SUPPLEMENTARY MATERIAL TO “LOCAL COMPOSITE QUANTILE
REGRESSION FOR REGRESSION DISCONTINUITY”!

XI1A0 HuaANG ZHAOGUO ZHAN

September 24, 2021

This supplement contains all technical details, lemmas and proofs for the asymptotic and

fixed-n results, as well as additional figures and tables.

Contents
S.1 Notation . . . . . . . . . 2
S.2 Lemmas and proofs for Theorems 1to5 . . . . ... ... ... ... .... 5
S.3 Lemmas and propositions for fixed-n results . . . . . ... .. ... .. ... 15
S.4 Additional figures and tables . . . . . . . ... ... 0oL 22
S.4.1 Figure: the bias of bias-corrected estimators . . . . . .. ... .. .. 22
S.4.2  Figure: LCQR and LLR at interior and boundary points . . . . . . . 22
S.4.3 Table: coverage probability with the rule-of-thumb bandwidth . . . . 22
S.4.4 Table: coverage probability of fixed-n LCQR with small sample . . . 22
S.4.5 Table: LCQR for sharp kink RD . . . ... ... ... ... ..... 22
S.4.6 Table: simulation results for sharp RD with covariates . . . . .. .. 26

'Email: xhuang3@kennesaw.edu and zzhan@kennesaw.edu.

1



S.1 Notation

In a sharp RD, LCQR is applied separately to egs. (1) and (2), while in a fuzzy RD, LCQR
is applied separately to egs. (1), (2), (7) and (8). Instead of introducing four similar sets of
variables, notation and proofs, we will focus on eq. (1). Exactly the same proof holds for the
results based on egs. (2), (7) and (8) with similar notation, where the subscript Y, used for
eq. (1) becomes Y_, T',, T_ for eqs. (2), (7) and (8), respectively.

Consider eq. (1). Let fo, = (foy, (c1), ", fey, (cg))" be a g x 1 vector, Sy, 11(c) be a
g X q diagonal matrix with diagonal elements f€Y+ (ck) 4,0, Sy, 12(c) be a ¢ x p matrix with
(k,j) element fey+ (ck)pi+j, Sy, 21(c) be the transpose of Sy, 12(c), and Sy, 22(c) be ap x p
matrix with (j, j') element equal to > 7_, Jey, (ck)ps g (c). Let Xy, 11(c) be a g x ¢ matrix
with (k, k") element vy o(c)Tier, Ly, 12(c) be a ¢ x p matrix with (k, j) element Y 7, Tewvy ;,
Yy, 21(c) be the transpose of Xy, 12(c), Xy, 22(c) be a p X p matrix with (7, j') element equal
t0 D h_y D=1 TV g+ (€). Define

S c) S c Y c) X c
Sy, (c) = via1(e) Sy, aa(c) S0 = vi1i(e) Dy, 1a(c) | (A1)
Sy, 21(¢) Sy 22(c) Yy, 21(c) Xy, 22(c)

and the partitioned inverse Sy (c):

S;:(c) = : (A.2)

Let Fy(cg, cir) be the joint cumulative distribution function of ey, and e, at (cg, ) and
assume hy, = hp, . Define ¢ = F (ck, cpr) =TT Also let Xy r, 11(c) be a ¢ x ¢ matrix with
(k, k") element vy o(c)drr, Ly, 12(c) be a ¢ X p matrix with (k, j) element Y}, _; dpwvy ;(c),
Yyr, 21(c) be the transpose of Xy, 12(c), Xyr, 22(c) be a p x p matrix with (7, j') element

ZZ:l Zz/zl ¢kk’1/+7j+]’/(0). Define

EYT+,11 c EYT+,12 c
Sy, () = ) ) (A.3)

ZYT+,21(C) ZYT+,22(C)

Like (A.1), (A.2) and (A.3) above, a similar set of definitions can be provided to other
variables on the boundary, including Sy (¢), Sy'(c), Sy (c), S, (¢), Sil(c), X1, (c), St_(c),



Ste), 2 (c), F_(ck,cr), Syr_(c), and ¢ can also be redefined with F_(cy, cp).
Let x4, = (X1, —2)/hy, and K} ; = K(z1;) with 2 = 0. Define

Uk = \/n+hY+<ak —my+(x) — 0€Y+ck) k=1,---.q,
j = M V/nehy (310 = my+ o)/ i=1-p,

p

v’
A'7k Z I+
! A/ n+hY+ \/ n+hY+
Tip = mY+ X-‘rz Zm _x>j/j!7
dig = Ck[aey (Xt) — Ocy, (@)] + Tip- (A.4)
Let W;+,n+ = (w;+7117 e 7w;+,1q7 w;+,21’ e 7w;</+,2p)T = (w;;+,1n’ wgk/+72n)T’ Where
-
* *
Wy, 1k = = 7/—— ZK($+,‘)77Y ik
* N Ve
1 q ny '
* J *
Wy, 2f = —F/——— Z K(ﬂf+,i)x+,my ik
" Vi hy, k=1 i=1 '
d; 1.
Mg =Ly i <o — ——) — 7. (A.5)
€Y+,i
Also let WY+,n+ = (wn,n, L, Wy g, Wy 215,000 7wY+,2p)T = (wy+,1n, wn,zn)T, where
1
Wy, 1k = —F7——— Z K<x+,i)nY+,i,k>
Viahy, 3
1 q ny A
Wy, 25 = —h Z K(ﬂf+,i)xi,i77y+,i,k,
VI 3T i
Ny ike = 1(ey, i < c) — Th (A.6)

SlmllarlY) we deﬁne W;+,n+7 w;+,1k7 w;+,2j? n;+,i,k’ WT+,7L+7 wT+,1k‘7 wT+12j and nT+7i7k'
Consider the case p = 1 and define 6 = (uy, - - ,ug,v1)". Let ém = (@, , g, 01)7 be
the transformed minimizer of (13). It can be shown that minimizing (13) is equivalent to

minimizing

LS

i=1 k=1

L.0)=3 (Km,»

(r Oy €y — k) +dig — Dig) — pr(0cy, (evii—cx) +dig)) | -
+ +
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Next, in a similar fashion we introduce the notation used for fixed-n approximations in

Section S.3. The notation of K ; as well as z ; has been provided for (A.4). Let S,y, 11 be

a ¢ X g diagonal matrix with diagonal elements fq,+ (ck)ﬁ Z’;:l JK“ , Sny 12 beagxp
Y i

