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S.1 Notation

In a sharp RD, LCQR is applied separately to eqs. (1) and (2), while in a fuzzy RD, LCQR

is applied separately to eqs. (1), (2), (7) and (8). Instead of introducing four similar sets of

variables, notation and proofs, we will focus on eq. (1). Exactly the same proof holds for the

results based on eqs. (2), (7) and (8) with similar notation, where the subscript Y+ used for

eq. (1) becomes Y−, T+, T− for eqs. (2), (7) and (8), respectively.

Consider eq. (1). Let fεY+ = (fεY+ (c1), · · · , fεY+ (cq))
T be a q × 1 vector, SY+,11(c) be a

q × q diagonal matrix with diagonal elements fεY+ (ck)µ+,0, SY+,12(c) be a q × p matrix with

(k, j) element fεY+ (ck)µ+,j, SY+,21(c) be the transpose of SY+,12(c), and SY+,22(c) be a p × p
matrix with (j, j′) element equal to

∑q
k=1 fεY+ (ck)µ+,j+j′(c). Let ΣY+,11(c) be a q× q matrix

with (k, k′) element ν+,0(c)τkk′ , ΣY+,12(c) be a q×p matrix with (k, j) element
∑q

k′=1 τkk′ν+,j,

ΣY+,21(c) be the transpose of ΣY+,12(c), ΣY+,22(c) be a p× p matrix with (j, j′) element equal

to
∑q

k=1

∑q
k′=1 τkk′ν+,j+j′(c). Define

SY+(c) =

SY+,11(c) SY+,12(c)

SY+,21(c) SY+,22(c)

 , ΣY+(c) =

ΣY+,11(c) ΣY+,12(c)

ΣY+,21(c) ΣY+,22(c)

 , (A.1)

and the partitioned inverse S−1
Y+

(c):

S−1
Y+

(c) =

(S−1
Y+

(c))11 (S−1
Y+

(c))12

(S−1
Y+

(c))21 (S−1
Y+

(c))22

 . (A.2)

Let F+(ck, ck′) be the joint cumulative distribution function of εY+ and εT+ at (ck, ck′) and

assume hY+ = hT+ . Define φkk′ = F+(ck, ck′)−τkτk′ . Also let ΣY T+,11(c) be a q×q matrix with

(k, k′) element ν+,0(c)φkk′ , ΣY T+,12(c) be a q×p matrix with (k, j) element
∑q

k′=1 φkk′ν+,j(c),

ΣY T+,21(c) be the transpose of ΣY T+,12(c), ΣY T+,22(c) be a p × p matrix with (j, j′) element∑q
k=1

∑q
k′=1 φkk′ν+,j+j′(c). Define

ΣY T+(c) =

ΣY T+,11(c) ΣY T+,12(c)

ΣY T+,21(c) ΣY T+,22(c)

 . (A.3)

Like (A.1), (A.2) and (A.3) above, a similar set of definitions can be provided to other

variables on the boundary, including SY−(c), S−1
Y−

(c), ΣY−(c), ST+(c), S−1
T+

(c), ΣT+(c), ST−(c),
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S−1
T−

(c), ΣT−(c), F−(ck, ck′), ΣY T−(c), and φkk′ can also be redefined with F−(ck, ck′).

Let x+,i = (X+,i − x)/hY+ and K+,i = K(x+,i) with x = 0. Define

uk =
√
n+hY+(ak −mY+(x)− σεY+ck), k = 1, · · · , q,

vj = hjY+
√
n+hY+(j!bj −m(j)

Y+(x))/j!, j = 1, · · · , p,

∆i,k =
uk√
n+hY+

+

p∑
j=1

vjx
j
+,i√

n+hY+
,

ri,p = mY+(X+,i)−
p∑
j=0

m
(j)
Y+

(x)(X+,i − x)j/j!,

di,k = ck[σεY+ (X+,i)− σεY+ (x)] + ri,p. (A.4)

Let W ∗
Y+,n+

= (w∗Y+,11, · · · , w∗Y+,1q, w
∗
Y+,21, · · · , w∗Y+,2p)

T = (w∗Y+,1n, w
∗
Y+,2n

)T , where

w∗Y+,1k =
1√
n+hY+

n+∑
i=1

K(x+,i)η
∗
Y+,i,k

,

w∗Y+,2j =
1√
n+hY+

q∑
k=1

n+∑
i=1

K(x+,i)x
j
+,iη

∗
Y+,i,k

,

η∗Y+,i,k = I(εY+,i ≤ ck −
di,k
σεY+,i

)− τk. (A.5)

Also let WY+,n+ = (wY+,11, · · · , wY+,1q, wY+,21, · · · , wY+,2p)T = (wY+,1n, wY+,2n)T , where

wY+,1k =
1√
n+hY+

n+∑
i=1

K(x+,i)ηY+,i,k,

wY+,2j =
1√
n+hY+

q∑
k=1

n+∑
i=1

K(x+,i)x
j
+,iηY+,i,k,

ηY+,i,k = I(εY+,i ≤ ck)− τk. (A.6)

Similarly, we define W ∗
T+,n+

, w∗T+,1k, w
∗
T+,2j

, η∗T+,i,k,WT+,n+ , wT+,1k, wT+,2j and ηT+,i,k.

Consider the case p = 1 and define θ = (u1, · · · , uq, v1)T . Let θ̂n+ = (û1, · · · , ûq, v̂1)T be

the transformed minimizer of (13). It can be shown that minimizing (13) is equivalent to

minimizing

Ln+(θ) =

n+∑
i=1

(
K(x+,i)

q∑
k=1

(ρτk(σεY+,i(εY+,i − ck) + di,k −∆i,k)− ρτk(σεY+,i(εY+,i − ck) + di,k))

)
.
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Next, in a similar fashion we introduce the notation used for fixed-n approximations in

Section S.3. The notation of K+,i as well as x+,i has been provided for (A.4). Let SnY+,11 be

a q× q diagonal matrix with diagonal elements fεY+ (ck)
1

n+hY+

∑n+
i=1

K+,i

σεY+,i
, SnY+,12 be a q× p

matrix with (k, j) element fεY+ (ck)
1

n+hY+

∑n+
i=1

K+,ix
j
+,i

σεY+,i
, SnY+,21 be the transpose of SnY+,12,

and SnY+,22 be a p×p matrix with (j, j′) element equal to
∑q

k=1 fεY+ (ck)
1

n+hY+

∑n+
i=1

K+,ix
j+j′
+,i

σεY+,i
.

Let ΣnY+,11 be a q×q matrix with (k, k′) element 1
n+hY+

∑n+
i=1 K

2
+,iτkk′ , ΣnY+,12 be a q×pmatrix

with (k, j) element
∑q

k′=1 τkk′
1

n+hY+

∑n+
i=1K

2
+,ix

j
+,i, ΣnY+,21 be the transpose of ΣnY+,12(c),

ΣnY+,22 be a p× p matrix with (j, j′) element equal to
∑q

k=1

∑q
k′=1 τkk′

1
n+hY+

∑n
i=1K

2
+,ix

j+j′

+,i .

