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STANISLAV NAGY AND JIŘÍ DVOŘÁK

Abstract. This document complements the article S. Nagy and J. Dvořák: Illumina-
tion depth. In Appendix A the proofs of all the theoretical results from the main paper
are given. Appendix B contains additional simulation studies; in Appendix C the R

source code of the illumination procedure can be found.

Appendix A. Proofs of the theoretical results

A.1. Proof of Lemma 1. For d = 1, Σ = σ2 > 0 and |x− µ| > σ, the formula reduces
to I (x; Eµ,Σ) = |x− µ| + σ, which is the illumination of x outside Eµ,Σ = σB1 on that
ball. For d > 1, let us first compute the illumination of a unit ball Bd in R

d. Take
x /∈ Bd. The set difference of the convex hull of x and Bd minus Bd is a cone with height

‖x‖ − 1/ ‖x‖ and base a (d − 1)-dimensional ball with radius
√
1− 1/ ‖x‖2, without a

spherical cap of Bd of height 1− 1/ ‖x‖. Because vold
(
Bd
)
= πd/2

Γ( d
2
+1)

, the volume of the

cone is
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and the volume of the cap is
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Altogether, (A.1) and (A.2) give that

I
(
x;Bd

)
=

π
d−1

2

Γ
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d+1
2

)
(
‖x‖
d

(
1− 1/ ‖x‖2

) d+1

2 −
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0

sind(t) d t

)
+ vold

(
Bd
)
.

It is not difficult to see that Eµ,Σ = Σ1/2Bd + µ =
⋃

x∈Bd

{
Σ1/2x+ µ

}
. Thus, by the

affine equivariance of the illumination bodies [9, Proposition 2] we have I (x; Eµ,Σ) =

I
(
Σ−1/2 (x− µ) ;Bd

)√
|Σ|. The general assertion then follows from

∥∥Σ−1/2 (x− µ)
∥∥ =√

(x− µ)T Σ−1 (x− µ).

A.2. Lemma A.1. The next lemma summarizes some analytical properties of the func-
tion gd defined in Section 2.

Lemma A.1. For all d ≥ 1
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Figure A.1. First five functions gd, d = 1, . . . , 5 (left panel) and their first
derivatives (right panel).

(i) function gd : [1,∞) → [1,∞) is uniformly continuous, strictly increasing, and
convex;

(ii) gd(1) = 1, limt→∞ gd(t) = ∞;
(iii) gd is differentiable on (1,∞) and

(A.3) g′d(t) =
Γ
(
d
2
+ 1
)

√
π Γ
(
d+1
2

) 1
d

(
1− 1

t2

)(d−1)/2

for t ∈ (1,∞);

(iv) gd(t)− 1 = O
(
(t− 1)(d+1)/2

)
as t → 1 from the right;

(v) the minimal modulus of continuity of the inverse function g−1
d takes the form

wg−1

d
(h) = sup

|s−t|<h

∣∣g−1
d (s)− g−1

d (t)
∣∣ = g−1

d (1 + h)− 1 for h ≥ 0;

(vi) as h → 0 from the right, wg−1

d
(h) = O

(
h2/(d+1)

)
;

(vii) as t → ∞, g−1
d (t) = O (t).

Proof. Using the Leibniz integral formula it is easy to see that the derivative of gd is
(A.3). That function is positive, increasing, and bounded from above. Hence, gd is
strictly increasing, convex, and Lipschitz continuous. Part (iv) follows by an application
of l’Hôpital’s rule

(A.4)

lim
t→1

gd(t)− 1

(t− 1)(d+1)/2
= lim

t→1

Γ
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d
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+ 1
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√
π Γ
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2

) 2

d(d+ 1)

((t− 1) (t+ 1))(d−1)/2

td−1(t− 1)(d−1)/2

=
Γ
(
d
2
+ 1
)

√
π Γ
(
d+1
2

) 2(d+1)/2

d(d+ 1)
.

For Part (v) first note that because gd is smooth, strictly increasing and convex, its inverse
g−1
d must be smooth, strictly increasing and concave. For such a function the mean value
theorem asserts that the greatest difference g−1

d (s)− g−1
d (t) subject to 1 ≤ t ≤ s < t+ h

must be attained at the left endpoint of its domain, i.e. for t = 1 and s = 1 + h. To
obtain the rate of the modulus of continuity, note that by (A.4) there exists c > 0 such
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that

gd(t)− 1 ≥ c (t− 1)(d+1)/2 for all t > 1 close enough to 1.

Apply g−1
d to both sides of this inequality and substitute h = c (t− 1)(d+1)/2 to get

g−1
d (1 + h)− 1 ≤

(
h

c

)2/(d+1)

for all h > 0 small enough,

and the conclusion follows. Finally, using substitution t = gd(s) and l’Hôpital’s rule
again,

lim
t→∞

g−1
d (t)

t
= lim

s→∞

g−1
d (gd (s))

gd (s)
= lim

s→∞

s

gd(s)
= lim

s→∞

1

g′d (s)
=

d
√
π Γ
(
d+1
2

)

Γ
(
d
2
+ 1
) .