Ky,
Z::l Ue; =1 Say, 21 be the transpose of Spy, 12,
Ry

matrix with (k, j) element f, (ck)mrhY+

g+3’
1 Zn+ Kyaay’y
nyhy4+ =1 GEY+,i :

and Sy, 20 be a p X p matrix with (j, j') element equal to > 7 _, f€Y+ (ck)

Let Xy, 11 be a ¢x ¢ matrix with (k, k") element i” Z?Jrl Ki,ﬁkk/, Yny, 12 be a ¢xp matrix

nt
with (k, j) element Y74, T i D10y K3 i@l Sy, 21 be the transpose of Xy, 12(c),

Yy, 22 be a p x p matrix with (7, j') element equal to > ;_, > 7,_, Tkk/ﬁ Yo Kizxff/

Similar to (A.1) and (A.2), define

Sny, 11 Snyy 12 Ynvi il Znyy12
SnYJr - 5 EnYJr - 5 (A7)

Snyi21 Snyy 22 Ynvi 21 2y, 22

(Spv ) (Spy i

(Spy )21 (Spy, )as

Soh =

n Y+

(A.8)

.. . . +
Similar to (A.3), let X,y7, 11 be a ¢x¢ matrix with (k, k") element qbkk'm\/ﬁ Yoy K?ma
- - 1 + 2 g
Yy, 12 be a ¢ X p matrix with (k, j) element Y 7,_, qﬁkk/m > K+’ixi7i, YnyTy 21
be the transpose of X,yr, 12, and X,y7, 20 be a p x p matrix with (j, ') element equal to

o
" K2 277 Define

Zizl ZZ/:I ¢kk/m Zi:l

ZnYT_~_,11 EnYT_‘_,12

Yy, = . (A.9)
YayTi 21 XnYT, 22

A similar set of definitions can be provided to other fixed-n variables on the boundary,
inCIUding SnYi, 8723177 EnY77 SnT+7 Sq;’}’+7 E'r7,T+ ) San ) S;j{ia Ean and ZnYT,~

Given the above fixed-n definitions and let x = 0, it can be verified that, as n, — oo,

fX+ (.T)

Tey, (¥)

Snyy Sy, (¢), By, = fx, (¥)Ey, (¢) and Epyr, — fx, (2)Eyr, (0).



S.2 Lemmas and proofs for Theorems 1 to 5

Lemma 1. Under Assumptions 1 to 6, as ny — 0o, we have

72..(0)

fX+ (0)

. Oey. (0
O, + 0

1 % L
. —fX+ 0) Sy () E(W,, |X) = MVN (O,

S;j )y, (c)S?j(c)) ) (A.10)

Proof of Lemma 1. See the proof of Theorem 2.1 in Kai et al. (2009). O

Lemma 2. Under Assumptions 1 to 6, as ny — oo, the asymptotic bias and variance for

the LCQR estimator in eq. (1) are given by

o 1
Bias(my, (0)|X) = §GY+(C)m§/2+)(0)h§q +0p(hy, ),

by, (c)a?, (0)
Var(rny, (0)|X) = njw > (O; +op(n;by ),
av. () = P2 a(0) = pya(Q)pps(c)
" fi0(C)py2(c) — i1 (c)’
by, (¢) = g (Sy, () 2y, (€)Sy, () neq/q*. (A.11)

Proof of Lemma 2. The bias result follows that in Theorem 2.2 in Kai et al. (2009). The

variance result also largely follows that in Kai et al. (2009). Given

2
1 Oc _ _
ey (571 (0)Zy, ()57} (€)ney + oy

Var(ry, (0)|X) = nihy, ¢ fx,(0) *

), (A12)

n+hy+
It is easy to verify that when ¢ = 1, eq. (A.12) can be written as

2
1 %, i a(0)vio(c) = 2pp () pira(Q)va(e) + pid 4 (v o(c)

Var(rny, (0)|X) = Ri(q)
B R S N () (2 2(6) — 121
+o , A13
o) (A13)
where Ri(q) = 5> 1 >4, _ ——#— However, for ¢ > 2, the result in eq. (A.13) no
q fey+(ck)fey+(ck/)
longer holds and we use eq. (A.12) instead. O

Lemma 3. Under Assumptions 1 to 6, as ny — oo, the covariance between 7y, (z) and

mr, (x) at the boundary point 0 is given by



1 O'ey+(0)0€T+(0)b —|—O< ]' + 1 ) (A 14)
ST T ORI o

Cov(my, (0), 17, (0)|X) = nihy,  nihr
+ +

where

+

1
byr, = ?eqT (SY+( )EYT+ST1(C)>11 e (A.15)

Proof of Lemma 3. Assume p = 1. From Lemma 1, we write

sy, (0) — E(iiny, (0)[X)

O-EY+ (0) T ( _ _ w;q_,ln - E(w;+,1n|X)

= — (Sy () (57, ()2 + 0p(1)
q 7’L+hy+ fX+ O q e v w;+,2n - E(wik’+,2n|X)
1 O-EY+ (0) T ( wY+,1n - E(wY+71n|X)

- (Sy () (53, (¢)e + 0p(1),
q\/n+hy+ fX+ O “q Yy Yy Wy, am — E(wy+’2n|X)

where the last equality follows by the result that Var(wy, ;, — wy, 1n|X) = 0,(1) and

,An

Var(wy, 51 — wy, 21/X) = 0,(1). See Kai et al. (2010) for a proof. Similarly, we have

s, (0) — E(in, (0)[X)

Wr, 1n — E(wT+71n|X) o (1)
(1)

wry 2n — E(wT+,2n|X)

1 0, (0) .
e o (GROm 5RO

Cov(ny, (0), mr, (0) |X)

= E ((y, (0) — E(my+ X)) (rivr, (0) — L (0)]X)))

_ 1 Uem 0 ( g1 Le) )
>*ny vV hy, hr, fX+ ! " -

T
1
< E Wy, 1n — UJY+ 1n|X) W, 1n — UJTJr 1n|X) « (Sﬂ (c)n e
Wy, 2n — wY+ 2n’X Wty ,2n — 'UJT+ 2n’X> (S;j(c>)12
1 Uey 0€T+ ( 1 _1 1 1
= e Sy ()X c ) e, +o +
q2n+\/hy+hT+ fX+ YT+ ( ) 11 1 p(n+hy+ n+hT+
where Cov(ny, ik, N1, i) = G if @ = j, and Cov(ny, ik, nr, jw) = 0if @ # j. O
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Proof of Theorem 1. See Lemma 2 above. [
Proof of Theorem 2. Consider the approximation

- — 1 m -m —(m — my.
Ttuzzy — Ttuzzy — mT+(O) e (0) [ Y+(O) Y+(O) ( Yf(o) 7(()))]

My, (0) — My_ (O)
[ma, (0) — mg_(0)]°
+op(hy, +hy +hi, +hi).

