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1 SUPPLEMENTARY ALGORITHMS

Input: Mean factor b, precision matrix Qp.

Output: Draw x from a N(Q−1p b,Q
−1
p ) distribution.

1 Find the Cholesky factor Qp = LLT

2 Solve Lw = b

3 Solve LTµ = w
4 Sample z ∼ N(0, I)

5 Solve LTv = z
6 Compute x = µ+ v
7 Return x

Algorithm 1: Sampling from a typical GMRF-based full conditional encountered in
block Gibbs sampling (Rue and Held, 2005).

∗This material is based upon work partially supported by the National Science Foundation (NSF) under
Grant DMS-1127974 to the Statistical and Applied Mathematical Sciences Institute. DAB is partially
supported by NSF Grants CMMI-1563435, EEC-1744497 and OIA-1826715. CSM is partially supported

1



Input: MRF graph G = (V , E).
Output: k-coloring partition {A1,A2, . . . Ak}, for some k.

1 Set j = 1 and A0 = ∅
2 while V\ ∪j−1l=0 Al 6= ∅ do

3 Ij ← V\ ∪j−1l=0 Al
4 Aj ← ∅
5 while |Ij| > 0 do
6 i← min Ij
7 Aj ← Aj ∪ {i}
8 Ij ← Ij\ ({i} ∪ N (i))

9 end
10 j ← j + 1

11 end
12 k ← j − 1
13 Return {A1, ...,Ak}

Algorithm 2: Greedy algorithm for k−coloring the nodes of an MRF graph.

1.1 Sensitivity of the Greedy Algorithm to Vertex Ordering

The following is an example to illustrate the sensitivity of the greedy algorithm to the
ordering of the graph vertices.

For this graph, the greedy algorithm proceeds as follows:

1. Set j = 1 and A0 = ∅.

2. V\ ∪0
l=0 Al = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

(a) I1 ← {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
(b) A1 ← ∅.
(c) |I1| = 10.

by National Institutes of Health Grant R01 AI121351 and NSF grant OIA-1826715.
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i. i← 1.

ii. A1 ← {1}.
iii. I1 ← {2, 3, 4, 5, 6}

(d) |I1| = 5.

i. i← 2.

ii. A1 ← {1, 2}.
iii. I1 ← {3, 4, 5}

(e) |I1| = 3.

i. i← 3.

ii. A1 ← {1, 2, 3}.
iii. I1 ← {4, 5}

(f) |I1| = 2.

i. i← 4.

ii. A1 ← {1, 2, 3, 4}.
iii. I1 ← {5}

(g) |I1| = 1.

i. i← 5.

ii. A1 ← {1, 2, 3, 4, 5}.
iii. I1 ← ∅

(h) |I1| = 0.

(i) j = 2.

3. V\ ∪1
l=0 Al = {6, 7, 8, 9, 10}.

(a) I2 = {6, 7, 8, 9, 10}.
(b) A2 = ∅.
(c) |I2| = 5.

i. i = 6.

ii. A2 = {6}.
iii. I2 = {7, 8, 9, 10}

(d) |I2| = 4.

i. i = 7.

ii. A2 = {6, 7}.
iii. I2 = {8, 9, 10}

(e) |I2| = 3.

i. i = 8.

ii. A2 = {6, 7, 8}.
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iii. I2 = {9, 10}
(f) |I2| = 2.

i. i = 9.

ii. A2 = {6, 7, 8, 9}.
iii. I2 = {10}

(g) |I2| = 1.

i. i = 10.

ii. A2 = {6, 7, 8, 9, 10}.
iii. I2 = ∅

(h) j = 3

4. V\ ∪1
l=0 Al = ∅.

5. k = 2

6. Return {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}}.

We see that in this case, the greedy algorithm returns the optimal coloring. However,
suppose that for the same graph, the vertices were ordered differently, as depicted below.