Hence, g−1
d (t) = O (t) as t → ∞. �

A.3. Proof of Theorem 2. We only prove the first part of the theorem. The remaining
parts are straightforward, and follow directly from the essential properties of the halfspace
depth [5], and the properties of the illumination [9].
By the affine invariance of the halfspace depth [3, Lemma 2.1] we know that (PAX+b)α =

A(PX)α + b. For the illumination, it follows that

I (Ax+ b; (PAX+b)α)

vold ((PAX+b)α)
=

vold (co ((A(PX)α + b) ∪ {Ax+ b}))
vold (A(PX)α + b)

=
vold (A ((PX)α ∪ {x}) + b)

vold (A(PX)α + b)
=

I (x; (PX)α)

vold ((PX)α)
.

A.4. Proof of Theorem 3. We start with the illumination. From [4, Theorem 4.2] we
know that under the assumptions of the theorem, the central regions Pα are consistent
for P in the Hausdorff distance, i.e.

(A.5) dH (Pn,α, Pα)
a.s.−−−→

n→∞
0.

For any x ∈ Kn we know that almost surely for n large

(A.6)

|I (x;Pn,α)− I (x;Pα)| = |vold (co (Pn,α ∪ {x}))− vold (co (Pα ∪ {x}))|

≤ cd

d−1∑

j=0

dH (co (Pα ∪ {x}) , co (Pn,α ∪ {x}))d−j Rj
n

≤ cd

d−1∑

j=0

dH (Pα ∪ {x} , Pn,α ∪ {x})d−j Rj
n

≤ cd

d−1∑

j=0

dH (Pα, Pn,α)
d−j Rj

n

≤ d cd dH (Pα, Pn,α)max
{
1, Rd−1

n

}
.

In the inequalities we used Lemma A.2 stated below for dH (Pn,α, Pα) < 1, and the
properties of the Hausdorff distance [7, p. 64]. Since for a fixed compact set K = Kn for
all n the term Rn is constant, the first part of the theorem is verified in view of (A.5).
To derive the rates of convergence, by [1, Theorem 2] we have that dH (Pn,α, Pα) =

OP

(
n−1/2

)
, and the last inequality in (A.6) is enough to conclude.
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For the affine invariant version of the illumination, write

(A.7)

∣∣∣∣
I (x;Pn,α)

vold (Pn,α)
− I (x;Pα)

vold (Pα)

∣∣∣∣ ≤
|I(x;Pn,α)− I(x;Pα)|

vold (Pn,α)

+ |I(x;Pα)|
∣∣∣∣

1

vold (Pn,α)
− 1

vold (Pα)

∣∣∣∣ .

By the assumptions of the theorem we know that vold (Pα) > 0. From (A.5) and
Lemma A.2 it thus follows that for n large enough vold (Pn,α) ≥ vold (Pα) /2 almost
surely, and that for such n it also holds true that
∣∣∣∣

1

vold (Pn,α)
− 1

vold (Pα)

∣∣∣∣ ≤
2 |vold (Pn,α)− vold (Pα)|

vold (Pα)
2 ≤ 2 d cd max

{
1, Rd−1

1

}
dH (Pα, Pn,α)

vold (Pα)
2

almost surely, for cd > 0 the constant from Lemma A.2. By [1, Theorem 2] the last
formula can be written also as∣∣∣∣

1

vold (Pn,α)
− 1

vold (Pα)

∣∣∣∣ = OP

(
n−1/2

)
.

Finally, because Pα is a fixed bounded set, a trivial upper bound for supx∈Kn
|I(x;Pα)|

is the maximum illumination of x ∈ Kn w.r.t. the smallest enclosing ball of Pα. By
Lemmas 1 and A.1 this is of order O (Rn). Altogether, all the above bounds and the
consistency result for I can be plugged into (A.7) to obtain the desired rate of convergence

sup
x∈Kn

∣∣∣∣
I (x;Pn,α)

vold (Pn,α)
− I (x;Pα)

vold (Pα)

∣∣∣∣ = OP

(
max{1, Rd−1

n }√
n

)
+O (Rn)OP

(
1√
n

)

= OP

(
max{1, Rd−1

n }√
n

)
.

The rates of convergence for the illumination depth follow by a combination of the results
above, the Lipschitz continuity of ϕ, and supx∈Rd |hD(x;Pn)− hD(x;P )| = OP

(
n−1/2

)

that follows from [3].

Lemma A.2. Let R > 0. There exists a constant cd > 0 such that for all convex bodies
K,L ⊂ R

d with K ⊂ Bd (x,R) for some x ∈ R
d

|vold (K)− vold (L)| ≤ cd

d−1∑

j=0

dH (K,L)d−j Rj.

Proof. Write δ = dH (K,L). From the definition of the Hausdorff distance (6) we have
that

(A.8) K ⊂ L+ δBd and L ⊂ K + δBd.