[z, (0) = . (0) — (r- (0) — ma_(0))]

The bias expression follows from Lemma 2: use it four times for my, (0), my_(0), myz, (0),

and mr_(0). For the variance expression, note that the approximation above leads to

y_(0))  (my, (0) —my (0))

(mT+ (O> —mr_ (0

1 [Var(iiur, (0)) + Var(rig_(0))]

5 [Cov(riy, (0), riur, (0)) 4+ Cov(riy_ (0), riy_(0))] + s.o0. (A.16)

where s.o. denotes a small order term.
Plugging the variance and covariance expressions in Lemmas 2 and 3 to (A.16) leads to

the asymptotic variance expression of Tgyy . O

For convenience we write my, (0) and my (0) as my, and my_, respectively. Equa-
tion (30) suggests that we need the expressions for Var(Bias(rny, )) and Cov(ry, , Bias(my, ))
to adjust the variance. The next lemma provides results for computing Var(Bias(my, )). In
deriving the results, we also present the bias of Bias(ry, ). Let e, be a p x 1 unit vector

with the r-th element equal to one. Let p = 3 in the following proof.

Lemma 4. Under Assumptions 1 to 6, as ny — oo, the asymptotic bias and variance of

m%) are given by

. L.
Bias(riy’) [X) = T5ai, (mi Y, +o0,(h,), (A.17)

4 od, (0)by, () 1

Var (m(2)|X) = + op(———
v ”+h5y+ fx,(0) : n+h§/+

), (A.18)



where

ay, (€) = py.a¢5 (3 (€))ar fey, +Zf6y cr)ey (Sy (€))az by 5t by 1) (A.19)

by, () = €5 (S (¢) Dy, (¢) Sy )asea. (A.20)

Proof of Lemma 4. From the definition of v;, we have

@ ) 205

=My + - F.
Y. Y.
+ + h%/+\/n+hy+

(A.21)

Hence the bias becomes

E(in{)) —my) = — 200 (0) T((S-%c)) (S72())a2) (W3, )
Yy Yy h%@ \/Wf)@. 21, \Pyy 22 Yi.n
2oEY (0) QUEY (0)

= T(S () BE(Wy, A"

h +V nyhy, fx, (0

T(S_I(C))mE(W{a,zn)

TV n+hY+ fX+

=I1+1I
20, (0)
[= t T(S_I(C))zl
h v/ hy, fx, (0
% |— f6y+ ichk U€Y+,i - Uey+ (O) _ f6Y+ + Kl Ti73

V n+hY+ i=1 U€Y+,i vV n+hY+ i=1 U€Y+,i

1 4 _
= e a(0)es (Sl () B, + 0p(hE,),
20, (0)
II = T(Sil<0))22
hY+ V n+hY+ fX+
.flf_hi . Ty 4
N4
< | — fey+ Ck Z 0-€y+,i - O_€y+ (0) 2 |- k=1 f€y+ (ck) Z KZ T3 .2
vV "+hY+ i=1 Oey, i o A% nyhy, i1 Tevp. o
3 3

T Lt

. Ht 5
L4 _
= 5 D fer ()3 (Sy1 (@22 [ oy | B+ 0u(R).
k=1

K7



The bias result is proved by combining the two terms I and II. One would expect a number
of 4! = 24 instead of 12 on the denominator. This is due to the extra number 2 in eq. (A.21).
Because of the way vy is defined, the “effective” constant on the denominator is still 24,
in line with the standard results for nonparametric derivatives. Similarly, the number 4
appearing on the numerator of the variance is also a result of the number 2 in eq. (A.21).

The variance results from eq. (A.21) and Lemma 1. O

Proof of Theorem 3. Following Theorem 1, we have

A 1 b (o), (0) 1
Var<mY+) = 7’L+hy+ fX+ (0> Op(n+hY+ )7
) 1 by (c)a?, (0) 1
Var(niy. ) = n_hy_ fx_(0) * Op(nfhy_ )

Use the bias expression in Theorem 1 and the variance result in Lemma 4, we have

_ oz, (0) 1
Var(Bias(ry, ) = mcg(@bﬁ(c) + O”(mTy>’
+J X4 +
_ oz, (0)
Var(Bias(ry._)) = ma%c)b; () +0p(;=5—):
For the covariances, we have
~ =, A 1 1 2 (2) 2172
Cov(my+, BlaS(my+)) = COV my+ \/MTY uk, CLY+( )hY+ (my+ + W)
+ k=1 + +
y, (C) NN
= —" Cov(ty, v
n+h’Y+q ; ( g 2)
av, ()02, (0) |
= Sy, Z Sy, + o ,
nyhy, qfx, (0) “u v )12 2 p(n+hy+ )

where (S}, 1EY+S 1)12 2 is the second column of the matrix (S, EY+S 1)12 and the last line

follows from Lemma 1. Similarly, for data below the cutoff, we have

ay_(c)az, (0)

oy af 00 S S ol

Cov(riy_, Bias(ry. )) =

,hy_)'

The expression for Var(7sharp — B/igs(%sharp)) is obtained by substituting the six variance



and covariance results into eq. (30),

~ — 1 1
Var(TSharp o BlaS(TShal‘P)) = mTy‘/sharp,Jr + n_hy Vsharp:*>
+ —Ny_
where
by+(c)afy 0) o2 (0) ay, (c)o? (0)
‘/S ar - - s 2 by — Q—YJF T S—lz S—l
harp,+ <. (0) + fX+(0)a (c)by, (c) . 0) ey ( v, 2y, Y+)12’27
by (c)a?, (0) o?, (0) ay (c)o?, (0)
V; arp.— — — —+ - CL2 Ab: (¢) — +6T Sflz Sfl .
hp’ fx_(0) fx_(0) (c)by_(c) 7fx_(0) ¢ (Sy" By Sy 2o

Next, we establish the asymptotic normality of the adjusted ¢-statistic. From Lemma 2,

we have
Ty, — %(JLY+(C)WL§2}L§/Jr —my, 1y, — BE(hy,)  E(hy,) —my, — %aer(c)rngZ)h%/+
Var(my, ) Var(my, ) Var(my, )
_ iy, — E(iy,) Op(hy, ) (A.22)
Vatinry) | Opu/Ansn) '
4 N(0,1). (A.23)

The second term in eq. (A.22) converges to 0 under Assumption 6. In the first term, given
the definition of w, in eq. (A.4) and since 7y, is a linear function of 4y, in eq. (14), Lemma 1
and the Delta method lead to the normality result in eq. (A.23).