Similar to (A.1) and (A.2), define

SnY+ =

SnY+,11 SnY+,12

SnY+,21 SnY+,22

 , ΣnY+ =

ΣnY+,11 ΣnY+,12

ΣnY+,21 ΣnY+,22

 , (A.7)

S−1
nY+

=

(S−1
nY+

)11 (S−1
nY+

)12

(S−1
nY+

)21 (S−1
nY+

)22

 . (A.8)

Similar to (A.3), let ΣnY T+,11 be a q×q matrix with (k, k′) element φkk′
1

n+

√
hY+hT+

∑n+
i=1K

2
+,i,

ΣnY T+,12 be a q× p matrix with (k, j) element
∑q

k′=1 φkk′
1

n+

√
hY+hT+

∑n+
i=1K

2
+,ix

j
+,i, ΣnY T+,21

be the transpose of ΣnY T+,12, and ΣnY T+,22 be a p × p matrix with (j, j′) element equal to∑q
k=1

∑q
k′=1 φkk′

1

n+

√
hY+hT+

∑n+
i=1K

2
+,ix

j+j′

+,i . Define

ΣnY T+ =

ΣnY T+,11 ΣnY T+,12

ΣnY T+,21 ΣnY T+,22

 . (A.9)

A similar set of definitions can be provided to other fixed-n variables on the boundary,

including SnY− , S−1
nY−

, ΣnY− , SnT+ , S−1
nT+

, ΣnT+ , SnT− , S−1
nT−

, ΣnT− and ΣnY T− .

Given the above fixed-n definitions and let x = 0, it can be verified that, as n+ →∞,

SnY+ →
fX+(x)

σεY+ (x)
SY+(c), ΣnY+ → fX+(x)ΣY+(c) and ΣnY T+ → fX+(x)ΣY T+(c).
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S.2 Lemmas and proofs for Theorems 1 to 5

Lemma 1. Under Assumptions 1 to 6, as n+ →∞, we have

θ̂n+ +
σεY+ (0)

fX+(0)
S−1
Y+

(c)E(W ∗
n+
|X)

L→MVN

(
0,
σ2
εY+

(0)

fX+(0)
S−1
Y+

(c)ΣY+(c)S−1
Y+

(c)

)
. (A.10)

Proof of Lemma 1. See the proof of Theorem 2.1 in Kai et al. (2009).

Lemma 2. Under Assumptions 1 to 6, as n+ → ∞, the asymptotic bias and variance for

the LCQR estimator in eq. (1) are given by

Bias(m̂Y+(0)|X) =
1

2
aY+(c)m

(2)
Y+

(0)h2
Y+

+ op(h
2
Y+

),

Var(m̂Y+(0)|X) =
1

n+hY+

bY+(c)σ2
εY+

(0)

fX+(0)
+ op(

1

n+hY+
),

aY+(c) =
µ2

+,2(c)− µ+,1(c)µ+,3(c)

µ+,0(c)µ+,2(c)− µ2
+,1(c)

,

bY+(c) = eTq (S−1
Y+

(c)ΣY+(c)S−1
Y+

(c))11eq/q
2. (A.11)

Proof of Lemma 2. The bias result follows that in Theorem 2.2 in Kai et al. (2009). The

variance result also largely follows that in Kai et al. (2009). Given

Var(m̂Y+(0)|X) =
1

n+hY+

σ2
εY+

q2fX+(0)
eTq (S−1

Y+
(c)ΣY+(c)S−1

Y+
(c))11eq + op(

1

n+hY+
), (A.12)

It is easy to verify that when q = 1, eq. (A.12) can be written as

Var(m̂Y+(0)|X) =
1

n+hY+

σ2
εY+

fX+(0)

µ2
+,2(c)ν+,0(c)− 2µ+,1(c)µ+,2(c)ν+,1(c) + µ2

+,1(c)ν+,2(c)

(µ+,0(c)µ+,2(c)− µ2
+,1(c))2

R1(q)

+ op(
1

n+hY+
), (A.13)

where R1(q) = 1
q2

∑q
k=1

∑q
k′=1

τkk′
fεY+(ck)

fεY+(ck′ )
. However, for q ≥ 2, the result in eq. (A.13) no

longer holds and we use eq. (A.12) instead.

Lemma 3. Under Assumptions 1 to 6, as n+ → ∞, the covariance between m̂Y+(x) and

m̂T+(x) at the boundary point 0 is given by
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Cov(m̂Y+(0), m̂T+(0)|X) =
1

n+

√
hY+hT+

σεY+ (0)σεT+ (0)

fX+(0)
bY T+ + op(

1

n+hY+
+

1

n+hT+
), (A.14)

where

bY T+ =
1

q2
eTq

(
S−1
Y+

(c)ΣY T+S
−1
T+

(c)
)

11
eq. (A.15)

Proof of Lemma 3. Assume p = 1. From Lemma 1, we write

m̂Y+(0)− E(m̂Y+(0)|X)

= − 1

q
√
n+hY+

σεY+ (0)

fX+(0)
eTq

(
(S−1

Y+
(c))11 (S−1

Y+
(c))12

)w∗Y+,1n − E(w∗Y+,1n|X)

w∗Y+,2n − E(w∗Y+,2n|X)

+ op(1)

= − 1

q
√
n+hY+

σεY+ (0)

fX+(0)
eTq

(
(S−1

Y+
(c))11 (S−1

Y+
(c))12

)wY+,1n − E(wY+,1n|X)

wY+,2n − E(wY+,2n|X)

+ op(1),

where the last equality follows by the result that Var(w∗Y+,1n − wY+,1n|X) = op(1) and

Var(w∗Y+,21 − wY+,21|X) = op(1). See Kai et al. (2010) for a proof. Similarly, we have

m̂T+(0)− E(m̂T+(0)|X)

= − 1

q
√
n+hT+

σεT+ (0)

fX+(0)
eTq

(
(S−1

T+
(c))11 (S−1

T+
(c))12

)wT+,1n − E(wT+,1n|X)

wT+,2n − E(wT+,2n|X)

+ op(1).

Cov(m̂Y+(0), m̂T+(0)|X)

= E
(
(m̂Y+(0)− E(m̂Y+(0)|X))(m̂T+(0)− E(m̂T+(0)|X))

)
=

1

q2n+

√
hY+hT+

σεY+ (0)σεT+ (0)

f 2
X+

(0)
eTq

(
(S−1

Y+
(c))11 (S−1

Y+
(c))12

)

× E


wY+,1n − E(wY+,1n|X)

wY+,2n − E(wY+,2n|X)


wT+,1n − E(wT+,1n|X)

wT+,2n − E(wT+,2n|X)


T×

(S−1
T+

(c))11

(S−1
T+

(c))12

 eq

=
1

q2n+

√
hY+hT+

σεY+ (0)σεT+ (0)

fX+(0)
eTq

(
S−1
Y+

(c)ΣY T+S
−1
T+

(c)
)

11
eq + op(

1

n+hY+
+

1

n+hT+
),

where Cov(ηY+,i,k, ηT+,j,k′) = φkk′ if i = j, and Cov(ηY+,i,k, ηT+,j,k′) = 0 if i 6= j.
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Proof of Theorem 1. See Lemma 2 above.

Proof of Theorem 2. Consider the approximation

τ̂fuzzy − τfuzzy =
1

mT+(0)−mT−(0)

[
m̂Y+(0)−mY+(0)− (m̂Y−(0)−mY−(0))

]
−

mY+(0)−mY−(0)[
mT+(0)−mT−(0)

]2 [m̂T+(0)−mT+(0)− (m̂T−(0)−mT−(0))
]

+ op(h
2
Y+

+ h2
Y− + h2

T+
+ h2

T−).

The bias expression follows from Lemma 2: use it four times for m̂Y+(0), m̂Y−(0), m̂T+(0),

and m̂T−(0). For the variance expression, note that the approximation above leads to

Var(τ̂fuzzy)

=
Var(m̂Y+(0)) + Var(m̂Y−(0))(

mT+(0)−mT−(0)
)2 +

(
mY+(0)−mY−(0)

)2(
mT+(0)−mT−(0)

)4

[
Var(m̂T+(0)) + Var(m̂T−(0))

]
−2

mY+(0)−mY−(0)(
mT+(0)−mT−(0)

)3

[
Cov(m̂Y+(0), m̂T+(0)) + Cov(m̂Y−(0), m̂T−(0))

]
+ s.o. (A.16)

where s.o. denotes a small order term.