If vold (K) ≤ vold (L), this gives vold (K) ≤ vold (L) ≤ vold
(
K + δBd

)
; in the other case

vold (L) < vold (K) we get vold (L) < vold (K) ≤ vold
(
L+ δBd

)
. This results in

|vold (K)− vold (L)| ≤ max
{
vold

(
K + δBd

)
− vold (K) , vold

(
L+ δBd

)
− vold (L)

}
,

and it is enough to bound the excess volume of the outer parallel body K + δBd of a
convex bodyK, and analogously for L. For this, use the Steiner formula [7, Formula (4.1)]

vold
(
K + δBd

)
=

d∑

j=0

δd−j vold−j

(
Bd−j

)
Vj(K),
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where Vj(K) stands for the intrinsic volume of the convex body K [7, Chapter 4]. In
particular, it holds true that Vd(K) = vold (K), Vd−1(K) is proportional to the surface
area measure of K, V1(K) is the so-called intrinsic width of K, and V0(K) = 1.
From the monotonicity of the intrinsic volumes that follows from formulas (5.25) and

(5.31) in [7], and K ⊂ Bd (x,R), we can use the expression for the intrinsic volumes of a
ball (4.64) from [7] and bound

(A.9)

vold
(
K + δBd

)
− vold (K) ≤

d−1∑

j=0

δd−j vold−j

(
Bd−j

)
Vj(B

d)

= vold
(
Bd
) d−1∑

j=0

δd−j

(
d

j

)
Rj.

For a bound on the excess volume of L+ δBd, first note that from (A.8) we have

L ⊂ K + δBd ⊂ Bd (x,R) +Bd (0, δ) = Bd (x,R + δ) .

Similarly as in (A.9) we can thus write

vold
(
L+ δBd

)
− vold (L) ≤ vold

(
Bd
) d−1∑

j=0

δd−j

(
d

j

)
(R + δ)j

= vold
(
Bd
) d−1∑

j=0

δd−j

(
d

j

) j∑

k=0

(
j

k

)
Rkδj−k

= vold
(
Bd
) d−1∑

k=0

δd−kRk

d−1∑

j=k

(
d

j

)(
j

k

)
.

From (A.9) and the last inequality we see that our claim holds true for

cd = vold
(
Bd
)

max
k=0,...,d−1

d−1∑

j=k

(
d

j

)(
j

k

)
,

the maximum of all the terms that are constant in R and δ in the sums on the right-hand
sides of the two excess volume bounds. �

A.5. Consistency of the illumination on unbounded sets. Over unbounded subsets
of Rd with d > 1, the illumination is not uniformly consistent. So see this take a convex
body K in R

d, y in the distance of ε > 0 from K, and let Ky = co (K ∪ {y}). Surely,
dH (Ky, K) = ε. By the Hahn-Banach separation theorem [7, Theorem 1.3.7], y and
K can be strongly separated by two parallel hyperplanes H1, H2 whose distance is at
least ε/2 and y ∈ H1. Take x ∈ H2 far enough from y. The illumination I (x;Ky) and
I (x;K) then differs by, at least, the illumination of x onto the cone Ky ∩H+

2 for H+
2 the

halfspace whose boundary is H2 and y ∈ H+
2 . This illumination can be bounded from

both below and above by the illumination of x on any two balls B1 and B2 centred at
some z ∈ Ky ∩H+

2 such that B1 ⊂ Ky ∩H+
2 ⊂ B2, respectively. By Lemmas 1 and A.1,

the latter two illuminations both grow with increasing R = ‖z − x‖ at a rate O (R),
i.e. I (x;Ky) − I (x;K) = O (‖z − x‖) with H2 ∋ x → ∞. In other words, for any
ε > 0 one can find x far enough so that I (x;Ky) − I (x;K) ≥ 1. Consequently, even
if the distance dH (Kn, K) converges to zero (almost surely), the illumination differences
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|I (x;Kn)− I (x;K)| and |I (x;Kn) / vold (Kn)− I (x;K) / vold (K)| cannot, in general,
vanish uniformly over unbounded sets.

A.6. Proof of Theorem 4. For x fixed, the illumination of x tends to infinity if and
only if the halfspace depth central region functional Pn 7→ Pn,α breaks down. Hence,
it is enough to evaluate the breakdown point of Pn,α with respect to the Hausdorff dis-
tance. We follow the derivations in the proofs of [2, Proposition 2.2] and [3, Proposi-
tion 3.2]. Let xM ∈ R

d be (any) halfspace median of Pn, that is let hD (xM ;Pn) =
Π(Pn). By the argument used in the proof of [3, Lemma 3.1] to upset the set Pn,α ={
y ∈ R

d : hD (y;Pn)n ≥ ⌈αn⌉
}

entirely, the smallest number of additional points that
need to be added to the data is m, the smallest integer that satisfies m ≥ ⌈α (m+ n)⌉
(compare with formula (6.19) in [3]). This inequality is solved by m = ⌈(α/(1 − α))n⌉.
The additional condition α ≤ Π(Pn)/(1+Π(Pn)) ensures that m ≤ ⌈Π(Pn)n⌉ = Π(Pn)n.
From this it follows that the depth of xM with respect to the contaminated dataset must
be at least Π(Pn)n/(n +m) ≥ Π(Pn)/(1 + Π(Pn)) ≥ α. Hence, after the contamination
procedure, the central region of points whose depth is at least α must be non-empty.
In the situation when α > Π(Pn)/(1 + Π(Pn)), due to the nestedness of the central

regions Pn,α, by the previous part of the proof at least

m =

⌈
Π(Pn)/(1 + Π(Pn))

1− Π(Pn)/(1 + Π(Pn))
n

⌉
= ⌈Π(Pn)n⌉ = Π(Pn)n

contaminating points are needed.
The corollary with the asymptotic value of the breakdown point follows the same

argument as in the proof of [3, Propositions 3.2 and 3.3].