The greedy algorithm proceeds as follows:

1. Set j = 1 and A0 = ∅.

2. V\ ∪0
l=0 Al = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

(a) I1 ← {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
(b) A1 ← ∅.
(c) |I1| = 10.

i. i← 1.

ii. A1 ← {1}.
iii. I1 ← {2, 3, 5, 7, 9}.

(d) |I1| = 5.
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i. i← 2.

ii. A1 ← {1, 2}.
iii. I1 ← ∅.

(e) j = 2.

3. V\ ∪1
l=0 Al = {3, 4, 5, 6, 7, 8, 9, 10}.

(a) I2 ← {3, 4, 5, 6, 7, 8, 9, 10}. A2 ← ∅.
(b) |I2| = 8.

i. i← 3.

ii. A2 ← {3}.
iii. I2 ← {4, 5, 7, 9}.

(c) |I2| = 4.

i. i← 4.

ii. A2 ← {3, 4}.
iii. I2 ← ∅.

(d) j = 3.

4. V\ ∪2
l=0 Al = {5, 6, 7, 8, 9, 10}.

(a) I3 ← {5, 6, 7, 8, 9, 10}. A3 ← ∅.
(b) |I3| = 6.

i. i← 5.

ii. A3 ← {5}.
iii. I3 ← {6, 7, 9}.

(c) |I3| = 3.

i. i← 6.

ii. A3 ← {5, 6}.
iii. I3 ← ∅.

(d) j = 4.

5. V\ ∪2
l=0 Al = {7, 8, 9, 10}.

(a) I4 ← {7, 8, 9, 10}. A4 ← ∅.
(b) |I4| = 4.

i. i← 7.

ii. A4 ← {7}.
iii. I4 ← {8, 9}.

(c) |I4| = 1.
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i. i← 8.

ii. A4 ← {7, 8}.
iii. I4 ← ∅.

(d) j = 5.

6. V\ ∪2
l=0 Al = {9, 10}.

(a) I5 ← {9, 10}.
(b) A5 ← ∅.
(c) |I5| = 2.

i. i← 9.

ii. A5 ← {9}.
iii. I5 ← {10}.

(d) |I5| = 1.

i. i← 10.

ii. A5 ← {9, 10}.
iii. I5 ← ∅.

(e) j = 6.

7. k ← 5.

8. Return {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}.

Under this vertex labeling, the greedy algorithm returns a coloring consisting of 5 colors,
over twice as many as the optimal solution. The sensitivity was recognized by Culberson
(1992), who proposes iterated versions that repeatedly apply the greedy algorithm to per-
mutations of the vertices, leading to solutions that are closer to optimal.
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2 SUPPLEMENTARY FIGURES
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Figure 1: Left panel: Gelman plots (Brooks and Gelman, 1998) of the potential scale reduction
factors versus chain length for the 50×50 regular array example. Right panel: Cumulative averages

σ̂2
(k)

and τ̂2
(k)
, k = 1, . . . , 2, 000 calculated from three independent chains. In the right panel, the

top, middle, and bottom rows correspond to chromatic, block, and single-site sampling, respectively.
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Figure 2: Left panel: MCMC Trace plots of single chains each for σ2 and τ2 for the noisy 50× 50
regular array example. Right panel: Empirical ACF plots for these chains. The top, middle, and
bottom rows are from the chromatic, block, and single-site chains, respectively.
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Figure 3: Left panel: Gelman plots (Brooks and Gelman, 1998) of the potential scale reduction
factors versus chain length for the noisy 50× 50 regular array example. Right panel: Cumulative

averages σ̂2
(k)

and τ̂2
(k)
, k = 1, . . . , 2000 calculated from three independent chains. In the right

panel, the top, middle, and bottom rows correspond to chromatic, block, and single-site sampling,
respectively.
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Figure 4: Left panel: Scatterplot and approximate marginal posterior densities estimated from the
three sampling approaches for the noisy 50 × 50 regular array example. Right panel: Empirical
CDFs based on the output. The left panel was created using code available at https: // github.
com/ ChrKoenig/ R_ marginal_ plot .
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Figure 5: Posterior mean estimates of the the true underlying image obtained from each sampling
approach in the noisy 50× 50 regular array example.