Plugging the variance and covariance expressions in Lemmas 2 and 3 to (A.16) leads to

the asymptotic variance expression of τ̂fuzzy.

For convenience we write m̂Y+(0) and m̂Y−(0) as m̂Y+ and m̂Y− , respectively. Equa-

tion (30) suggests that we need the expressions for Var(Bias(m̂Y+)) and Cov(m̂Y+ ,Bias(m̂Y+))

to adjust the variance. The next lemma provides results for computing Var(Bias(m̂Y+)). In

deriving the results, we also present the bias of Bias(m̂Y+). Let er be a p × 1 unit vector

with the r-th element equal to one. Let p = 3 in the following proof.

Lemma 4. Under Assumptions 1 to 6, as n+ → ∞, the asymptotic bias and variance of

m̂
(2)
Y+

are given by

Bias(m̂
(2)
Y+
|X) =

1

12
a∗Y+(c)m

(4)
Y+
h2
Y+

+ op(h
2
Y+

), (A.17)

Var (m̂
(2)
Y+
|X) =

4

n+h5
Y+

σ2
εY+

(0)b∗Y+(c)

fX+(0)
+ op(

1

n+h5
Y+

), (A.18)
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where

a∗Y+(c) = µ+,4e
T
2 (S−1

Y+
(c))21fεY+ +

q∑
k=1

fεY+ (ck)e
T
2 (S−1

Y+
(c))22(µ+,5, µ+,6, µ+,7)T (A.19)

b∗Y+(c) = eT2 (S−1
Y+

(c)ΣY+(c)S−1
Y+

)22e2. (A.20)

Proof of Lemma 4. From the definition of vj, we have

m̂
(2)
Y+

= m
(2)
Y+

+
2v̂2

h2
Y+

√
n+hY+

. (A.21)

Hence the bias becomes

E(m̂
(2)
Y+

)−m(2)
Y+

= −
2σεY+ (0)

h2
Y+

√
n+hY+fX+(0)

eT2 ((S−1
Y+

(c))21, (S
−1
Y+

(c))22)E(W ∗
Y+,n

)

= −
2σεY+ (0)

h2
Y+

√
n+hY+fX+(0)

eT2 (S−1
Y+

(c))21E(W ∗
Y+,1n

)−
2σεY+ (0)

h2
Y+

√
n+hY+fX+(0)

eT2 (S−1
Y+

(c))22E(W ∗
Y+,2n

)

= I + II.

I = −
2σεY+ (0)

h2
Y+

√
n+hY+fX+(0)

eT2 (S−1
Y+

(c))21

×

[
−

fεY+√
n+hY+

n+∑
i=1

Kick
σεY+,i − σεY+ (0)

σεY+,i
−

fεY+√
n+hY+

n+∑
i=1

Ki
ri,3
σεY+,i

]
=

1

12
m

(4)
Y+
µ+,4(c)eT2 (S−1

Y+
(c))21fεY+h

2
Y+

+ op(h
2
Y+

),

II = −
2σεY+ (0)

h2
Y+

√
n+hY+fX+(0)

eT2 (S−1
Y+

(c))22

×

−
∑q

k=1 fεY+ (ck)√
n+hY+

n+∑
i=1

Kick
σεY+,i − σεY+ (0)

σεY+,i


x+,i

x2
+,i

x3
+,i

−
∑q

k=1 fεY+ (ck)√
n+hY+

n+∑
i=1

Ki
ri,3
σεY+,i


x+,i

x2
+,i

x3
+,i




=
1

12
m

(4)
Y+

q∑
k=1

fεY+ (ck)e
T
2 (S−1

Y+
(c))22


µ+,5

µ+,6

µ+,7

h2
Y+

+ op(h
2
Y+

).
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The bias result is proved by combining the two terms I and II. One would expect a number

of 4! = 24 instead of 12 on the denominator. This is due to the extra number 2 in eq. (A.21).

Because of the way v̂2 is defined, the “effective” constant on the denominator is still 24,

in line with the standard results for nonparametric derivatives. Similarly, the number 4

appearing on the numerator of the variance is also a result of the number 2 in eq. (A.21).

The variance results from eq. (A.21) and Lemma 1.

Proof of Theorem 3. Following Theorem 1, we have

Var(m̂Y+) =
1

n+hY+

bY+(c)σ2
εY+

(0)

fX+(0)
+ op(

1

n+hY+
),

Var(m̂Y−) =
1

n−hY−

bY−(c)σ2
εY−

(0)

fX−(0)
+ op(

1

n−hY−
).

Use the bias expression in Theorem 1 and the variance result in Lemma 4, we have

Var(B̂ias(m̂Y+)) =
σ2
εY+

(0)

n+hY+fX+(0)
a2(c)b∗Y+(c) + op(

1

n+hY+
),

Var(B̂ias(m̂Y−)) =
σ2
εY−

(0)

n−hY−fX−(0)
a2(c)b∗Y−(c) + op(

1

n−hY−
).

For the covariances, we have

Cov(m̂Y+ , B̂ias(m̂Y+)) = Cov(mY+ +
1

q
√
n+hY+

q∑
k=1

ûk,
1

2
aY+(c)h2

Y+
(m

(2)
Y+

+
2v̂2

h2
Y+

√
n+hY+

)

=
aY+(c)

n+hY+q

q∑
k=1

Cov(ûk, v̂2)

=
aY+(c)σ2

εY+
(0)

n+hY+qfX+(0)
eTq (S−1

Y+
ΣY+S

−1
Y+

)12,2 + op(
1

n+hY+
),

where (S−1
Y+

ΣY+S
−1
Y+

)12,2 is the second column of the matrix (S−1
Y+

ΣY+S
−1
Y+

)12 and the last line

follows from Lemma 1. Similarly, for data below the cutoff, we have

Cov(m̂Y− , B̂ias(m̂Y−)) =
aY−(c)σ2

εY−
(0)

n−hY−qfX−(0)
eTq (S−1

Y−
ΣY−S

−1
Y−

)12,2 + op(
1

n−hY−
).

The expression for Var(τ̂sharp − B̂ias(τ̂sharp)) is obtained by substituting the six variance

9



and covariance results into eq. (30),

Var(τ̂sharp − B̂ias(τ̂sharp)) =
1

n+hY+
Vsharp,+ +

1

n−hY−
Vsharp,−,

where

Vsharp,+ =
bY+(c)σ2

εY+
(0)

fX+(0)
+
σ2
εY+

(0)

fX+(0)
a2(c)b∗Y+(c)− 2

aY+(c)σ2
εY+

(0)

qfX+(0)
eTq (S−1

Y+
ΣY+S

−1
Y+

)12,2,

Vsharp,− =
bY−(c)σ2

εY−
(0)

fX−(0)
+
σ2
εY−

(0)

fX−(0)
a2(c)b∗Y−(c)− 2

aY−(c)σ2
εY−

(0)

qfX−(0)
eTq (S−1

Y−
ΣY−S

−1
Y−

)12,2.

Next, we establish the asymptotic normality of the adjusted t-statistic. From Lemma 2,

we have

m̂Y+ − 1
2
aY+(c)m

(2)
Y+
h2
Y+
−mY+√

Var(m̂Y+)
=
m̂Y+ − E(m̂Y+)√

Var(m̂Y+)
+
E(m̂Y+)−mY+ − 1

2
aY+(c)m

(2)
Y+
h2
Y+√

Var(m̂Y+)

=
m̂Y+ − E(m̂Y+)√

Var(m̂Y+)
+

Op(h
3
Y+

)

Op(
√

1/n+hY+)
. (A.22)

d→ N(0, 1). (A.23)

The second term in eq. (A.22) converges to 0 under Assumption 6. In the first term, given

the definition of uk in eq. (A.4) and since m̂Y+ is a linear function of ûk in eq. (14), Lemma 1

and the Delta method lead to the normality result in eq. (A.23).