A.7. Proof of Theorem 5. The proofs of parts (i), (ii) and (iii) are straightforward and
analogous to the proof of Theorem 2. For part (iv) it is sufficient to realise that according
to the non-degeneracy of P , and symmetry conditions imposed on the estimator Fn, the
lower level set of Mα (·;Pn) is large if and only if either (i) the central region Pn,α is
extremely large; or (ii) F−1

n (1− α) is extremely small. By Theorem 4, for the former
case, asymptotically at least m ≈ nmin{α, 1/3}/(1−min{α, 1/3}) contaminating points
have to be added to the random sample to disrupt the central region entirely. In the latter
case, unless there exists a configuration of m points that make F−1

n (1− α) arbitrarily
small, the set Pn,α cannot be made arbitrarily large. By extension, no fixed lower level
set (12) can then be made too big. By the assumption on the breakdown point of
F−1
n (1− α), in the second scenario it is even more difficult to break down the estimator

(12) than in the first one. Another option when the lower level set (12) breaks down is
when it is an empty set. But, that can happen only if for some δ > 0 small enough,
F−1
n (1− Π(Pn)) > δ. This is ruled out by the additional condition imposed on δ. Thus,

the resulting limiting breakdown point of the level set is the same as that of Pn,α.

A.8. Proof of Theorem 6. By (9) and (10), the Mahalanobis distance dΣ(x, µ) can be
written either as F−1 (1− hD (x;P )) for any x ∈ R

d, or, in case when x /∈ Pα, also as
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F−1 (1− α) g−1
d (I (x;Pα) / vold (Pα)). It is thus sufficient to bound

sup
x∈Kn

|Mα (x;Pn)− dΣ(x, µ)|

≤ sup
x∈Kn∩Pn,α

|Mα (x;Pn)− dΣ(x, µ)|+ sup
x∈Kn\Pn,α

|Mα (x;Pn)− dΣ(x, µ)|

≤ sup
x∈Kn∩Pn,α

∣∣F−1
n (1− hD (x;Pn))− F−1 (1− hD (x;P ))

∣∣

+ sup
x∈Kn\(Pn,α∪Pα)

∣∣∣∣F
−1
n (1− α) g−1

d

(I (x;Pn,α)

vold (Pn,α)

)
− F−1 (1− α) g−1

d

(I (x;Pα)

vold (Pα)

)∣∣∣∣

+ sup
x∈Kn∩(Pα\Pn,α)

|Mα (x;Pn)− dΣ(x, µ)| .

The three suprema on the right hand side will be treated separately. Denote them by I,
II, and III, respectively.

A.8.1. Supremum I. The sample halfspace depth hD (·;Pn) is known [3, formula (6.6)]
to be a uniformly consistent estimator of its population version

(A.10) sup
x∈Rd

|hD (x;Pn)− hD (x;P )| a.s.−−−→
n→∞

0.

Because P is halfspace symmetric, yet its centre of symmetry has zero probability mass,
for any x ∈ Kn ∩ Pn,α we have α ≤ hD (x;Pn) ≤ 1/2, with the second inequality almost
surely for all n large enough due to (A.10). We may use the consistency (A.10) again to
get that for any ε > 0 small, α − ε ≤ hD (x;P ) ≤ 1/2 for all x ∈ Kn ∩ Pn,α and n large
enough.
Function F is strictly increasing in a neighbourhood of [0, F−1 (1− α)]. Thus, F−1

is (uniformly) continuous on I = [1/2, 1 − α]. Its approximating sequence {F−1
n }∞n=1 is

a sequence of functions that are non-decreasing, and converge to F−1 at each t ∈ I by
the uniform consistency of Fn from (13), and [8, Lemma 21.2]. A lemma of Pólya [6,
Problem 127, part II] gives that this convergence is uniform on I. We can thus write for
n large enough

I ≤ sup
x∈Kn∩Pn,α

∣∣F−1
n (1− hD (x;Pn))− F−1 (1− hD (x;Pn))

∣∣

+ sup
x∈Kn∩Pn,α

∣∣F−1 (1− hD (x;Pn))− F−1 (1− hD (x;P ))
∣∣

≤ sup
t∈I

∣∣F−1
n (t)− F−1 (t)

∣∣+ wF−1

(
sup
x∈Rd

|hD (x;Pn)− hD (x;P )|
)
,

where wF−1 is the minimal modulus of continuity of F−1 restricted to the interval I.
The first supremum on the right hand is small almost surely for n large by the uniform
convergence of the quantile functions established above. The second will vanish almost
surely because of (A.10) and the uniform continuity of F−1 on I.

A.8.2. Supremum II. Let us first introduce the notation

(A.11)

ax = −g−1
d

(I (x;Pα)

vold (Pα)

)
,

an,x = −g−1
d

(I (x;Pn,α)

vold (Pn,α)

)
,

b = F−1 (1− α) ,

bn = F−1
n (1− α) .
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In supremum II we bound for LII
n = Kn \ (Pn,α ∪ Pα)

(A.12) sup
x∈LII

n

|an,xbn − axb| ≤ |bn − b| sup
x∈LII

n

|ax|+ |bn| sup
x∈LII

n

|an,x − ax| .