0 500 1000 1500 2000

46
48

50
52

54

Iteration

σ2

0 500 1000 1500 2000

5
10

15
20

Iteration

τ2

0 500 1000 1500 2000

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Iteration

β 0

0 500 1000 1500 2000

46
48

50
52

54

Iteration

σ2

0 500 1000 1500 2000

5
10

15
20

Iteration

τ2

0 500 1000 1500 2000

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Iteration

β 0

Figure 6: MCMC Trace plots of single chains each for σ2, τ2, and β0 chains in the noisy 80× 80
regular array example. The top and bottom rows are from the chromatic and block samplers,
respectively.
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Figure 7: Posterior mean estimates of the the true underlying image obtained from the chromatic
and block sampling approaches in the noisy 80× 80 regular array example.
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Figure 8: MCMC Trace plots of single chains each for σ2, τ2, and β0 chains in the noisy 128 ×
128 regular array example. The top and bottom rows are from the chromatic and block chains,
respectively.
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Figure 9: Posterior mean estimate of the the true underlying image obtained from chromatic
sampling in the noisy 256× 256 regular array example. The estimate is based on the last 2,000 of
10,000 iterations of the Markov chain.
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Figure 10: The raw data from the New York election example. The figure displays the total number
of votes for the Democratic candidate in each precinct divided by the total number of votes from
that precinct.
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Figure 11: 7-Coloring of the 14, 926 precincts in New York found via Algorithm 2.
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Figure 12: Left panel: MCMC trace plots of single chains for the β0 and τ2 chains from the
New York election data example. Right panel: Empirical ACF plots for these chains. The top and
bottom rows are from the chromatic and block chains, respectively.
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Figure 13: Gelman plots (Brooks and Gelman, 1998) of the potential scale reduction factors versus
chain length for the New York election example.
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3 DETAILS PERTAINING TO THE SPATIAL BI-

NOMIAL REGRESSION MODEL

It is assumed that γ = (γ1, ..., γn)T obeys a CAR model, which is given by N(0, τ 2(D −
ρW )−1), with ρ being known. The model is completed by specifying the following priors:
β0 ∼ N(0, σ2

0) and τ 2 ∼ IG(ατ2 , βτ2), where the hyperparameters are chosen so these priors
are vague. Thus, the unknown parameters that are to be sampled via Markov chain Monte
Carlo (MCMC) are β0, ψ, γ, and τ 2, with the only difference between the full block Gibbs
and chromatic sampler being how the γ are sampled; i.e., the former samples all of these
elements in a single block while the latter samples independent blocks of these elements
from their univariate full conditionals.

To create a posterior sampling algorithm, it is first noted that the full conditional
distribution of β0 is given by β0|ψ,γ,Y ∼ N(µβ0 , σ

2
β0

), where µβ0 = σ2
β0

(1Tκ − 1TDψψ)

and σ2
β0

= (1TDψ1 + σ−20 )−1. Next, the full conditional distribution of τ 2 is given by
τ 2|γ ∼ IG(ατ2 + n/2, βτ2 + γT (D − ρW )γ/2). The full conditional distribution of the
latent ψi are again Pólya-Gamma; i.e., ψi|β0, γi ∼ PG(mi, ηi), for i = 1, ..., n. For further
details, see Polson et al. (2013). The full conditional distribution of γ is γ|Y , β0, τ 2,ψ ∼
N(µγ ,Σγ), where µγ = Σγ(κ −Dψ1β0) and Σγ = {Dψ + τ−2(D − ρW )}−1. Through
similar arguments, it is easy to show that the univariate full conditional distribution of γi
is given by γi|γ(−i), Yi, β0, τ

2, ψi ∼ N(µγi , σ
2
γi

), where µγi = σ2
γi

(τ−2ρ
∑

j∈N (i) γj−ψiβ0 +κi)

and σ2
γi

= (ψi + τ−2Dii)
−1.
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