Similarly, we have

m̂Y− − 1
2
aY−(c)m

(2)
Y−
h2
Y−
−mY−√

Var(m̂Y−)

d→ N(0, 1). (A.24)

Let τ0 = mY+ −mY− . Using the proof for eqs. (A.23) and (A.24), we can show

τ̂sharp −
[

1
2
aY+(c)m

(2)
Y+
h2
Y+
− 1

2
aY−(c)m

(2)
Y−
h2
Y−

]
− τ0√

Var(τ̂sharp)

d→ N(0, 1). (A.25)

Finally, we have

10



τ̂sharp − B̂ias(τ̂sharp)− τ0√
Var(τ̂bc

sharp)
=
τ̂sharp − B̂ias(τ̂sharp)− E(τ̂sharp − B̂ias(τ̂sharp))√

Var(τ̂bc
sharp)

+
E(τ̂sharp − B̂ias(τ̂sharp))− τ0√

Var(τ̂bc
sharp)

=
τ̂bc

sharp − E(τ̂bc
sharp)√

Var(τ̂bc
sharp)

+Op(
√
n+h7

+) +Op(
√
n−h7

−)

d→ N(0, 1), (A.26)

where we use the proof similar to eqs. (A.23) to (A.25) and the fact that E(τ̂sharp−B̂ias(τ̂sharp))−

τ0 = Op(h
3
Y+

) +Op(h
3
Y−

).

Proof of Theorem 4. We first note that all bias terms in eq. (34) can be obtained using

Lemma 2. For terms in the adjusted variance in eq. (35), Var(m̂Y+), Var(m̂T+), Var(B̂ias(m̂Y+)),

Var(B̂ias(m̂T+)), Cov(m̂Y+ , B̂ias(m̂Y+)), and Cov(m̂T+ , B̂ias(m̂T+)) can be obtained using re-

sults in the proof of Theorem 3; Cov(m̂Y+ , m̂T+) is obtained using Lemma 3. And we list

these seven terms in the following.

Var(m̂Y+) =
1

n+hY+

bY+(c)σ2
εY+

(0)

fX+(0)
+ op(

1

n+hY+
),

Var(m̂T+) =
1

n+hT+

bT+(c)σ2
εT+

(0)

fX+(0)
+ op(

1

n+hT+
),

Var(B̂ias(m̂Y+)) =
σ2
εY+

(0)

n+hY+fX+(0)
a2
Y+

(c)b∗Y+(c) + op(
1

n+hY+
),

Var(B̂ias(m̂T+)) =
σ2
εT+

(0)

n+hT+fX+(0)
a2
T+

(c)b∗T+(c) + op(
1

n+hT+
),

11



Cov(m̂Y+ , m̂T+) =
1

n+

√
hY+hT+

σεY+ (0)σεT+ (0)

fX+(0)
bY T+ + op(

1

n+hY+
+

1

n+hT+
),

Cov(m̂Y+ , B̂ias(m̂Y+)) =
aY+(c)σ2

εY+
(0)

n+hY+qfX+(0)
eTq (S−1

Y+
ΣY+S

−1
Y+

)12,2 + op(
1

n+hY+
),

Cov(m̂T+ , B̂ias(m̂T+)) =
aT+(c)σ2

εT+
(0)

n+hT+qfX+(0)
eTq (S−1

T+
ΣT+S

−1
T+

)12,2 + op(
1

n+hT+
).

Next, we compute the remaining three covariances.

Cov(B̂ias(m̂Y+), B̂ias(m̂T+)) = Cov(
1

2
aY+(c)m̂

(2)
Y+
h2
Y+
,
1

2
aT+(c)m̂

(2)
T+
h2
T+

)

=
aY+(c)aT+(c)√
n+hY+

√
n+hT+

Cov(v̂2,Y+ , v̂2,T+)

=
aY+(c)aT+(c)σεY+ (0)σεT+ (0)

n+

√
hY+hT+fX+(0)

eT2 (S−1
Y+

ΣY T+S
−1
T+

)22e2

+ op(
1

n+hY+
+

1

n+hT+
).

Cov(m̂Y+ , B̂ias(m̂T+)) = Cov(mY+ +
1

q
√
n+hY+

q∑
k=1

ûk,Y ,
1

2
aT+(c)h2

T+
(m

(2)
T+

+
2v̂2,T

h2
T+

√
n+hT+

))

=
aT+(c)σεY+ (0)σεT+ (0)

qn+

√
hY+hT+fX+(0)

eTq (S−1
Y+

ΣY T+S
−1
T+

)12,2 + op(
1

n+hY+
+

1

n+hT+
).

Cov(m̂T+ , B̂ias(m̂Y+)) = Cov(mT+ +
1

q
√
n+hT+

q∑
k=1

ûk,T ,
1

2
aY+(c)h2

Y+
(m

(2)
Y+

+
2v̂2,Y

h2
Y+

√
n+hY+

))

=
aY+(c)σεY+ (0)σεT+ (0)

qn+

√
hY+hT+fX+(0)

eTq (S−1
T+

ΣTY+S
−1
Y+

)12,2 + op(
1

n+hY+
+

1

n+hT+
).

Substituting the above results into eq. (35) gives the expression for Var((m̂Y+ − τ0m̂T+) −

(B̂ias(m̂Y+)−τ0B̂ias(m̂T+))). The result for Var((m̂Y−−τ0m̂T−)−(B̂ias(m̂Y−)−τ0B̂ias(m̂T−)))

can be obtained in a similar way. Adding up the two variance results gives the adjusted

variance in the fuzzy case.

To establish the asymptotic normality, note that we can use eq. (34) to write τ̃bc
fuzzy as

τ̃bc
fuzzy = (m̂Y+−B̂ias(m̂Y+))−τ0(m̂T+−B̂ias(m̂T+))−(m̂Y−−B̂ias(m̂Y−))+τ0(m̂T−−B̂ias(m̂T−)).
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Using the similar argument in proving the asymptotic normality of τ̂bc
sharp, we can establish

the asymptotic distribution of tadj.
fuzzy.

Proof of Theorem 5. We first expand Bias(m̂Y+) up to O(h3
Y+

) on the boundary. Recall

m̂Y+ =
∑q

k=1 âk/q and we have

Bias(m̂Y+) =
σεY+ (0)

q

q∑
k=1

ck −
σεY+ (0)

q
√
n+hY+fX+(0)

eTq

[
(S−1

Y+
(c))11E(w∗Y+,1n) + (S−1

Y+
(c))12E(w∗Y+,2n)

]
= −

σεY+ (0)

q
√
n+hY+fX+(0)

eTq (S−1
Y+

(c))11E(w∗Y+,1n)−
σεY+ (0)

q
√
n+hY+fX+(0)

eTq (S−1
Y+

(c))12E(w∗Y+,2n)

= I + II.

Consider term I.

I =
−σεY+ (0)

q
√
n+hY+fX+(0)

eTq (S−1
Y+

(c))11


1√

n+hY+

∑n+

i=1KiE(η∗Y+,i,1)

...