Similarly, we have

My — 3ay. (c)mgi) hy —my.

) 2 N(0,1). (A.24)

Let 79 = my, —my_. Using the proof for egs. (A.23) and (A.24), we can show

7A'sharp - [%aY+ (C)mgjhg@ - %aY* (c)mg hgf_] — d N(O 1) (A 25)
= N(0,1). :

Var(7sharp)

Finally, we have
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7A_shaurp - Bias(%sharp) —To _ %sharp - Bias<7ﬁsharp> - E(%sharp - Bias<7ﬁsharp)>

Var ( 7A-sbhcarp ) Var (%skilcarp )

E('f_sharp — Bias(?sharp)) — 70

Var(73:,,)
sbe (b /
__ !sharp ( sharp) + Op( ’n+h1) + Op( n_h7_)
Var(%slilcarp)
% N(0,1), (4.26)

where we use the proof similar to egs. (A.23) to (A.25) and the fact that E(%Sharp—lgi\as(%sharp))—
To = Op(h%/+) + Op(h%/_)-
[

Proof of Theorem 4. We first note that all bias terms in eq. (34) can be obtained using
Lemma 2. For terms in the adjusted variance in eq. (35), Var(imy, ), Var(mr, ), Var(]g\as(mn)),
Var(]?i\as(mﬂ)), Cov(my,, E?i\as(m;q)), and Cov(mr,, ]§i\as(mT+)) can be obtained using re-
sults in the proof of Theorem 3; Cov(7y, , My, ) is obtained using Lemma 3. And we list

these seven terms in the following.

Var(iny, ) — n;m by*gfgg o Mﬁx
Var(rinr, ) = n;m bn;ﬁi& 9, op(ﬁ),
Var(Bias(riy., )) = %aww tol
Var(Bias(iir, ) = %ai(c)bﬁ(c) T "p%jm 7

11



1 Ocy, (0)0er, (0) 1 1
bYTJr + 0P< + )7
N/ hYJr hTJr f)(Jr (0) n+hy+ n+hT+
aY+( ) ( )

Cov(iny, ,r,) =

cov<mY+,1§i§s<mY+)>_n+hY qu Ok er (Sy Sy, Sy 12 + 0y . ),

+ + +
o ar, (c)o?, (0) . 1

Cov(rir, , Bias(rr, ) = b fX++(0) (STjZTJrST:)l?’Q * Op(m)'

Next, we compute the remaining three covariances.

== T 1 . 1 .
Cov(Bias(my, ), Bias(mr, )) = Cov(= ay+(c)m§2+)h§,+,§aT+(c)m¥+)h%)

ay, (¢)ar, (c) . R
= C ,
\/n+hy+ \/n+hT+ OV(U27Y+ v2,T+)
Ay, (C)aT+ (C)Uey+ (O)UGT+ (O) T/ a—1 1
e; (Sy Yy, S e
’I’L+ /_hy+hT+fX+(0> 2( Y, YTy T+)22 2

+ 0,( ! + ! )
10) .
b ny hY+ ny hT+

_— 1 g 1 2 2091
Cov(my, , Bias(m = Cov(my, + ——— Uy, —ar, (¢)h2 mP 22T
(v, Bias(iir, )) = Covimy, + - —mes D ar, (M, () + 57—

ar, (c)aey+ (O)UET+ (0) g B 1 1
Sy Yy, S + o0 + )
ano/Toy oz fx, (0) o ( Y, YTy T+)12,2 p(n+hy+ n+hT+)

TR 1 - 1 2) 209y
Cov(my,,Bias(my, )) = Cov(myp, + ———— G, 1, =ay, (c)hy ( (2) 4 — 2 )
( + ( + )) ( + q n+hT+ — ) + Y, Y, h%—+ /—n+ ]’LY+
. ay, (C)U€Y+ (0)U€T+ (0) T 1 1

el (ST 8y, Syt +o + )
qn+\/hy+hT+fX+(0) q( Ty T Y+)1272 p(n+hY+ n+hT+)

Substituting the above results into eq. (35) gives the expression for Var((ry, — 1o, ) —
(Bias(rhy, ) —moBias(riur, ))). The result for Var((riy. —rorms ) — (Bias(riy. ) —oBias(ir_)))
can be obtained in a similar way. Adding up the two variance results gives the adjusted
variance in the fuzzy case.

To establish the asymptotic normality, note that we can use eq. (34) to write Tfuzzy as

Fhay = (i, —Bias(nioy, ) =7 (s, —Bias(rivr, )) — (rivy. —Bias(rivy- ))+7o (o —Bias(rir.)).

12



Using the similar argument in proving the asymptotic normality of 7. we can establish

sharp7

the asymptotic distribution of t?fzty. O

Proof of Theorem 5. We first expand Bias(riy, ) up to O(h3,) on the boundary. Recall

~ o q A
My, = 4_; a;/q and we have

Uey+(0) ! Oey, (0) o7
2

. A _ 1 * —1 *
Bias(ry, ) = PRD SR e ) € [(5 ()11 E(wy, 1,) + (Sy, (©)2E(wy, 5,)
Tev, (O) T(a—1 * Tev, (0) T/ g—1 *
= — S F — S FE
P n+hy+fx+(0)eq( Y+(C))11 (wY+,1n) P n+h/Y+fX+<O)eq( Y_,.(C))IQ (wY+,2n)
=I1+1L
Counsider term 1.
\/m Zn+ K; E(??i‘q,z-,l)
—0., (0
I= v () T(S_I(C))n :

q \V n+hY+fX+

\/n-&-TY Zn+ K; E(Uﬁ,i,q)
fey+ Cl
(0) \/MTY Z ZUEY+
o
= = T(Sfl(c))n : + 0p(1)

q+/ nyhy, fX+

fey, (cq Z
VARO Z‘761/Jr i

fe
/—)T;ihy Zz 1K7nzl

— T(S_l(c))n : + 0p(1)

q V n+hY+fX+

I (c

1 % 1
= 2—qu(51/+1( ))Hféy mgq)/“r th + 6_q (Syj( ))11f6Y+m§§2M+73h?§+
+ QC]f)g( )eT(Sil( ))11er+mY+u+3hY+ +0p(h?{/+),

where the second equality follows by expanding the cumulative distribution of €y, ; around
¢ and the third equality follows by noticing that all terms containing ¢, after multiplied by
ey, (0)
. Y+ . .
the coefficient T PO e (Sy, '(¢))11, become zero after a summation. The last equality

13



is obtained by a Taylor series expansion of my, at 0 up to order 3 in r;,, similar to the
expansion in the definition of 7; 3.
Consider term II. Note that p = 1 in the following proof when we estimate the conditional

mean using degree one local polynomial.

