|yaug).

Given the random number from p∗(β|yaug), we need to sample p∗(α|yaug, β) that is
proportional to p∗(α, β|yaug) in (16), i.e.,

p∗(α | yaug, β) ∝
st∑

i=s1

ft∑
j=f1

km1+m2∑
l=0

aibjc
∗
l

αiβj

(α + β + nmax)g(l)
.

Once we transform α to A = α/(α + β + nmax), we obtain the following density function
with the Jacobean J = (β + nmax)/(1− A)2:

p∗(A | yaug, β) ∝
st∑

i=s1

ft∑
j=f1

km1+m2∑
l=0

aibjc
∗
l

βj

(β + nmax)g(l)−i−1
Ai(1− A)g(l)−i−2

=

(
ft∑

j=f1

bjβ
j

)(
st∑

i=s1

km1+m2∑
l=0

aic
∗
l

1

(β + nmax)g(l)−i−1
Ai(1− A)g(l)−i−2

)

∝
st∑

i=s1

km1+m2∑
l=0

aic
∗
l

1

(β + nmax)l−i−1
Ai(1− A)g(l)−i−2.

(30)

Then, the density with respect to A is a mixture of the Beta(i + 1, g(l)− i− 1) densities
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with its coefficient (weight) equal to

aic
∗
l

B(i+ 1, g(l)− i− 1)

(β + nmax)l−i−1
. (31)

Sampling α from p∗(α | yaug, β) is a three-step procedure; (i) a combination of (i, l) is
randomly selected according to its weight in (31), (ii) a value of A is randomly generated
from the Beta(i+ 1, g(l)− i− 1) distribution given the chosen values of (i, l), and finally
(iii) α is set to (nmax + β)A/(1− A).

Therefore, the proposed augmentation scheme for heteroscedastic Binomial data results
in a Gibbs-type algorithm that iterates for following five steps:

Step 1: Sample θi ∼ Beta(yobsi + α, ni − yobsi + β) for i = 1, . . . , k.

Step 2: Sample ymis
i ∼ Bin(nmax − ni, θi) for i = 1, . . . , k.

Step 3: Set yaugi = yobsi + ymis
i for i = 1, . . . , k.

Step 4: Sample β from p∗(β | yaug).
Step 5: Sample α from p∗(α | yaug, β).

We note that Steps 1–3 are corresponding to the first two steps of (2), and Steps 4–5 are
related to the last step of (2).
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