1√
n+hY+

∑n+

i=1KiE(η∗Y+,i,q)



=
σεY+ (0)

q
√
n+hY+fX+(0)

eTq (S−1
Y+

(c))11


fεY+

(c1)√
n+hY+

∑n+

i=1Ki
di,1
σεY+,i

...

fεY+
(cq)√

n+hY+

∑n+

i=1Ki
di,q
σεY+,i

+ op(1)

=
1

q
√
n+hY+fX+(0)

eTq (S−1
Y+

(c))11


fεY+

(c1)√
n+hY+

∑n+

i=1Kiri,1

...

fεY+
(cq)√

n+hY+

∑n+

i=1Kiri,1

+ op(1)

=
1

2q
eTq (S−1

Y+
(c))11fεY+m

(2)
Y+
µ+,2h

2
Y+

+
1

6q
eTq (S−1

Y+
(c))11fεY+m

(3)
Y+
µ+,3h

3
Y+

+
f

(1)
X+

(0)

2qfX+(0)
eTq (S−1

Y+
(c))11fεY+m

(2)
Y+
µ+,3h

3
Y+

+ op(h
3
Y+

),

where the second equality follows by expanding the cumulative distribution of εY+,i around

ck and the third equality follows by noticing that all terms containing ck, after multiplied by

the coefficient
σεY+

(0)

q
√
n+hY+fX+

(0)
eTq (S−1

Y+
(c))11, become zero after a summation. The last equality
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is obtained by a Taylor series expansion of mY+ at 0 up to order 3 in ri,1, similar to the

expansion in the definition of ri,3.

Consider term II. Note that p = 1 in the following proof when we estimate the conditional

mean using degree one local polynomial.

II =
−σεY+ (0)

q
√
n+hY+fX+(0)

eTq (S−1
Y+

(c))12


1√

n+hY+

∑q
k=1

∑n+

i=1KiX+,iE(η∗Y+,i,1)

...

1√
n+hY+

∑q
k=1

∑n+

i=1 KiX
p
+,iE(η∗Y+,i,q)



=
σεY+ (0)

q
√
n+hY+fX+(0)

eTq (S−1
Y+

(c))12


1√

n+hY+

∑q
k=1 fεY+ (c1)

∑n+

i=1KiX+,i
di,1
σεY+,i

...

1√
n+hY+

∑q
k=1 fεY+ (cq)

∑n+

i=1 KiX
p
+,i

di,q
σεY+,i

+ op(1)

=

∑q
k=1 fεY+ (ck)

2q
eTq (S−1

Y+
(c))12


µ+,3

...

µ+,p+2

m
(2)
Y+
h2
Y+

+

∑q
k=1 fεY+ (ck)

6q
eTq (S−1

Y+
(c))12


µ+,4

...

µ+,p+3

m
(3)
Y+
h3
Y+

+
f

(1)
X+

(0)
∑q

k=1 fεY+ (ck)

2qfX+(0)
eTq (S−1

Y+
(c))12


µ+,4

...

µ+,p+3

m
(2)
Y+
h3
Y+

+ op(h
3
Y+

).

Combining I and II yields

Bias(m̂Y+) =
1

2
aY+(c)m

(2)
Y+
h2
Y+

+
1

6
ǎY+(c)m

(3)
Y+
h3
Y+

+
1

2

ãY+(c)f
(1)
X+

(0)

fX+(0)
m

(2)
Y+
h3
Y+

+ op(h
3
Y+

),

where aY+(c) is in Lemma 2, ǎY+(c) = µ+,2(c)µ+,3(c)−µ+,1(c)µ+,4(c)

µ+,0(c)µ+,2(c)−µ2+,1(c)
, and ãY+(c) =

µ2+,2(c)−µ+,1(c)µ+,4(c)

µ+,0(c)µ+,2(c)−µ2+,1(c)
.

Hence the leading term in Bias(m̂Y+ −Bias(m̂Y+)) is 1
6
ǎY+(c)m

(3)
Y+
h3
Y+

+ 1
2

ãY+ (c)f
(1)
X+

(0)

fX+
(0)

m
(2)
Y+
h3
Y+

.
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Since we work with data above the cutoff in this proof, the adjusted variance is given by

1
n+hY+

V adj.
sharp in the proof of Theorem 3. Thus, the adjusted MSE can be written as

adj. MSE =

[
1

6
ǎY+(c)m

(3)
Y+
h3
Y+

+
1

2

ãY+(c)f
(1)
X+

(0)

fX+(0)
m

(2)
Y+
h3
Y+

]2

+
1

n+hY+
V adj.

sharp + op(h
6
Y+

+
1

n+hY+
)

= C2
2h

6
Y+

+
1

n+hY+
C3 + op(h

6
Y+

+
1

n+hY+
),

where C2 = 1
6
ǎY+(c)m

(3)
Y+

+ 1
2

ãY+ (c)f
(1)
X+

(0)

fX+
(0)

m
(2)
Y+

and C3 = V adj.
sharp. The bandwidth that minimizes

the adjusted MSE is given by h =
(
C3

6C2
2

)1/7

n
−1/7
+ .

S.3 Lemmas and propositions for fixed-n results

This section first collects several lemmas for the development of fixed-n approximations.

We then present two propositions that are the fixed-n counterparts of Theorems 3 and 4.

Assume p = 1 in the following lemmas.

Lemma 5. Under Assumptions 1 to 6, the fixed-n bias and variance are given by

Bias(m̂Y+|X)fixed-n =
1

q
eTq

[
(S−1

nY+
)11fεY+

1

2n+hY+

n+∑
i=1

K+,ix
2
+,i

σεY+,i

+ (S−1
nY+

)12

q∑
k=1

fεY+ (ck)
1

2n+hY+

n+∑
i=1

K+,ix
3
+,i

σεY+,i

]
m

(2)
Y+
h2
Y+

+ op(h
2
Y+

),

Var(m̂Y+|X)fixed-n =
1

n+hY+q
2
eTq

(
S−1
nY+

ΣnY+S
−1
nY+

)
eq + op(

1

n+hY+
).

Proof of Lemma 5. We first state some results for E(w∗Y+,1n) and E(w∗Y+,2n) that are used in

the proof of the asymptotic results in Theorem 5 in Section S.2. E(w∗Y+,1n) is a q × 1 vector

while E(w∗Y+,2n) is a p× 1 vector with p = 1 in this case. By not letting n→∞, we have

E(w∗Y+,1n) = −fεY+
1

2
√
n+hY+

n+∑
i=1

K+,ix
2
+,i

σεY+,i
m

(2)
Y+

(0)h2
Y+

+ o(1),

E(w∗Y+,2n) = −
q∑

k=1

fεY+ (ck)
1

2
√
n+hY+

n+∑
i=1

K+,ix
3
+,i

σεY+,i
m

(2)
Y+

(0)h2
Y+

+ o(1).

(A.27)
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From the proof of Theorem 5, Lemmas 2 and 3 in Kai et al. (2010), the loss function becomes

Ln+(θ) =
1

2
θTSnY+θ +W ∗

Y+,n+
+ op(1),

the solution of which is,

θ̂n+ = −S−1
nY+

W ∗
Y+,n+

+ op(1),

Rewrite the above equation as

θ̂n+ + S−1
nY+

E(W ∗
Y+,n+

|X) = −S−1
nY+

[
W ∗
Y+,n+

− E(W ∗
Y+,n+

|X)
]

+ op(1), (A.28)

which is the base to prove Lemma 1 in the asymptotic case. Combining eq. (14) and

eq. (A.28), we obtain the following expression for pre-asymptotic bias

m̂Y+ −mY+ =
1

q
√
n+hY+

q∑
k=1

ûk (A.29)

= − 1

q
√
n+hY+

eTq

[
(S−1

nY+
)11 (S−1

nY+
)12

]
W ∗
Y+,n+

. (A.30)

Plug the result in eq. (A.27) into eq. (A.30), and we prove the fixed-n bias result. From

eq. (A.28), the variance of θ̂n+ becomes

Var(θ̂n+) = S−1
nY+

Var(W ∗
Y+,n+

− E(W ∗
Y+,n+

|X))S−1
nY+

→ S−1
nY+

Var(WY+,n+ − E(WY+,n+|X))S−1
nY+

= S−1
nY+

Var(WY+,n+)S−1
nY+

,

where we use the result Var(W ∗
Y+,n+

−WY+,n+|X) = op(1) from the proof of Theorem 5 in Kai

et al. (2010). Similar to the proof of Lemma 3, we can show Var(WY+,n+) = ΣnY+ , which,

together with eq. (14), proves the variance result in this lemma.