/—nihy+ Zizl Z:L;H KiXJr,iE(m*q,i,l)
_0-€Y+ (0) )

= 2 (Sy (e
= r+hy+fx+(0)eq( v, (©))

/—"ihYJr Zizl Z?:Jrl KiXi,iE(n{q,i,q)

n4 di,l
Zizl KiXyi

) iy D for (1) o
_ Tev, T(g-1 :
i g, )0 O e | (1)

p _dig

\/#TY+ 2kt fev, (cg) 22054 KiXiizhs

q f ( ) /’L+,3
k=1 Jev, \Ck B . )
- 2—q+eqT(SY+1(C))12 : mgq)h?/+
Kt p+2
q f ( ) /"L+,4
k=1 J ey Ck B ' 3
6 e, (Sy, ()2 : m&jh%”q
q
H+,p+3
ats i i g1 . (2)73 3
s (@) CaOn @ | mvihy, top(hy)
Mt p+3

Combining I and II yields

~ (1)
| ) ) 1. 3 1 ay. (C)fX (0)
Bias(riy, ) = §CLY+(c)¢rL§V+)iz§V+ + —aﬂ(C)mgq)h?{q + §+fx—(0;
+

2
5 my by, -+ o,(hY.).

— c c ~ 2 c)— (¢
where ay, (c) is in Lemma 2, dy, (¢) = =280 petlesld and gy, (o) = Leaoteaon

. oY)
1avy (OFx, (0)  (2), 4
PR oy (O RO O

+,4(c)
1,1(0) ’
Hence the leading term in Bias(my, — Bias(my,)) is é(zer(c)mg) hy, +

14



Since we work with data above the cutoff in this proof, the adjusted variance is given by

V24 in the proof of Theorem 3. Thus, the adjusted MSE can be written as

ny hy sharp

5 (1) 2
, 1 Lay, () fx,(0) (o 1 dj 1
dj. MSE = | =-a h -t h3 +——V2 4o (RS + ——
ad) 6aY+<C)mY+ Yy 9 fXJr(O) mYJr Yi n+hy+ sharp Op( Yy n+hy+
1 1
= C3hy, + ——C5+ 0,(hy, :
2 Y+ +h'Y+ 3 p( n+hy+)
here Cy = L © 12000 0) 4oy The bandwidth that minimi
where Cy = 3ay, (c)my TR My, Al tharp: The bandwidth that minimizes
/7 _
the adjusted MSE is given by h = (%”2) n+1/7. O

S.3 Lemmas and propositions for fixed-n results

This section first collects several lemmas for the development of fixed-n approximations.
We then present two propositions that are the fixed-n counterparts of Theorems 3 and 4.

Assume p = 1 in the following lemmas.

Lemma 5. Under Assumptions 1 to 6, the fixed-n bias and variance are given by

n4
1 K—l-lx—l—z

1lfe
Yy n +h‘Y+ :
=1

' . 1
Bias(my, |X)fixed-n = 565 [(SnY+)

Oey, i
T+ 3

1 K+ WL

Z Z ARy (2) 32 2

12 f my-’ h +o0 h

1’LYJr €Y+ 2n+hY+ : 0-5Y+ . Y'Yy P( Y+)7
Z: El

1

1
V. 5 X) fixe. = ¢ (S PN g1 ) -
ar(mY+ | )ﬁ d n+hy+ TLY+ Y+ nY+ eq + OP( n+hy+

).

Proof of Lemma 5. We first state some results for E(wy, ;,) and E(wy, ,,) that are used in
the proof of the asymptotic results in Theorem 5 in Section S.2. E(wy, ,,) is a ¢ x 1 vector

while E(wy, ,,) is a p x 1 vector with p = 1 in this case. By not letting n — oo, we have

n4
* K+ Z'r z (2)
E(wY+,1n) = f6Y+ 2\/71_,_7}/ . + (O>hY+ + 0( )
+ Oc )
A.27
L ks, (A.27)

§Ej(0)h§+ +o(1).

=+, n + / o
nJr hY+ i=1 €Y, i
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From the proof of Theorem 5, Lemmas 2 and 3 in Kai et al. (2010), the loss function becomes
1 T *
L, (0)= 59 Sny 0+ Wy . +0,(1),

the solution of which is,

én+ = _S_1 W;+,n+ + Op(1)7

nY4

Rewrite the above equation as

b + St BOWY, 0 1X) = =S50 (WY = BOWY, X)) + 0,(1), (A.28)

nY4

which is the base to prove Lemma 1 in the asymptotic case. Combining eq. (14) and

eq. (A.28), we obtain the following expression for pre-asymptotic bias

1 q
N < (A.29)
1 T )
BN [(Sni)n (S )iz | WYy (A.30)
+

Plug the result in eq. (A.27) into eq. (A.30), and we prove the fixed-n bias result. From

eq. (A.28), the variance of 6., . becomes

Var(6,,, ) = Sy Var(Wy_,,. — EWy,_, [X))S,},
- S;;Jrvar(wyhmr - E<WY+7H+ ’X>>Sr:1}+
= S;;+Var(Wy+7n+)S_1

nY4)

where we use the result Var(Wy., . —Wy, ;. |X) = 0,(1) from the proof of Theorem 5 in Kai
et al. (2010). Similar to the proof of Lemma 3, we can show Var(Wy, ,,) = X,y , which,

together with eq. (14), proves the variance result in this lemma. O

Lemma 6. Under Assumptions 1 to 6, the fixed-n covariance between my, (0) and my, (0)

is given by

1 . T

q2n+ /h—y+ hT+ 6q (S;;'+)11 <Sn}£+)12:| ZnYT+ |:(Sn,11+)11 (S;%+)12 eq.