For the supremum in the first summand in (A.12) we know from (10) that

(A.13)

sup
x∈LII

n

|ax| ≤ sup
x∈Bd(µ,Rn)

dΣ(x, µ)

F−1 (1− α)
=

Rn

F−1 (1− α)
sup

x∈Bd(µ,1)

dΣ(x, µ)

=
Rn

F−1 (1− α)

√
sup
‖x‖=1

xTΣ−1x =
Rn

F−1 (1− α)

√
1/λ = O (Rn) ,

where λ > 0 is the smallest eigenvalue of Σ. Using the assumption (14) we see that
the first summand on the right hand side of (A.12) vanishes in probability as n → ∞.
Furthermore, by (14) we also have that |bn| = OP(1), and by Lemma A.1 together with
Theorem 3
(A.14)

sup
x∈LII

n

|an,x − ax| ≤ wg−1

d

(
sup
x∈LII

n

∣∣∣∣
I (x;Pn,α)

vold (Pn,α)
− I (x;Pα)

vold (Pα)

∣∣∣∣

)
= wg−1

d

(
OP

(
max

{
1, Rd−1

n

}
√
n

))

= OP



(
max

{
1, Rd−1

n

}
√
n

)2/(d+1)

 = oP(1),

where wg−1

d
is the minimal modulus of continuity of g−1

d from Lemma A.1. Together, we

have verified that
(A.15)

sup
x∈LII

n

|an,xbn − axb| = O (Rn) oP (1/Rn)+OP(1)OP



(
max

{
1, Rd−1

n

}
√
n

)2/(d+1)

 = oP (1) .

A.8.3. Supremum III. Here it will be crucial that under the conditions of the theorem,
the set Pα\Pn,α is negligible as n → ∞ by the consistency of the halfspace depth contours
(A.5). First, without loss of generality, suppose that both Pα and Pn,α are contained in
Kn. This is possible, because Pα is a fixed set, and the sequence Pn,α is convergent
almost surely by (A.5). Thus, possible enlargement of Kn by a fixed set does not affect
any results in this proof. Take x ∈ LIII

n = Kn ∩ (Pα \ Pn,α). As x /∈ Pn,α,

Mα (x;Pn) = F−1
n (1− α) g−1

d

(I (x;Pn,α)

vold (Pn,α)

)
.

In terms of x, this expression varies monotonically with I (x;Pn,α). Note that for K a
convex body, the illumination I (·;K) strictly increases on any straight halfline L that
starts from x ∈ ∂K (the boundary of K) and does not intersect K elsewhere, i.e. K∩L =
{x}. Thus, in our situation, if one considers any halfline that starts at a boundary point
of Pn,α and passes through x,

inf
y∈∂Pn,α

Mα (y;Pn) ≤ Mα (x;Pn) ≤ sup
y∈∂Pα

Mα (y;Pn) .

On the boundary of Pn,α we are in the situation dealt with in supremum I, and by that
part of the proof we know that for ε > 0 given, almost surely for any n large enough,

inf
y∈∂Pn,α

dΣ(y, µ)− ε ≤ inf
y∈∂Pn,α

Mα (y;Pn) .
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Likewise, for the upper bound, by part II of this proof, and the continuity of dΣ(x, µ),
we have an analogous restriction, and with high probability, for n large enough,

sup
y∈∂Pα

Mα (y;Pn) ≤ sup
y∈∂Pα

dΣ(y, µ) + ε = F−1 (1− α) + ε.

Finally, we use (A.5) and the fact that the Hausdorff distances of convex bodies, and of
their boundaries, are the same [7, Lemma 1.8.1]. This gets that almost surely, for any δ >
0, for all n large enough, and any y ∈ ∂Pn,α, there exists z ∈ ∂Pα such that ‖y − z‖ < δ.
Now, because dΣ(x, µ) is in x (uniformly) continuous in a uniform neighbourhood of Pα,
this means that almost surely, for n large enough,

inf
y∈∂Pn,α

dΣ(y, µ) ≥ inf
y∈∂Pα

dΣ(y, µ)− ε = F−1 (1− α)− ε,

and for any x ∈ LIII
n

F−1 (1− α)− ε ≤ dΣ(x, µ) ≤ F−1 (1− α) .

Altogether, collect all the bounds in this part of the proof to get that for any ε > 0, with
high probability, for n large enough,

sup
x∈LIII

n

|Mα (x;Pn)− dΣ(x, µ)| ≤ 2ε,

which finishes the proof.

A.9. Proof of Theorem 7. In view of the uniform consistency of the halfspace depth
(A.10) it suffices to show that

sup
x∈Kn\Pn,α

∣∣∣∣Fn

(
−g−1

d

(I (x;Pn,α)

vold (Pn,α)

)
F−1
n (1− α)

)
− hD (x;P )

∣∣∣∣
P−−−→

n→∞
0.

Proceed analogously as in the proof of Theorem 6, and consider two situations — the
supremum above over x ∈ LII

n = Kn\(Pn,α ∪ Pα), and the the supremum over x ∈ LIII
n =

Kn ∩ (Pα \ Pn,α).
Suppose first that x ∈ LII

n . By (9) and (10), in the notation from (A.11) we have that

|Fn (an,xbn)− hD (x;P )| = |Fn (an,xbn)− F (−dΣ(x, µ))|
= |Fn (an,xbn)− F (axb)|
≤ |Fn(an,xbn)− F (an,xbn)|+ |F (an,xbn)− F (axb)| .