Lemma 6. Under Assumptions 1 to 6, the fixed-n covariance between m̂Y+(0) and m̂T+(0)

is given by

Cov(m̂Y+ , m̂T+|X)fixed-n =
1

q2n+

√
hY+hT+

eTq

[
(S−1

nY+
)11 (S−1

nY+
)12

]
ΣnY T+

[
(S−1

nT+
)11 (S−1

nT+
)12

]T
eq.
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Proof of Lemma 6. Similar to eq. (A.30), we have

m̂T+ −mT+ = − 1

q
√
n+hT+

eTq

[
(S−1

nT+
)11 (S−1

nT+
)12

]
W ∗
T+,n+

. (A.31)

Using the proof similar to that in Lemma 3 and the result

ΣnY T+ = E


w∗Y+,1n − E(w∗Y+,1n|X)

w∗Y+,2n − E(w∗Y+,2n|X)


w∗T+,1n − E(w∗T+,1n|X)

w∗T+,2n − E(w∗T+,2n|X)


T ,

we have that Lemma 6 holds.

Lemma 7. Under Assumptions 1 to 6, we have

Bias(τ̂sharp|X)fixed-n = Bias(m̂Y+)fixed-n − Bias(m̂Y−)fixed-n + op(h
2
Y+

+ h2
Y−),

Var(τ̂sharp|X)fixed-n = Var(m̂Y+)fixed-n + Var(m̂Y−)fixed-n + op(
1

n+hY+
+

1

n−hY−
),

where Bias(m̂Y+)fixed-n and Var(m̂Y+)fixed-n are given in Lemma 5, and Bias(m̂Y−)fixed-n and

Var(m̂Y−)fixed-n are defined analogously.

Proof of Lemma 7. The results hold by applying Lemma 5 to eq. (3).

Lemma 8. Under Assumptions 1 to 6, we have

Bias(τ̂fuzzy|X)fixed-n =
1

mT+ −mT−

[
Bias(m̂Y+)fixed-n − Bias(m̂Y−)fixed-n

]
−

mY+ −mY−[
mT+ −mT−

]2 [Bias(m̂T+)fixed-n − Bias(m̂T−)fixed-n

]
+ op(h

2
Y+

+ h2
Y− + h2

T+
+ h2

T−). (A.32)

The variance expression is given in (A.16) by substituting the results for Var(m̂Y+), Var(m̂Y−),

Var(m̂T+), Var(m̂T−), Cov(m̂Y+ , m̂T+) and Cov(m̂Y− , m̂T−) in Lemmas 5 and 6.

Proof of Lemma 8. The proof follows from (A.16) and Lemmas 5 and 6.

Let p = 2 in the following lemma.
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Lemma 9. Under Assumptions 1 to 6, the fixed-n variance of m̂
(2)
Y+

is given by

Var (m̂
(2)
Y+
|X) =

4

n+h5
Y+

eT2 (S−1
nY+

ΣnY+S
−1
nY+

)22e2 + op(
1

n+h5
Y+

).

Proof of Lemma 9. It reslts from combining Var(v̂2) = eT2 (S−1
nY+

ΣnY+S
−1
nY+

)22e2 and eq. (A.21).

Proposition 1. Under Assumptions 1 to 6, the fixed-n adjusted t-statistic for the sharp

RD is given by

tadj.
sharp, fixed-n =

τ̂sharp − B̂ias(τ̂sharp)fixed-n − τ0√
Var(τ̂sharp − B̂ias(τ̂sharp)fixed-n)fixed-n

, (A.33)

where the expression for fixed-n terms, B̂ias(τ̂sharp)fixed-n, Var(τ̂sharp− B̂ias(τ̂sharp)fixed-n)fixed-n,

are given in the proof of this proposition.

Proof of Proposition 1. The fixed-n bias term on the numerator of eq. (A.33) is given in

Lemma 7. For the denominator of eq. (A.33), recall

Var(τ̂sharp − B̂ias(τ̂sharp)fixed-n)fixed-n = Var(τ̂sharp) + Var(B̂ias(τ̂sharp)fixed-n)

− 2Cov(τ̂sharp, B̂ias(τ̂sharp)fixed-n)

= I + II + III. (A.34)

Term I is given in Lemma 5. Consider the second term II.

Var(B̂ias(τ̂sharp)fixed-n) = Var(B̂ias(m̂Y+)fixed-n) + Var(B̂ias(m̂Y−)fixed-n). (A.35)

Using Lemma 5 and omitting the small-order terms, we have

B̂ias(m̂Y+)fixed-n = DnY+,1m̂
(2)
Y+
h2
Y+
, (A.36)

B̂ias(m̂Y−)fixed-n = DnY−,1m̂
(2)
Y−
h2
Y− , (A.37)

where
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DnY+,1 (A.38)

=
1

q
eTq

[
(S−1

nY+
)11fεY+

1

2n+hY+

n+∑
i=1

K+,ix
2
+,i

σεY+,i
+ (S−1

nY+
)12

q∑
k=1

fεY+ (ck)
1

2n+hY+

n+∑
i=1

K+,ix
3
+,i

σεY+,i

]
,

DnY−,1 (A.39)

=
1

q
eTq

[
(S−1

nY−
)11fεY−

1

2n−hY−

n−∑
i=1

K−,ix
2
−,i

σεY−,i
+ (S−1

nY−
)12

q∑
k=1

fεY− (ck)
1

2n−hY−

n−∑
i=1

K−,ix
3
−,i

σεY−,i

]
.

Applying Lemma 9 to B̂ias(m̂Y+)fixed-n, B̂ias(m̂Y−)fixed-n for eq. (A.35):

II =
4

n+hY+
D2
nY+,1

eT2 (S−1
nY+

ΣnY+S
−1
nY+

)22e2 +
4

n−hY−
D2
nY−,1e

T
2 (S−1

nY−
ΣnY−S

−1
nY−

)22e2.

For term III with i.i.d. errors, we have

Cov(τ̂sharp, B̂ias(τ̂sharp)fixed-n) = Cov(m̂Y+ , B̂ias(m̂Y+)fixed-n) + Cov(m̂Y− , B̂ias(m̂Y−)fixed-n).

Using eq. (A.21) and eq. (A.29), we can show

Cov(m̂Y+ , B̂ias(m̂Y+)fixed-n) =
2DnY+,1

qn+hY+
eT2 (S−1

nY+
ΣnY+S

−1
nY+

)12,2,

Cov(m̂Y− , B̂ias(m̂Y−)fixed-n) =
2DnY−,1

qn−hY−
eT2 (S−1

nY−
ΣnY−S

−1
nY−

)12,2.