COV(mY+, mT+ |X)ﬁxed—n =
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Proof of Lemma 6. Similar to eq. (A.30), we have

1 T
S - - -1 —1 *
mr, —Mmr, a/nihr, @ (Spr )i (Shp )i Wry in. (A.31)
Using the proof similar to that in Lemma 3 and the result
T
w;;+,1n - E(wik/+,1n|X) w}+,1n - E(w%+,1n|X)
EnYT+ =F )
w;+,2n - E(w;+,2n‘x) w}+,2n - E(w%+,2n‘X)
we have that Lemma 6 holds. O

Lemma 7. Under Assumptions 1 to 6, we have

Bias(%sharp|X)ﬁxed—n - Bias(mY+)ﬁxed—n - Bias(mY,)ﬁxed—n + Op(hiﬁr + h%’,)7

N R . 1
Var(Tsharp|X)ﬁxed—n = Var(mY+)ﬁxed—n + Var<mY, )ﬁxed—n + Op( + )7
ny hyJr n_ hy7

where Bias(1y, )fixea-n and Var(my, )sxed-n are given in Lemma 5, and Bias(my_ )fixed-n and

Var(my. )fixed.n are defined analogously.
Proof of Lemma 7. The results hold by applying Lemma 5 to eq. (3). O
Lemma 8. Under Assumptions 1 to 6, we have

. ~ 1 i 7 i 7
BlaS(Tfuzzy‘X)ﬁXEd-n = ﬁ [Blas(mY+)ﬁxed—n - Blas(mY_>ﬁXed—n]
Ty — T_
m —m . ~ 1 %
B Y, Y i [Bl&S(mT+)ﬁxe dn — Bl&S(mT_)ﬁxed—n}
[777/71+ —mr_

+op(hy, +hy +hi, +h7 ). (A.32)

The variance expression is given in (A.16) by substituting the results for Var(rmy ), Var(my._),

Var(rr, ), Var(r_ ), Cov(iy, ,mr, ) and Cov(my_,my_ ) in Lemmas 5 and 6.
Proof of Lemma 8. The proof follows from (A.16) and Lemmas 5 and 6. m

Let p = 2 in the following lemma.
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Lemma 9. Under Assumptions 1 to 6, the fixed-n variance of m@ is given by

1
ny hE{/_‘_

Var (i) [X) = ).

Trg—1 —1
5 €2 (SnY+ EnYJr SnY+)2262 + Op(
N4 Ny,

Proof of Lemma 9. It reslts from combining Var(v,) = eg(S;ér Yny, S,;;Jr)ggeg and eq. (A.21).
[l

Proposition 1. Under Assumptions 1 to 6, the fixed-n adjusted t-statistic for the sharp
RD is given by

—

adj. 7A-sharp - Bias(%sharp)ﬁxed—n — 70 <A33)

= )
\/VaI'(%sharp - Bias(%sharp)ﬁxed-n)ﬁxed-n

sharp, fixed-n —

where the expression for fixed-n terms, Bias(7sharp)fixed-ns Var(Tsharp — Bias(Tsharp ) fixed-n ) fixed-n,

are given in the proof of this proposition.

Proof of Proposition 1. The fixed-n bias term on the numerator of eq. (A.33) is given in

Lemma 7. For the denominator of eq. (A.33), recall

Var(?sharp - Bias(%sharp)ﬁxed—n)ﬁxed-n = var(,]A—SharP) + VaI'(BiaS('f_sharp)ﬁxed—n)
- QCOV(%Sharp, Bias(%sharp)ﬁxed—n)

=1+ II + III. (A.34)
Term I is given in Lemma 5. Consider the second term II.
Var (Bias(7uparp ) ixedn) = Var(Bias(iity, )edn) + Var(Bias(iity )sedn)- (A.35)

Using Lemma 5 and omitting the small-order terms, we have

Bias(iivy, )iixedn = Duy, 11005 h,, (A.36)
Bias(rity )xedn = Dy 12 h2 (A.37)

where
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1 . - 1 "t K+ Z;E+ B g 1 i K+ il

—=eT | (S . S (S e -
qeq -( ny+)11f Y9 +hy+ Zl vy ( nY+)12 ;fmr (Ck) 2n+hy+ Zl vy )
D (A.39)
1 T- 1 — K_ ;22 , 1 - 1 o Kot

—ZeT (S It 4 (S, ‘ ’
qeq -( ny. )llf Y_ 9 _hy Z Oey | ( nY. )IZZlfY ( k>2n_h Ocy

Applying Lemma 9 to Igi;s(mer)ﬁxed_n, B/i-;S(ﬁ’L}Q )fixed-n for eq. (A.35):

4

n+hy+

4
n_hy._

IT=

2 T/ a1 —1
Doy, 162 (Shy, Xy, Sy, 2262 +

Diy_ 163 (Soy Sy Sy )zes.
For term III with 7.7.d. errors, we have
Cov(Tsharp, Bias(Tsharp )fixed-n) = Cov(my, , Bias(1y, )fxed-n) + Cov(my_, Bias(my._ )fixedn)-

Using eq. (A.21) and eq. (A.29), we can show

L = 2Dny, 1 _ _
Cov(my, , Bias(1iy, )ixedn) = qnjh:q eg(Sn;+Eny+5n;+)12,27
A S /A 2DnY,,1 T/ c—1 -1
Cov(my._, Bias(my. )fixedn) = qn—hez (Soyv Zny S,y )i22-

_hy_

Putting everything together, the numerator in eq. (A.33) becomes

Fanarp — BIAS(Fuharp ) fixed-n = Taharp — {éeqT [<S wule, 2n+1hY+ :1 K;sfiz
+ (S e ; fev, (cn) 2n+1hy+ 2 K;Yf i ] it
s g S
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The variance on the denominator is given by

Var (%sharp — Bias (%sharp ) fixed-n )

1 1
_ St B S, ) €0+ el (St Suv- it ) €4
n+hy+(] < nYy =nYiPny, + n_ hY q2 €4 nY_ “nY_RPpy.
1 ) 4 ) )
+ n+hY+ DTLYJr 162 (SnY+ EHY+Sn}}+)2262 + n_h Dny 1 €9 (Sn;7 EnY, Sn;,)2262
2DnY_,l T

2D,
—2 [¢ 2 (v, Sy, Sy, 122 +

es (Soy Say Soy 1221-
anhy, an_hy. 2 (Spy v )z,

]

Proposition 2. Under Assumptions 1 to 6, the fixed-n adjusted t-statistic for the fuzzy RD
is given by

—_—

tadj o 7~-fuzzy - Bias(%fuzzy)ﬁxed—n (A 40)
\/Var(%fuzzy - Bias(%fuzzy)ﬁxed—n)

fuzzy, fixed-n —

Proof of Proposition 2. The numerator of eq. (A.40) can be obtained by applying the fixed-n
bias result in Lemma 5 to eq. (34). To compute the denominator, we again start with eq. (35).
For the fixed-n result in eq. (35), expressions for Var(my, )xed-n and Var(mr, )xeqn are
given by Lemma 5, Var(]gi\as(mn)ﬁxed_n), Var(]gi\as(mﬂ)ﬁxed_n), Cov(my+,]§\as(my+)ﬁxed_n)
and Cov(mr, , ]§i\as(mT+)ﬁxed_n) are derived in the proof of Proposition 1. We list the seven

terms below and omit the small-order terms.

