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S-1 The EM algorithm for parameter estimation in the MxVt dis-
tribution

As mentioned in the paper, the MxVt distribution does not have closed-form ML estimators so we de-
velop an EM algorithm by augmenting the data, in similar spirit as done for the vector-multivariate t-
distribution Lange et al. (1989), and then present an ECME (Expectation/Conditional Maximization Ei-
ther) algorithm (Liu and Rubin, 1994) to improve the speed of convergence of the EM algorithm. Let
X1,X2, . . . ,Xn be independent realizations from the tp,q(ν,M,Σ,Ω) density. Then each Xi can be
augmented with latent Wishart-distributed weight matrices Si as follows:

Xi|M,Σ,Ω, ν,Si ∼ Np,q(M,S−1
i ,Ω)

Si|M,Ω,Σ, ν ∼ Wp(ν + p− 1,Σ−1), for i = 1, 2, . . . , n.
(S-1)

To show the benefits of using the latent Sis, we first derive ML estimators with the complete data and
then use that to derive an EM algorithm using only the observed data. We then modify the EM algorithm
to its more efficient ECME derivative.

S-1.1 ML Estimation of parameters with complete data

Suppose that we have (Xi,Si), i = 1, 2, . . . , n where each Si ∼ Wp(ν + p − 1,Σ−1) and Xi | Si ∼
Np,q(M,S−1,Ω) for each i = 1, 2, . . . , n. Then the complete log-likelihood function `c of the param-
eters (M,Ω) given the data (Xi,Si), i = 1, 2, . . . , n can written as a sum of (conditional) MxVN log-
likelihood functions `N and a sum of Wishart log-likelihood functions `W :

`c(M,Σ,Ω, ν;X,S) = `N (M,S−1,Ω;X | S) + `W (ν,Σ;S)

From the definitions of the MxVN and Wishart distributions, we have, after ignoring additive constants,

`N (M,S−1,Ω;X | S) = −np
2

log |Ω|+ q

2

n∑
i=1

log |Si|

− 1

2
tr

[
n∑

i=1

SiXiΩ
−1XT

i + (

n∑
i=1

Si)MΩ−1MT − 2(

n∑
i=1

SiXi)Ω
−1MT

]

and

`W (ν,Σ;S) = (ν − 2)/2

n∑
i=1

log |Si| −
n∑

i=1

tr(ΣSi)/2− nνp/2 log 2

+ n(ν + p− 1)/2 log |Σ| − n log Γp((ν + p− 1)/2).

To simplify computation of the ML estimators and their notation, we define the following complete data
sufficient statistics for the parameters:
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Taking derivatives of log-likelihoods yields the ML estimates:
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The ML estimate of ν can be obtained by finding the root of the equation:

nψp((ν + p− 1)/2)− (S|S| − np log 2 + n log |Σ|) = 0

with ψp(·) the p-variate digamma function, defined as ψp(x) = d log Γp(x)/dx. The ML estimate of ν
may be obtained numerically by a one-dimensional search algorithm. We now use the development in
this section in our EM algorithm for a sample from the MxVt distribution.

S-1.2 Estimating parameters from a MxVt sample

S-1.2.1 The EM algorithm

Let Xi, i = 1, 2, . . . , n be independent identically distributed realizations from tp,q(ν,M,Σ,Ω). As in
the main article, we write Θ ≡ {ν,M,Σ,Ω}. From the development in the introduction of this section,
for each i = 1, 2, . . . , n, let Si be (unobserved) random matrices as per Equation (S-1) and Property 2.
Then the expected complete log-likelihood function is

Q(Θ; Θ(t)) = −np
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(S-2)

E-step Using Property 2 and properties of the Wishart distribution, the expectation step (E-step) up-
dates at the current value Θ(t) of Θ are, by taking the expected values of the Si given the current value
of Θ(t):

S
(t+1)
i

.
= EΘ(t)(Si|Xi) = (ν(t) + p+ q − 1)[(Xi −M(t))Ω(t)−1

(Xi −M(t))T + Σ(t)]−1,

EΘ(t)

(
log |Si|
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(
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with ψp(·) as the p-variate digamma function. Note that the updates for S

(t+1)
i exist by construction

if the Σ and Ω are positive definite. We define and store the expected sufficient statistics to reduce
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computational calculations and for notational convenience:
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with the last expression needed only when we are also estimating ν. In that case, these statistics can be
expressed with (ν(t) + p + q − 1) factored out, and for convenience may be computed and stored that
way when ν needs to be estimated. These quantities can be computed in O(npq2) +O(np2q) +O(np3)
flops.