Therefore,

sup
x∈LII

n

|Fn (an,xbn)− hD (x;P )| ≤ sup
t∈R

|Fn(t)− F (t)|+ sup
x∈LII

n

|F (an,xbn)− F (axb)| .

The first summand on the right hand side above vanishes almost surely as n → ∞ by
(13). For the second summand we already have a bound from (A.15) from the proof of
Theorem 6. Since F has a density, it must be uniformly continuous on R. Denote by
wF : (0,∞) → R its minimal modulus of continuity. We obtain

sup
x∈LII

n

|F (an,xbn)− F (axb)| ≤ wF

(
sup
x∈LII

n

|an,xbn − axb|
)

= wF (oP(1)) = oP(1).

This completes the part of the proof with LII
n .

For the second part, consider x ∈ LIII
n . Note that thanks to (9) and the continuity of

F in a neighbourhood of F−1 (1− α), the halfspace depth hD (·;P ) must be (uniformly)
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continuous in a uniform neighbourhood of Pα. Furthermore, for x /∈ Pn,α, RhDα (x;Pn)
varies monotonically with I (x;Pn,α). Thus, derivation analogous to that from part III in
the proof of Theorem 6 gives that the convergence of the halfspace depth contours (A.5)
implies that with n → ∞

sup
x∈LIII

n

|RhDα (x;Pn)− hD (x;P )| = oP(1),

and the proof is finished.

A.10. Proof of Theorem 8. By the uniform consistency of the halfspace depth (A.10)
we can bound for n large enough

sup
x∈Rd : hD(x;Pn)≥α

∣∣∣∣
RhDα (x;Pn)

hD (x;P )
− 1

∣∣∣∣ ≤ sup
x∈Rd : hD(x;Pn)≥α

2

∣∣∣∣
RhDα (x;Pn)− hD (x;P )

hD (x;Pn)

∣∣∣∣

≤ 2

α
sup
x∈Rd

|hD (x;Pn)− hD (x;P )| ,

where the last term vanishes almost surely as n → ∞. Thus, in the notation established
in (A.11) in the proof of Theorem 6, it suffices to show that also the right hand size of

sup
x∈Kn\Pn,α

∣∣∣∣
Fn (an,xbn)

hD (x;P )
− 1

∣∣∣∣ ≤ sup
x∈LII

n

∣∣∣∣
Fn (an,xbn)

F (axb)
− 1

∣∣∣∣+ sup
x∈LIII

n

∣∣∣∣
Fn (an,xbn)

hD (x;P )
− 1

∣∣∣∣

is asymptotically negligible, where LII
n = Kn \ (Pn,α ∪ Pα) and LIII

n = Kn ∩ (Pα \ Pn,α).
We used (9) and (10) to obtain the expression on the right hand side. We already have
everything prepared to bound the second summand above. Indeed, by Theorem 7

sup
x∈LIII

n

∣∣∣∣
Fn (an,xbn)

hD (x;P )
− 1

∣∣∣∣ ≤ sup
x∈LIII

n

|RhDα (x;Pn)− hD (x;P )|
α

≤ 1

α
sup
x∈Kn

|RhDα (x;Pn)− hD (x;P )| = oP (1) .

Let us now focus on the supremum over LII
n . For x ∈ LII

n we can write

(A.16)

∣∣∣∣
Fn (an,xbn)

F (axb)
− 1

∣∣∣∣ =
∣∣∣∣
F (an,xbn)

F (axb)

∣∣∣∣
∣∣∣∣
Fn (an,xbn)

F (an,xbn)
− F (axb)

F (an,xbn)

∣∣∣∣

≤
∣∣∣∣
F (an,xbn)

F (axb)

∣∣∣∣
(∣∣∣∣

Fn (an,xbn)

F (an,xbn)
− 1

∣∣∣∣+
∣∣∣∣
F (axb)

F (an,xbn)
− 1

∣∣∣∣
)
.

In the same way as in (A.12), (A.13), (A.14) and (A.15) in the proof of Theorem 6 we
have, using (16), that

(A.17)

sup
x∈LII

n

|an,x − ax| = OP (ωn) ,

sup
x∈LII

n

|an,xbn − axb| = O (Rn)OP (ξn) +OP (ωn) = OP (max {Rnξn, ωn}) ,

b sup
x∈LII

n

|ax| = Rn/
√
λ = O (Rn) .

By the definition of the refined depth (15) we also see that an,x < −1 for any x ∈ LII
n .

Combine this with (A.17) to obtain that there exists c > 0 such that for all n ≥ 1
and x ∈ LII

n we can write (1− c ωn) b < |axb|, which means that for n large enough
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b/2 < |axb| < Rn/
√
λ for all x ∈ LII

n . Formulas (A.17) therefore allow us to write for
some c > 0 large enough for all ε > 0 and n large

P

(
sup
x∈LII

n

∣∣∣∣
F (axb)

F (an,xbn)
− 1

∣∣∣∣ > ε

)
≤ P

(
sup
x∈LII

n

|an,xbn − axb| > c max {Rnξn, ωn}
)

+ P

(
sup
x∈LII

n

|an,x − ax| > cωn

)
+ P


 sup

b/2<|s|<Rn/
√
λ

|s−t|<c max{Rnξn, ωn}

∣∣∣∣
F (s)

F (t)
− 1

∣∣∣∣ > ε


 .

