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In this supplementary note, we include the details about the efficient projection onto

the set of “symmetric c-diagonally-dominant” matrices in Appendix A and the proposed

two-block ADMM for solving the convex relaxation of Exact DD-PCA in Appendix B.

A Efficient projection onto SDD+
c

Recall that S is the set of symmetric matrices and DD+
c is the set of c-diagonally-dominant

matrices with nonnegative diagonal entries. Now, we present the (Euclidean) projection of

a matrix A onto the convex cone SDD+
c or DD+

c , denoted by PSDD+
c

(A) or PDD+
c

(A).

Algorithm 1. Mendoza-Raydan-Tarazaga (MRT) Algorithm

Given a p × p matrix A, where the jth row of A is denoted by aj. For 1 ≤ j ≤ p, the

jth row of the projection X, denoted by xj, is given by

• If ajj ≥
∑

l:l 6=j |ajl|, then xj = aj.
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• If −
∑

l:l 6=j |ajl| ≤ ajj < 0 and |ajj| > |ajl| for all l 6= j, or ajj < −
∑

l:l 6=j |ajl|, then

xj = 0.

• If −
∑

l:l 6=j |ajl| ≤ ajj < 0 and |ajj| ≤ |ajl| for some l 6= j, or 0 ≤ ajj <
∑

l:l 6=j |ajl|,

then xj is generated as follows:

1. Sort |aj|, excluding ajj, in the ascending order, and denote the reordered vector

as e. Note that ej = ajj and |ei| ≤ |el| for all i < l, i 6= j, l 6= j.

2. For m 6= j, compute dm =
∑p

l=m |el| · I{j 6=l} − ej and d̄m = dm/(p − m + 1) ·

I{m<j} + dm/(p−m+ 2) · I{m>j}

3. Solve m? as the smallest integer among m = 1, . . . , p such that m 6= j, |em| > 0

and |em| ≥ d̄m

4. Solve xj = (xj1, . . . , xjp) such that xjj = ajj + d̄m∗; xji = (aji − d̄m∗)+ if aji ≥ 0

for i 6= j; xji = −(aji + d̄m∗)− if aji < 0 for i 6= j, where (z)+ = max{z, 0} and

(z)− = −min{z, 0}.

Mendoza et al. (1998) applied Dykstra’s alternating projection algorithm between DD+

and S to obtain the projection on SDD+. The algorithm is summarized in Algorithm 2.

Algorithm 2. Efficient Projection onto SDD+

Given a p× p matrix A,

• Let G(0) = A and I(0) = 0

• For t = 1, 2, . . .

– G(t) = PDD+

(
1
2
(G(t−1) + (G(t−1))T )− I(t−1)

)
– I(t) = G(t) −

(
1
2
(G(t−1) + (G(t−1))T )− I(t−1)

)
• Stop if the convergence criterion is met.

When c = 1, the convergence result of Algorithm 2 can be similarly established as in

Boyle and Dykstra (1986) such that the iterated solutions converge in the Frobenius norm

to the unique solution of the projection on SDD+. More details can be found in Mendoza

et al. (1998). When c 6= 1, MRT algorithm can’t be directly used. In this case, we obtain
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PDD+
c

(A) through Quadratic Programming (QP). The key observation is that the problem

can be separated as p independent row-wise projection. For each 1 ≤ j ≤ p, the jth row

projection can be written as

min
v1,...,vp

p∑
i=1

(aji − vi)2 s.t. vj ≥ c
∑
i:i 6=j

|vi| (1)

and the solution (v1, . . . , vp) would be the jth row of PDD+
c

(A). We can reformulate (1) as

min
δ1,...,δp

p∑
i=1

δ2i s.t. ajj − δj ≥ c
∑
i:i 6=j

|aji − δi| (2)

It’s easy to see that for i 6= j, we should let sign(δi) = sign(aji) and |δi ≤ aji|, and hence

|aji− δi| = |aji| − |δi|. Without loss of generality, we assume aji ≥ 0 for all i 6= j so we can

restrict δi ≥ 0 for all i 6= j. Then (2) becomes

min
δ1,...,δp

p∑
i=1

δ2i s.t. ajj − δj ≥ c
∑
i:i 6=j

(aji − δi), aji ≥ δi ≥ 0 for all i 6= j (3)

which is a QP problem and can be solved using standard solver.

B Convex relaxation and ADMM for Exact DD-PCA

The exact DD-PCA is difficult to solve due to the nonconvex rank minimization. Consider

the following convex relaxation of the exact DD-PCA:

min
(L,A)

‖L‖∗ subject to S = L + A, A ∈ SDD+. (4)

where ‖ · ‖∗ is the matrix nuclear norm.