Maximization step Based on the updated weight matrices S(t+1)
i and statistics based on Θ(t) and X ,

we get the updates:
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This can be computed inO(p2q)+O(pq2) flops, which is negligible compared to the E-step computations.
Again, treating the set of S(t+1)

i as observed, the MLE of ν can be obtained:

n
d

dν
log Γp((ν + p− 1)/2)− 1

2
(S|S| − np log 2 + n log |Σ̂|) = 0.

Defining κ(t) = ν(t) + p+ q − 1 for compactness:
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(S-3)

where Z∗ is the appropriate S∗ statistic with (ν(t) + p+ q− 1) factored out and ψp is the p-dimensional
digamma function. This can be solved using a 1-dimensional search.

Since each Si is positive definite by construction if the previous Σ(t) and Ω(t) were positive definite,
the updates Σ̂ and M̂ exist. The conditions for the positive definiteness of the update Ω̂ are less clear:
it is the sum of matrices only guaranteed to be positive semi-definite and we do not have a proof of the
necessary or sufficient sample size to guarantee the update is positive definite (a.s.) as required for the
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method. A solution for ν̂ is guaranteed to exist as long as Σ̂ and Ω̂ exist and are positive definite.

ML Estimation with the Expectation/Conditional Maximization Either (ECME) algorithm First we
note that, if ν is known, there is no need to partition the M-step into multiple constrained maximization
steps. If ν is required to be estimated, there is no difference between a standard EM and a standard ECM
(Expectation/Conditional Maximization) algorithm in this setting, since, as in the case of the multivariate
t distribution, the complete data likelihood function factorizes into Θ1 = (M,Σ,Ω) and Θ2 = (ν).
However, by partitioning it in this way, it is possible, similarly to the case of the multivariate t, to find
a more efficient method of maximization. This is desirable because the M-step for ν can be slow. Here
we present an ECME (Expectation/Conditional Maximization Either) algorithm that first maximizes the
expected log-likelihood for (M,Σ,Ω) and then maximizes the actual log-likelihood over ν given the
current values (M,Σ,Ω), similar to Liu and Rubin (1994).

Given Θ1 = (M,Σ,Ω), we can maximize for ν in Equation (1), yielding the set of equations provided
in (2)
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The difference is that the solution for ν(t+1) no longer depends on ν(t), Solving this equation is slightly
more computationally complex than solving Equation (S-3) (ν appears four times in the equation to be
solved rather than once) but this converges in fewer total iterations. The ML estimating equation can be
solved by a one-dimensional search, providing a ECME algorithm with the steps (as also provided in the
main article):

1. E-step: Update Si weights and statistics based on Θ(t) and X .
2. CME-step: Update Θ

(t+1)
1 = (M(t+1),Σ(t+1),Ω(t+1)).

3. CME-step: Update Θ
(t+1)
2 = ν(t+1) using the observed log-likelihood given the current values

(M(t+1),Σ(t+1),Ω(t+1)) by solving Equation (2).

Repeat these steps until convergence. Each iteration of this algorithm takes O(npq2) + O(np2q) +
O(np3) flops plus the number of iterations required by the second CME step.

S-1.2.2 Fitting with restrictions on the parameters

In some settings, restrictions on the parametrization of the center or scatter matrices are appropriate. In
this section, we derive solutions in the cases of center matrices that are constant across rows, columns, or
the entire matrix. In Roy and Khattree (2005) some results for restrictions on covariance matrices were
derived and in this paper AR(1) covariance structures and compound symmetry (CS) variance structures
were used; however, they were fit numerically as closed forms for the derivatives and determinants exist.
Let 1p,q denote a (p×q) matrix consisting only of 1s. Then it can be shown that these are the appropriate
M-step estimates for certain mean matrix constraints:

M = 1p,qµ : M̂ = tr(SSXΩ̂
−1

1q,p)/tr(SS1p,qΩ̂
−1

1q,p)1p,q

M = 1p,1µ1,q : M̂ = 1p,pSSX/(11,pSS1p,1)

M = µp,111,q : M̂ = S−1
S SSXΩ̂

−1
1q,q/(11,qΩ̂

−1
1q,1)

which can be used to simplify the ECME algorithms further.
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S-1.3 Performance Evaluations

S-1.3.1 Simulation Study
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(a)
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(b)
Figure S-1: (a) RMSE for the mean estimates and (b)
RMSE for the covariance estimates for datasets of
size n = 35, 50, 100 with true ν = 5, 10, 20.