The first two summands on the right hand side vanish with n → ∞ because of the first
two formulas in (A.17). The argument in the last summand is non-random, and the
probability is therefore equal to zero for n large by (18). Thus,

(A.18) sup
x∈LII

n

∣∣∣∣
F (axb)

F (an,xbn)
− 1

∣∣∣∣
P−−−→

n→∞
0.

Using similar argumentation we have that there is c > 0 with the property that for all
ε > 0 and n large enough

P

(
sup
x∈LII

n

∣∣∣∣
Fn (an,xbn)

F (an,xbn)
− 1

∣∣∣∣ > ε

)

≤ P

(
sup
x∈LII

n

|an,xbn − axb| > cωn

)
+ P

(
sup

|an,xbn|<Rn/
√
λ+c ωn

∣∣∣∣
Fn (an,xbn)

F (an,xbn)
− 1

∣∣∣∣ > ε

)

≤ P

(
sup
x∈LII

n

|an,xbn − axb| > cωn

)
+ P

(
sup

|t|<2Rn/
√
λ

∣∣∣∣
Fn (t)

F (t)
− 1

∣∣∣∣ > ε

)
,

and the last expression tends to zero in as n → ∞ thanks to the second rate in (A.17)
and (17). Thus,

(A.19) sup
x∈LII

n

∣∣∣∣
Fn (an,xbn)

F (an,xb)
− 1

∣∣∣∣
P−−−→

n→∞
0.

Altogether, we can start from (A.16) and bound

sup
x∈LII

n

∣∣∣∣
Fn (an,xbn)

F (axb)
− 1

∣∣∣∣ ≤ sup
x∈LII

n

∣∣∣∣
F (an,xbn)

F (axb)

∣∣∣∣

(
sup
x∈LII

n

∣∣∣∣
Fn (an,xbn)

F (an,xbn)
− 1

∣∣∣∣+ sup
x∈LII

n

∣∣∣∣
F (axb)

F (an,xbn)
− 1

∣∣∣∣

)
.

The first term on the right hand side is bounded in probability due to (A.18). The
summands vanish in probability thanks to (A.19) and (A.18), respectively. The theorem
is proved.

A.11. Proof of Remark (R8). Suppose first that F (t) ≥ c |t|γ for some c > 0, t small
enough and γ < 0. Consider Rn = O(nα) for α > 0. We have

ωn

F
(
−Rn/

√
λ
) ≤

(
Rd−1

n /
√
n
)2/(d+1)

c
∣∣∣Rn/

√
λ
∣∣∣
γ = O

(
n2α(d−1)/(d+1)−1/(d+1)−αγ

)
.

For the right hand side to be o(1), it is sufficient that α < (2(d− 1)− γ(d+ 1))−1.
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If F (t) ≥ c e−|t|γ for some c > 0, γ > 0 and all t small enough, we get for Rn ≤((
1

d+1
− ε
)
log(n)

)1/γ √
λ and for ε > 0

ωn

F
(
−Rn/

√
λ
) ≤

(
Rd−1

n /
√
n
)2/(d+1)

c e−|Rn/
√
λ|γ ≤ R

2(d−1)/(d+1)
n

c nε
= o(1).

For F (t) ≥ c exp
(
−e|t|

γ)
for some c > 0, γ > 0 and all t small enough, Rn ≤(

log
(

1
d+1

− ε
)
+ log log n

)1/γ √
λ with ε > 0 gives

ωn

F
(
−Rn/

√
λ
) ≤

(
Rd−1

n /
√
n
)2/(d+1)

c exp
(
−e|Rn/

√
λ|γ
) ≤ R

2(d−1)/(d+1)
n

c nε
= o(1).

A.12. Proof of Theorem 9. The logarithm of the density of P (j) at x ∈ R
d can be

written as

log (fj(x)) = − log
(√

(2π)d
)
− log

(√
|Σj|

)
− 1

2
dΣj

(x, µj)
2 .

By (9) we know that for any 0 < δ < 1/2

vold

(
P

(j)
δ

)
= vold

({
y ∈ R

d : Φ
(
−dΣj

(y, µj)
)
≥ δ
})

= vold

({
y ∈ R

d : dΣ̃j
(y, µj) ≤ 1

})

= vold

(
Σ̃

1/2
j Bd + µj

)
=
∣∣∣Σ̃1/2

j

∣∣∣ vold
(
Bd
)
= Φ−1 (1− δ)d

√
|Σj| vold

(
Bd
)
,

where Σ̃j = Φ−1 (1− δ)2Σj . Thus,

2 log (πjfj(x)) = 2 log

(
Φ−1 (1− δ)d vold

(
Bd
)

√
(2π)d

)
+ 2 log


 πj

vold

(
P

(j)
δ

)


− dΣj

(x, µj)
2 ,

and π1f1(x) > π2f2(x) if and only if (19) is true.
The uniform consistency follows from Theorem 6, formula (A.5), and Lemma A.2.

Appendix B. Additional simulations and results

B.1. Robust classification.