Var(ry, )fixedn = ﬁ (Sny+ Yiny, SnY+> €qs

Var<mT+)ﬁxed—n = ﬁ (SnT+ Lny SnT+) €q)
Var(Bins 0, osn) = 1D H (S, S, 5 o
Var(Bias(ur osn) = oDl 5 (S, S, S, o

R R 1
Cov(ivy, , M, Jixedn = s \/WQQT {(SEQ)H (Sgﬁ)u} Xy {(SETDH (Spr, 12
Ty

A 5. "/ A 2DnY 1 T -1
Cov(my, , Bias(1y, )fixedn) = m (SnY+ EnY+SnY+)12,27
~ 5. "/ A 2D'I’LT+,1 T
Cov(my, , Bias(mr, )fixedn) = ———— (SnT+ PN SnT+)12,2.
n+hT+
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We only need to compute the remaining three terms in eq. (35). Consider the term
Cov(]i\as(mn)ﬁxed_n, ]i\as(mﬂ)ﬁxed_n). Using the result in eq. (A.36) and a similar result for
]3/i\as(mT+)ﬁxed_n, together with the result in eq. (A.21) and a similar result for m%, it can

be shown that

4DnY+ 1D7LT+ 1 T
SO AT L T gl sy 6 ) e
n+\/m ( nYy =nY Ty nT+)22 2

COV(BlaS(mY+)ﬁxed s BlaS(mT+)ﬁxed_ ) =

similar to the proof in Theorem 5.

Again, similar to the proof in Theorem 5, using eq. (A.21), eq. (A.36) and eq. (A.38), we

have
~ S /A 2DnT+,1 1 -1
Cov(rny, , Bias(mr, )fixedn) = m@ (Shy, By, Spp, 12,2,
2DTLY+,1

Cov(rr, , Bias(my, )ixedn) = — ol T(S-L 3 1y, S

( Ty ( Y+)ﬁ d ) anrm ( nTy —nTY, nY+)122

Substitute the above ten results into eq. (35) to obtain a fixed-n version of Var((1my, —
Torr, ) —(Bias(rivy, )—moBias(riur, ))). The fixed-n result for Var((rmy —7ory. )—(Bias(ry. )—
Tolgi\as(ml))) can be obtained in a similar way. Adding up the two results gives the variance

on the denominator of eq. (A.40). O
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S.4 Additional figures and tables
S.4.1 Figure: the bias of bias-corrected estimators

To accompany Figure 1 in the main text, this subsection contains additional Figure 3 that
compares the finite sample performance of LCQR and LLR in estimating the treatment

effect.

S.4.2 Figure: LCQR and LLR at interior and boundary points

To motivate the use of LCQR, consider the nonlinear model in Ruppert et al. (1995), Y =
sin(57 X ) + 0.5¢, where € follows a mixture normal distribution, 0.95N (0, 1) +0.05N (0, 10%),
and X follows a uniform distribution on [0, 1]. It is clear from Figure 4 that LCQR exhibits
less “flapping” for both interior and boundary points. The relative stable behavior of LCQR
on the boundary when data move away from normality is of particular importance to the

estimation and inference in RD.

S.4.3 Table: coverage probability with the rule-of-thumb bandwidth

This subsection presents Table 5 that is similar to Table 4 except that 75 and 752" use

the rule-of-thumb bandwidth described by Equation (4.3) in Fan and Gijbels (1996). Table 5
indicates that the proposed LCQR method has some robustness to the choice of bandwidth.

S.4.4 Table: coverage probability of fixed-n LCQR with small sample

In this subsection, we decrease the sample size from n = 500 to 300 in the simulation study.
We show that the fixed-n approach indeed can improve the coverage when the sample size

is relatively small, as reported in the last row of each panel of Table 6.

S.4.5 Table: LCQR for sharp kink RD

We consider the LM model used for the simulation study, but now focus on the difference
in derivatives around the cutoff: 18.49 — 2.3 = 16.19, as in a sharp kink RD design. Table 7
shows that LCQR could outperform the local polynomial regression for estimating derivatives

when data are non-normal; see e.g. DGP 2 - 5.
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Figure 3: Absolute value of average bias of the bias-corrected estimators,

for the Lee and LM models.
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~cqr,bc

Tiow 18 the bias-corrected LCQR estimator.

~cqr,bc
T1bw
~robust,bc
T1bw

al

~robust,bc
d T1bw

is the bias-

corrected LLR estimator. The result is based on 5000 replications and the true treatment
effect is 0.04 for Lee and —3.45 for LM. The DGPs are described in the paper.
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(a) LLR versus LCQR (b) Box plots of the estimates on the boundaries

Figure 4: Estimates of LLR and LCQR with a sample size of 400 and 400 replications. Both
methods use the same direct plug-in bandwidth in Ruppert et al. (1995). m(X) = sin(bnX).

Table 5: Coverage probability of 95% confidence intervals in Lee and LM models using the
rule-of-thumb bandwidth for LCQR

A. Lee with homoskedastic errors B. Lee with heteroskedatic errors

Estimator DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5

To 0915 0917 0.909 0916 0917 0.901 0.896 0.887 0.897 0.895
%;g;bc 0976 0963 0.968 0976 0.965 0.969 0.956 0.958 0.965 0.951

C. LM with homoskedastic errors D. LM with heteroskedatic errors

Estimator DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5

Topn 0.888 0.891 0.880 0.892 0.859 0.876 0.876 0.870 0.878 0.845
%;g;bc 0.967 0956 0.962 0968 0.960 0.958 0.946 0.952 0.952 0.943

Notes: The reported numbers are the simulated coverage probabilities of the 95% confidence
intervals associated with different estimators. The results are based on 5000 replications with
a sample size n = 500. The s.e. and adjusted s.e. for the LCQR estimator are obtained based
on the asymptotic expressions from Theorem 1 and Theorem 3. Estimators with superscript
bc are both bias-corrected and s.e.-adjusted. The DGPs are described in the paper.
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Table 6: Coverage probability of 95% confidence intervals in Lee and LM models, n = 300

A. Lee with homoskedastic errors B. Lee with heteroskedastic errors

Estimator DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5

T 0.906 0.892 0900 0.903 0.886 0.882 0.872 0.877 0.873 0.871
To 0.895 0.887 0.890 0.890 0.875 0.869 0.859 0.868 0.859 0.857
- 0926 0926 0.929 0917 0943 0.923 0922 0928 0918 0.945
?f&fv’bc 0.958 0941 0.940 0948 0923 0.947 0926 0.928 0.933 0.914
%;gj;bc 0.954 0937 0937 0945 0918 0.939 0924 0.929 0929 0.906

robustbe 0997 0928  0.930 0921 0.946 0923 0925 0.928 0920 0.946
ot an 0977 0959 0.960  0.969 0.950 0.958 0.939 0.944 0.945 0.936