Putting everything together, the numerator in eq. (A.33) becomes

τ̂sharp − B̂ias(τ̂sharp)fixed-n = τ̂sharp −

{
1

q
eTq

[
(S−1

nY+
)11fεY+

1

2n+hY+

n+∑
i=1

K+,ix
2
+,i

σεY+,i

+ (S−1
nY+

)12

q∑
k=1

fεY+ (ck)
1

2n+hY+

n+∑
i=1

K+,ix
3
+,i

σεY+,i

]
m

(2)
Y+
h2
Y+

− 1

q
eTq

[
(S−1

nY−
)11fεY−

1

2n−hY−

n−∑
i=1

K−,ix
2
−,i

σεY−,i

+ (S−1
nY−

)12

q∑
k=1

fεY− (ck)
1

2n−hY−

n−∑
i=1

K−,ix
3
−,i

σεY−,i

]
m

(2)
Y−
h2
Y−

}
.
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The variance on the denominator is given by

Var(τ̂sharp − B̂ias(τ̂sharp)fixed-n)

=
1

n+hY+q
2
eTq

(
S−1
nY+

ΣnY+S
−1
nY+

)
eq +

1

n−hY−q
2
eTq

(
S−1
nY−

ΣnY−S
−1
nY−

)
eq

+
4

n+hY+
D2
nY+,1

eT2 (S−1
nY+

ΣnY+S
−1
nY+

)22e2 +
4

n−hY−
D2
nY−,1e

T
2 (S−1

nY−
ΣnY−S

−1
nY−

)22e2

− 2

[
2DnY+,1

qn+hY+
eT2 (S−1

nY+
ΣnY+S

−1
nY+

)12,2 +
2DnY−,1

qn−hY−
eT2 (S−1

nY−
ΣnY−S

−1
nY−

)12,2

]
.

Proposition 2. Under Assumptions 1 to 6, the fixed-n adjusted t-statistic for the fuzzy RD

is given by

tadj.
fuzzy, fixed-n =

τ̃fuzzy − B̂ias(τ̃fuzzy)fixed-n√
Var(τ̃fuzzy − B̂ias(τ̃fuzzy)fixed-n)

. (A.40)

Proof of Proposition 2. The numerator of eq. (A.40) can be obtained by applying the fixed-n

bias result in Lemma 5 to eq. (34). To compute the denominator, we again start with eq. (35).

For the fixed-n result in eq. (35), expressions for Var(m̂Y+)fixed-n and Var(m̂T+)fixed-n are

given by Lemma 5, Var(B̂ias(m̂Y+)fixed-n), Var(B̂ias(m̂T+)fixed-n), Cov(m̂Y+ , B̂ias(m̂Y+)fixed-n)

and Cov(m̂T+ , B̂ias(m̂T+)fixed-n) are derived in the proof of Proposition 1. We list the seven

terms below and omit the small-order terms.

Var(m̂Y+)fixed-n =
1

n+hY+q
2
eTq

(
S−1
nY+

ΣnY+S
−1
nY+

)
eq,

Var(m̂T+)fixed-n =
1

n+hT+q
2
eTq

(
S−1
nT+

ΣnT+S
−1
nT+

)
eq,

Var(B̂ias(m̂Y+)fixed-n) =
4

n+hY+
D2
nY+,1

eT2 (S−1
nY+

ΣnY+S
−1
nY+

)22e2,

Var(B̂ias(m̂T+)fixed-n) =
4

n+hT+
D2
nT+,1

eT2 (S−1
nT+

ΣnT+S
−1
nT+

)22e2,

Cov(m̂Y+ , m̂T+)fixed-n =
1

q2n+

√
hY+hT+

eTq

[
(S−1

nY+
)11 (S−1

nY+
)12

]
ΣnY T+

[
(S−1

nT+
)11 (S−1

nT+
)12

]T
eq,

Cov(m̂Y+ , B̂ias(m̂Y+)fixed-n) =
2DnY+,1

qn+hY+
eT2 (S−1

nY+
ΣnY+S

−1
nY+

)12,2,

Cov(m̂T+ , B̂ias(m̂T+)fixed-n) =
2DnT+,1

qn+hT+
eT2 (S−1

nT+
ΣnT+S

−1
nT+

)12,2.
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We only need to compute the remaining three terms in eq. (35). Consider the term

Cov(B̂ias(m̂Y+)fixed-n, B̂ias(m̂T+)fixed-n). Using the result in eq. (A.36) and a similar result for

B̂ias(m̂T+)fixed-n, together with the result in eq. (A.21) and a similar result for m̂
(2)
T+

, it can

be shown that

Cov(B̂ias(m̂Y+)fixed-n, B̂ias(m̂T+)fixed-n) =
4DnY+,1DnT+,1

n+

√
hY+hT+

eT2 (S−1
nY+

ΣnY T+S
−1
nT+

)22e2,

similar to the proof in Theorem 5.

Again, similar to the proof in Theorem 5, using eq. (A.21), eq. (A.36) and eq. (A.38), we

have

Cov(m̂Y+ , B̂ias(m̂T+)fixed-n) =
2DnT+,1

qn+

√
hY+hT+

eT2 (S−1
nY+

ΣnY T+S
−1
nT+

)12,2,

Cov(m̂T+ , B̂ias(m̂Y+)fixed-n) =
2DnY+,1

qn+

√
hY+hT+

eT2 (S−1
nT+

ΣnTY+S
−1
nY+

)12,2.

Substitute the above ten results into eq. (35) to obtain a fixed-n version of Var((m̂Y+ −

τ0m̂T+)−(B̂ias(m̂Y+)−τ0B̂ias(m̂T+))). The fixed-n result for Var((m̂Y−−τ0m̂T−)−(B̂ias(m̂Y−)−

τ0B̂ias(m̂T−))) can be obtained in a similar way. Adding up the two results gives the variance

on the denominator of eq. (A.40).
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S.4 Additional figures and tables

S.4.1 Figure: the bias of bias-corrected estimators

To accompany Figure 1 in the main text, this subsection contains additional Figure 3 that

compares the finite sample performance of LCQR and LLR in estimating the treatment

effect.

S.4.2 Figure: LCQR and LLR at interior and boundary points

To motivate the use of LCQR, consider the nonlinear model in Ruppert et al. (1995), Y =

sin(5πX) + 0.5ε, where ε follows a mixture normal distribution, 0.95N(0, 1) + 0.05N(0, 102),

and X follows a uniform distribution on [0, 1]. It is clear from Figure 4 that LCQR exhibits

less “flapping” for both interior and boundary points. The relative stable behavior of LCQR

on the boundary when data move away from normality is of particular importance to the

estimation and inference in RD.

S.4.3 Table: coverage probability with the rule-of-thumb bandwidth

This subsection presents Table 5 that is similar to Table 4 except that τ̂ cqr
2bw and τ̂ cqr,bc

2bw use

the rule-of-thumb bandwidth described by Equation (4.3) in Fan and Gijbels (1996). Table 5

indicates that the proposed LCQR method has some robustness to the choice of bandwidth.

S.4.4 Table: coverage probability of fixed-n LCQR with small sample

In this subsection, we decrease the sample size from n = 500 to 300 in the simulation study.

We show that the fixed-n approach indeed can improve the coverage when the sample size

is relatively small, as reported in the last row of each panel of Table 6.

S.4.5 Table: LCQR for sharp kink RD

We consider the LM model used for the simulation study, but now focus on the difference

in derivatives around the cutoff: 18.49− 2.3 = 16.19, as in a sharp kink RD design. Table 7

shows that LCQR could outperform the local polynomial regression for estimating derivatives

when data are non-normal; see e.g. DGP 2 - 5.