B.1.1. Bivariate normal distribution, location difference. We repeat the same classifica-
tion experiment as in Section 5.3.1, with P (1) = PX , P

(2) = PX+(2,2)T , P
(3) = PX+(20,20)T .

This accounts for classification in presence of only location difference. The results are
summarized in Figure B.1 and Table B.1. We observe similar results as in Section 5.3.1:
the optimal (Bayes) error rate is nearly achieved by the illumination-based approach and
the classical QDA. The approach based on the refined depth performs worse, especially
in the extremes, and it is very sensitive to possible contamination.

B.1.2. Bivariate elliptical distribution, location difference. Finally, consider the experi-
ment from Section 5.3.2 with P (1) = PY , P

(2) = PY+(2,2)T , P
(3) = PX+(20,20)T . Our results

are summarized in Figure B.2 and Table B.2. We observe that in the case with no contam-
ination, the illumination-based approach and the classical QDA, used only as a reference
method here, perform slightly better than the method based on the refined depth. If some
contamination is present, the robust QDA appears to outperform both competitors.
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Illumination QDA Refined depth

0
.0

0
0
.0

4
0
.0

8
0
.1

2
All points

Illumination QDA Refined depth

0
.0

0
.2

0
.4

0
�
�

Outsiders

Figure B.1. Misclassification rates, based on 100 replications of the experiment
with two bivariate normal distributions with different location and same scale.
Based on all testing points (left panel) or the outsiders (right panel). Dashed
horizontal line in the left panel corresponds to the theoretical Bayes error rate.

All points Outsiders
Illumination QDA Ref. depth Illumination QDA Ref. depth

0 % 0.079 (0.006) 0.079 (0.006) 0.085 (0.009) 0.054 (0.030) 0.051 (0.031) 0.236 (0.165)

1 % 0.079 (0.006) 0.089 (0.007) 0.101 (0.010) 0.039 (0.032) 0.059 (0.056) 0.236 (0.235)

5 % 0.081 (0.006) 0.118 (0.010) 0.113 (0.011) 0.047 (0.038) 0.065 (0.052) 0.216 (0.109)

10 % 0.087 (0.006) 0.135 (0.012) 0.120 (0.011) 0.066 (0.045) 0.069 (0.054) 0.210 (0.117)

Table B.1. Average misclassification rates and their standard deviations (in
brackets), bivariate normal distributions with different location and same scale,
level of contamination in one of the training samples ranging from 0 to 10 %.
Based on 100 replications of the experiment and all testing points (left part) and
outsiders (right part), respectively.

Illumination QDA Refined depth

0
.0

0
0
.1

0
0
.2

0

All points

Illumination QDA Refined depth

0
.0

0
.2

0
.4

�
�
�

Outsiders

Figure B.2. Misclassification rates, based on 100 replications of the experiment
with two bivariate elliptical distributions with different location and same scale.
Based on all testing points (left panel) or the outsiders (right panel). Dashed
horizontal line in the left panel corresponds to the theoretical Bayes error rate.

Appendix C. R source code

library(TukeyRegion)

library(geometry)
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All points Outsiders
Illumination QDA Ref. depth Illumination QDA Ref. depth

0 % 0.135 (0.007) 0.136 (0.008) 0.140 (0.009) 0.286 (0.089) 0.296 (0.109) 0.353 (0.127)

1 % 0.134 (0.008) 0.168 (0.015) 0.142 (0.010) 0.317 (0.111) 0.374 (0.119) 0.382 (0.136)

5 % 0.140 (0.007) 0.242 (0.017) 0.162 (0.013) 0.285 (0.092) 0.354 (0.116) 0.384 (0.107)

10 % 0.165 (0.014) 0.265 (0.020) 0.175 (0.014) 0.311 (0.110) 0.336 (0.114) 0.365 (0.120)

Table B.2. Average misclassification rates and their standard deviations (in
brackets), bivariate elliptical distributions with different location and same scale,
level of contamination in one of the training samples ranging from 0 to 10 %.
Based on 100 replications of the experiment and all testing points (left part) and
the outsiders (right part), respectively.

Illumination = function(X,x,alpha){

# X: n-times-d matrix of the sample points (n points in d dimensions)

# x: vector of length d whose illumination is computed

# alpha: cut-off value for the illumination

# returns

# I: the illumination of x onto the depth central region

# (volume of the convex hull of points with hD at least alpha, and x)

# volPa: volume of the depth central region

# (volume of the region of points whose hD is at least alpha)

Pa = TukeyRegion(X,depth=alpha*nrow(X),retVertices=TRUE,retVolume=TRUE)

volPax = convhulln(rbind(Pa$vertices,x),options="FA")$vol

return(list(I=volPax,volPa=Pa$volume))

}

References

[1] Brunel, V.-E. (2019). Concentration of the empirical level sets of Tukey’s halfspace
depth. Probab. Theory Related Fields, 173(3–4):1165–1196.
[2] Donoho, D. L. (1982). Breakdown properties of multivariate location estimators.
Qualifying paper, Harvard University.
[3] Donoho, D. L. and Gasko, M. (1992). Breakdown properties of location estimates
based on halfspace depth and projected outlyingness. Ann. Statist., 20(4):1803–1827.
[4] Dyckerhoff, R. (2017). Convergence of depths and depth-trimmed regions. arXiv
preprint arXiv:1611.08721.
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