In the main paper, results pertaining to the re-
covery of the ν parameter were reported for a
simulation study where 200 datasets were pro-
duced for ν = 5, 10, 20 and n = 35, 50, 100
with a 0 mean matrix and identity scatter matri-
ces. Here we report also the results for the re-
covery of the mean and covariance parameters.
For X ∼ t(ν,M ,Σ,Ω), we have the result that
cov(vec(X)) = Σ ⊗ Ω/(ν − 2). To compare all
nine sets of simulations on the same scale, we cor-
rect each by the appropriate scaling factor such
that each has an identity covariance matrix and
then report the root mean square difference be-
tween the actual and fitted M̂ and Σ̂ ⊗ Ω̂ in
Figure S-1. The figures indicate performance im-
proves as the sample size increases and indicates
good recovery of the parameters in every case.

We provide a second simulation study to
address concerns about model misspecification,
namely, what happens when a matrix t distribu-
tion model is treated as a matrix normal or vice
versa. Three datasets of size 100 with mean ma-
trix 0 and parameters Σ a 5× 5 AR(1) matrix with
ρ = 0.7 and Ω a draw from a standard Wishart
distribution with ν = 10 and dimension 8, with
one dataset from a MxVt distribution with 6 degrees of freedom, one with 20 degrees of freedom, and one
from a MxVN distribution.
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Figure S-2: The top rows contains results for a true
ν = 6 and 20 (the blue line) while the bottom row
contains the results for a true matrix normal distri-
bution.

In Figure S-2, we plot the log-likelihood,
squared deviation from the mean, and the L2 dis-
tance between the true and estimated covariance
matrix. The top two rows indicate the results for
the MxVt with ν = 6 and 20 and the bottom indi-
cates the results for the MxVN, fitted to a MxVN
and to MxVt models with ν = 3, 4, . . . , 100. On
the MxVtwithν = 6 and 20, the MxVN performed
poorly compared to the MxVtwith ν near the true
parameter values. On the MxVN, the MxVt per-
formed poorly.

For all of the datasets, the MxVN has slightly
worse recovery of the mean matrix than the MxVt
distributions while the MxVN had estimates of the
covariance matrix that were comparable to the
best MxVt estimates. The L2 norm of the covari-
ance matrix was not accurate for low values of ν.

The behavior here is suggestive of what occurs
in the results when the method fails to converge.
Simulations that fail to converge slowly increase
likelihood as ν increases until either the maxi-
mum number of iterations or the upper bound of ν
is reached. This scenario occurs more frequently
when simulating from distributions with large ν
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and small sample sizes or simulating from MxVN
distributions with modest sample sizes (for larger sample sizes, even an MxVN will usually converge to
some distribution with large ν). As Figure S-2 indicates, the likelihood surface is very flat for a true MxVN
across values of ν. With a small sample size and ν not small, this may occur there was well.

S-1.3.2 Matching Fractured Surfaces

Figure S-3: Surface height 3D topographic maps for
tip and base pair (a,c) and their corresponding 2D
spectral analysis (b,d).

The knife surfaces were scanned using a standard
non-contact 3D optical interferometer in corre-
sponding regions, then the 2D Fourier frequencies
were computed and compared. In Figure S-3, we
illustrate one pair of corresponding images (out
of 9) from one of the knife base-tip pairs (out of
38). On the left are a visualization of the output
of the 3D optical interferometer for the two sur-
faces. Note that the images are presented as-is -
they should fit together when one is flipped over.
The blue depressed region on the top corresponds
to the red elevated region on the bottom. On the
right is a visualization of the 2D Fourier transform
with the frequency ranges used for comparison
highlighted - the two bands between the “low frequency” and “high frequency” region.
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