C. LM with homoskedastic errors D. LM with heteroskedastic errors

Estimator DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5

T 0.791 0.820 0.826 0.803 0.832 0.613 0.668 0.700 0.640 0.728
Ton 0.805 0.839 0.841 0.815 0.837 0.622 0.689 0.706 0.657 0.732
i 0.907 0917 0.921 0905 0936 0.899 0.905 0914 0.896 0.926
%fg;bc 0.959 0941 0.939 0946 0.923 0.941 0928 0.927 0931 0.910
%;gj;b“ 0.953 0936 0936 0944 0915 0935 0.924 0924 0928 0.908

%{EEV“St’bC 0.926 0930 0934 0923 0946 0.927 0.930 0.933 0923 0.946
%fgj;;‘;ed_n 0975 095 0.959 0966 0.951 0.956 0.939 0.942 0946 0.938

Notes: The reported numbers are the simulated coverage probabilities of the 95% confidence
intervals associated with different estimators. The results are based on 5000 replications with
a sample size n = 300. The s.e. and adjusted s.e. for the LCQR estimator are obtained based
on the asymptotic expressions from Theorem 1 and Theorem 3, except for %fgvrv’;ied_n where
fixed-n approximations are used. Estimators with superscript bc are both bias-corrected and
s.e.-adjusted. The result of 770" is based on the CE-optimal bandwidth. The DGPs are

described in the paper.
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Table 7: LCQR for sharp kink RD

LM with Tsharp kink = 16.19

Homoskedastic errors

Heteroskedastic errors

Estimator DGP1 DGP2 DGP3 DGP4 DGP5 DGP1 DGP2 DGP3 DGP4 DGP5
LCQR 1591 16.14 15.89 16.12 16.13 1593 16.09 1591 16.07 16.08
(s.e.) (10.94) (12.90) (13.83) (11.47) (11.87) (6.27) (7.35)  (7.88)  (6.57)  (6.79)
LPR 15.93 16.13 15.69 16.06 15.84 1596 16.07 15.82 16.03 15.90
(s.e.) (10.47) (14.77) (18.11) (12.25) (25.42) (6.10)  (8.61) (10.53) (7.13)  (14.80)

Notes: The reported numbers are the simulated averages and standard errors (in brackets)
of the associated estimators. The results are based on 5000 replications with a sample size
n = 500. The DGPs are as described in the paper for the LM model, yet the focus here is on
the difference in first derivatives. For both LCQR and LPR (local polynomial regression), we
consider the 3rd-order polynomial with the fixed bandwidth = 0.3 and the triangular kernel.
The R code to replicate this table can be downloaded from https://xhuang.netlify.app/

post/r-code-to-replicate-rd-tables/.

S.4.6 Table: simulation results for sharp RD with covariates

In this subsection we use the same DGP as for Table SA-1 in Calonico et al. (2019). We

briefly describe the DGP below. Let Z; be the covariate. Consider a sample size of n = 1000

and 5000 replications. For each 1 = 1,--- ,n, we have

Y; = my,j(Xi7 Zz) + Ey,ia Zz = mz(Xz) + Ez,ia

with

, 2
€y,i Ty

NN(()?EJ')? E]':

€2, PjOy0

and j = 1,2, 3,4, corresponding to the following four models.

e Model 1 has no covariate and is the same as eq. (45)

0.48 + 1.27X; + 7.18 X2 + 20.21X} + 21.54 X} + 7.33X?

my,l(Xiy Zz) -

0.52 + 0.84X; — 3.00X2 + 7.99X3 — 9.01.X* + 3.56 X7

and let o, = 0.1295 and o, = 0.1353.

26

X; ~ 2 x Beta(2,4) — 1

PjOy0

g

if X; >0,


https://xhuang.netlify.app/post/r-code-to-replicate-rd-tables/
https://xhuang.netlify.app/post/r-code-to-replicate-rd-tables/

e Model 2 adds one covariate, and let p = 0.2692,

my,2(Xi7 Zi) =

m.(X;) =

e Model 3 is the same as Model 2 except for p = 0.

e Model 4 is the same as Model 2 except for p = 2 x 0.2692.

0.36 + 0.96X; + 5.47X2 + 15.28X? + 15.87X4 + 5.14X7 + 0.22Z,

0.38 + 0.62X; — 2.84X2 + 8.42X? — 10.24X2 + 4.31X5 + 0.28Z,

0.49 + 1.06X; + 5.74X? + 17.14 X2 + 19.75 X} + 7.47X?

0.49 + 0.61X; + 0.23X2 — 3.46X3 + 6.43X} — 3.48X?

if X; <0,

it X; >0,

if X; > 0.

The true value for 7 is 0.04 in Model 1 and approximately 0.05 in Models 2-4. Table 8

reports vV MSE, bias as a percentage of 7 and empirical coverage (EC) for the confidence

intervals based on 7 and 7. The EC for 7 is obtained using bias-corrected, s.e.-adjusted t-

statistic in Theorem 3; the EC for 7 is obtained using the same ¢-statistic for 7 but replacing

7 with 7 on the numerator. See also Section 4.3 for a discussion of this ad hoc method for

7. The last column in Table 8 gives reasonably good coverage probabilities, suggesting the

ad hoc approach described in Section 4.3 works well under the considered DGP. However,

more simulation studies are needed to investigate its performance.

Table 8: Simulation results using a single bandwidth

7 in eq. (42) 7 in eq. (43)
MSE Bias (%) EC MSE Bias (%) EC
Model 1 0.046 0.369 0.953 0.046 0.368 0.952
Model 2 0.049 0.256 0.942 0.043 0.178 0.968
Model 3 0.047 0.275 0.938 0.046 0.231 0.944
Model 4 0.053 0.275  0.949 0.038 0.139  0.980

Notes: We use a single bandwidth A = 0.15 for estimation, bias-correction,
s.e.-adjustment in all four models. This number is chosen to mimic the band-
width used in the simulation section in Calonico et al. (2019). All num-
bers in the table are based on 5000 replications.
this table can be downloaded from https://xhuang.netlify.app/post/
r-code-to-replicate-rd-tables/.
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The R code to replicate


https://xhuang.netlify.app/post/r-code-to-replicate-rd-tables/
https://xhuang.netlify.app/post/r-code-to-replicate-rd-tables/
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