Given the efficient projection onto DD+ in Algorithm 1, we introduce a new variable B,

satisfying the equality that A = B, to separate the symmetric and diagonally-dominant

constraints as follows:

min
L,A
‖L‖∗ + IA∈DD+ + IB=BT subject to S = L + A, A−B = 0

where IC is the indicator function which equals to 0 if condition C is satisfied, and equals

to infinity otherwise (Boyd and Vandenberghe, 2004).
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We define the following augmented Lagrange function:

Lρ(L,A,B,Λ1,Λ2) = ‖L‖∗ + IA∈DD+ + IB=BT +
ρ

2
(‖A−B‖2F + ‖L + A− S‖2F )

+〈Λ1,A−B〉+ 〈Λ2,L + A− S〉

where Λ1 and Λ2 are the Lagrangian multipliers associated with the equality constraints,

and ρ is a given penalty parameter. We propose an efficient ADMM to solve the exact

DD-PCA from Lρ(L,A,B,Λ1,Λ2), which proceeds as follows till convergence:

L step : L(t) = arg min
L
Lρ(L,A(t−1),B,Λ

(t−1)
1 ,Λ

(t−1)
2 )

B step : B(t) = arg min
B
Lρ(L,A(t−1),B,Λ

(t−1)
1 ,Λ

(t−1)
2 )

A step : A(t) = arg min
A
Lρ(L(t),A,B(t),Λ

(t−1)
1 ,Λ

(t−1)
2 )

Λ1 step : Λ
(t)
1 = Λ

(t−1)
1 + ρ(A(t) + L(t) − S)

Λ2 step : Λ
(t)
2 = Λ

(t−1)
2 + ρ(A(t) −B(t))

Our proposed ADMM is a two-block ADMM with two blocks {L,B} and A, and its

global convergence is always guaranteed (Boyd et al., 2011). In what follows, we explicitly

show how to obtain closed-form solutions for each subproblem. In the L step, we have

L(t) = arg min
L
‖L‖∗ +

ρ

2
‖A(t−1) + L− S‖2F + 〈Λ(t−1)

1 ,A(t−1) + L− S〉

= arg min
L

1

2
‖L + A(t−1) − S + ρ−1Λ

(t−1)
1 ‖2F + ρ−1‖L‖∗

It’s easy to show that the solution is given by L(t) = Dρ−1

(
S −A(t−1) − ρ−1Λ(t−1)

1

)
where

Dτ (Ω) is the singular value thresholding operator given by Dτ (Ω) = Usτ (D)V T for any

singular value decomposition Ω = UDV T , and sτ denotes the soft-thresholding operator

given by sτ (x) = sgn(x) max(|x| − τ, 0).

In the B step, we also have the following closed-form solution:

B(t) = arg min
B
IB=BT +

ρ

2
‖A(t−1) −B‖2F + 〈Λ(t−1)

2 ,A(t−1) −B〉

= arg min
B
IB=BT +

ρ

2
‖ρ−1Λ(t−1)

2 + A(t−1) −B‖2F

=
1

2

[(
A(t−1) + ρ−1Λ

(t−1)
2

)
+
(
A(t−1) + ρ−1Λ

(t−1)
2

)T]
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Finally in the A step, we have

A(t) = arg min
A
IA∈DD+ +

ρ

2

(
‖A + L(t) − S + ρ−1Λ

(t−1)
1 ‖2F + ‖A−B(t) + ρ−1Λ

(t−1)
2 ‖2F

)
= arg min

A
IA∈DD+ + ρ

∥∥∥∥A +
1

2

(
L(t) − S + ρ−1Λ1 −B(t) + ρ−1Λ

(t−1)
2

)∥∥∥∥2
F

= PDD+

(
1

2
(S −L(t) + B(t) − ρ−1Λ(t−1)

1 − ρ−1Λ(t−1)
2 )

)
We summarize our proposed two-block ADMM in Algorithm 3.

Algorithm 3. Two-Block ADMM for Solving the Exact DD-PCA

Given the sample covariance matrix S, do

• Let A(0) = Λ
(0)
1 = Λ

(0)
2 = 0

• For t = 1, 2, . . .

– L(t) = Dρ−1

(
S −A(t−1) − ρ−1Λ(t−1)

1

)
.

– B(t) = 1
2

[(
A(t−1) + ρ−1Λ

(t−1)
2

)
+
(
A(t−1) + ρ−1Λ

(t−1)
2

)T]
– A(t) = PDD+

(
1
2
(S −L(t) + B(t) − ρ−1Λ(t−1)

1 − ρ−1Λ(t−1)
2 )

)
– Λ

(t)
1 = Λ

(t−1)
1 + ρ(A(t) + L(t) − S)

– Λ
(t)
2 = Λ

(t−1)
2 + ρ(A(t) −B(t))

• Stop if the convergence criterion is met.
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