22



0.0157

0.0091
0.0084

0.0104

0.0088

0.0206

0.0153 0.0155 0.0157

0.0166

0.000

0.005

0.010

0.015

0.020

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

bi
as

 o
f b

ia
s−

co
rr

ec
te

d 
es

tim
at

e

LCQR

LLR

(a) Lee with heteroskedatic errors

0.0115

0.0033

3e−04

0.0052

0.0074

0.0273

0.0163

0.024

0.0179

0.0241

0.00

0.01

0.02

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

bi
as

 o
f b

ia
s−

co
rr

ec
te

d 
es

tim
at

e

LCQR

LLR

(b) LM with homoskedastic errors

0.007

0.0024

0.0061

0.0085

0.0069

0.0195

0.012

0.0176

0.0132

0.0186

0.000

0.005

0.010

0.015

0.020

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

bi
as

 o
f b

ia
s−

co
rr

ec
te

d 
es

tim
at

e

LCQR

LLR

(c) LM with heteroskedatic errors

Figure 3: Absolute value of average bias of the bias-corrected estimators, τ̂ cqr,bc
1bw and τ̂ robust,bc

1bw

for the Lee and LM models. τ̂ cqr,bc
1bw is the bias-corrected LCQR estimator. τ̂ robust,bc

1bw is the bias-
corrected LLR estimator. The result is based on 5000 replications and the true treatment
effect is 0.04 for Lee and −3.45 for LM. The DGPs are described in the paper.

23



m̂
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

−4

−2

0

2

4 LLR
LCQR
m(x)

(a) LLR versus LCQR

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

−2

−1

0

1

2

boundary 0 boundary 1

m̂
(x

)

LLR
LCQR

(b) Box plots of the estimates on the boundaries

Figure 4: Estimates of LLR and LCQR with a sample size of 400 and 400 replications. Both
methods use the same direct plug-in bandwidth in Ruppert et al. (1995). m(X) = sin(5πX).

Table 5: Coverage probability of 95% confidence intervals in Lee and LM models using the
rule-of-thumb bandwidth for LCQR

A. Lee with homoskedastic errors B. Lee with heteroskedatic errors

Estimator DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

τ̂ cqr
2bw 0.915 0.917 0.909 0.916 0.917 0.901 0.896 0.887 0.897 0.895

τ̂ cqr,bc
2bw 0.976 0.963 0.968 0.976 0.965 0.969 0.956 0.958 0.965 0.951

C. LM with homoskedastic errors D. LM with heteroskedatic errors

Estimator DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

τ̂ cqr
2bw 0.888 0.891 0.880 0.892 0.859 0.876 0.876 0.870 0.878 0.845

τ̂ cqr,bc
2bw 0.967 0.956 0.962 0.968 0.960 0.958 0.946 0.952 0.952 0.943

Notes : The reported numbers are the simulated coverage probabilities of the 95% confidence
intervals associated with different estimators. The results are based on 5000 replications with
a sample size n = 500. The s.e. and adjusted s.e. for the LCQR estimator are obtained based
on the asymptotic expressions from Theorem 1 and Theorem 3. Estimators with superscript
bc are both bias-corrected and s.e.-adjusted. The DGPs are described in the paper.
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Table 6: Coverage probability of 95% confidence intervals in Lee and LM models, n = 300

A. Lee with homoskedastic errors B. Lee with heteroskedastic errors

Estimator DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

τ̂ cqr
1bw 0.906 0.892 0.900 0.903 0.886 0.882 0.872 0.877 0.873 0.871

τ̂ cqr
2bw 0.895 0.887 0.890 0.890 0.875 0.869 0.859 0.868 0.859 0.857

τ̂ llr
1bw 0.926 0.926 0.929 0.917 0.943 0.923 0.922 0.928 0.918 0.945

τ̂ cqr,bc
1bw 0.958 0.941 0.940 0.948 0.923 0.947 0.926 0.928 0.933 0.914

τ̂ cqr,bc
2bw 0.954 0.937 0.937 0.945 0.918 0.939 0.924 0.929 0.929 0.906

τ̂ robust,bc
1bw 0.927 0.928 0.930 0.921 0.946 0.923 0.925 0.928 0.920 0.946

τ̂ cqr,bc
1bw,fixed-n 0.977 0.959 0.960 0.969 0.950 0.958 0.939 0.944 0.945 0.936

C. LM with homoskedastic errors D. LM with heteroskedastic errors

Estimator DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

τ̂ cqr
1bw 0.791 0.820 0.826 0.803 0.832 0.613 0.668 0.700 0.640 0.728

τ̂ cqr
2bw 0.805 0.839 0.841 0.815 0.837 0.622 0.689 0.706 0.657 0.732

τ̂ llr
1bw 0.907 0.917 0.921 0.905 0.936 0.899 0.905 0.914 0.896 0.926

τ̂ cqr,bc
1bw 0.959 0.941 0.939 0.946 0.923 0.941 0.928 0.927 0.931 0.910

τ̂ cqr,bc
2bw 0.953 0.936 0.936 0.944 0.915 0.935 0.924 0.924 0.928 0.908

τ̂ robust, bc
1bw 0.926 0.930 0.934 0.923 0.946 0.927 0.930 0.933 0.923 0.946

τ̂ cqr,bc
1bw,fixed-n 0.975 0.956 0.959 0.966 0.951 0.956 0.939 0.942 0.946 0.938

Notes : The reported numbers are the simulated coverage probabilities of the 95% confidence
intervals associated with different estimators. The results are based on 5000 replications with
a sample size n = 300. The s.e. and adjusted s.e. for the LCQR estimator are obtained based
on the asymptotic expressions from Theorem 1 and Theorem 3, except for τ̂ cqr,bc

1bw,fixed-n where
fixed-n approximations are used. Estimators with superscript bc are both bias-corrected and
s.e.-adjusted. The result of τ̂ robust,bc

1bw is based on the CE-optimal bandwidth. The DGPs are
described in the paper.
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Table 7: LCQR for sharp kink RD

LM with τsharp kink = 16.19

Homoskedastic errors Heteroskedastic errors

Estimator DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

LCQR 15.91 16.14 15.89 16.12 16.13 15.93 16.09 15.91 16.07 16.08

(s.e.) (10.94) (12.90) (13.83) (11.47) (11.87) (6.27) (7.35) (7.88) (6.57) (6.79)

LPR 15.93 16.13 15.69 16.06 15.84 15.96 16.07 15.82 16.03 15.90

(s.e.) (10.47) (14.77) (18.11) (12.25) (25.42) (6.10) (8.61) (10.53) (7.13) (14.80)

Notes : The reported numbers are the simulated averages and standard errors (in brackets)
of the associated estimators. The results are based on 5000 replications with a sample size
n = 500. The DGPs are as described in the paper for the LM model, yet the focus here is on
the difference in first derivatives. For both LCQR and LPR (local polynomial regression), we
consider the 3rd-order polynomial with the fixed bandwidth = 0.3 and the triangular kernel.
The R code to replicate this table can be downloaded from https://xhuang.netlify.app/

post/r-code-to-replicate-rd-tables/.

S.4.6 Table: simulation results for sharp RD with covariates

In this subsection we use the same DGP as for Table SA-1 in Calonico et al. (2019). We

briefly describe the DGP below. Let Zi be the covariate. Consider a sample size of n = 1000

and 5000 replications. For each i = 1, · · · , n, we have

Yi = my,j(Xi, Zi) + εy,i, Zi = mz(Xi) + εz,i, Xi ∼ 2× Beta(2, 4)− 1

with εy,i
εz,i

 ∼ N(0,Σj), Σj =

 σ2
y ρjσyσz

ρjσyσz σ2
z


and j = 1, 2, 3, 4, corresponding to the following four models.

• Model 1 has no covariate and is the same as eq. (45)

my,1(Xi, Zi) =

0.48 + 1.27Xi + 7.18X2
i + 20.21X3

i + 21.54X4
i + 7.33X5

i if Xi < 0,

0.52 + 0.84Xi − 3.00X2
i + 7.99X3

i − 9.01X4
i + 3.56X5

i if Xi ≥ 0,

and let σy = 0.1295 and σz = 0.1353.
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• Model 2 adds one covariate, and let ρ = 0.2692,

my,2(Xi, Zi) =

0.36 + 0.96Xi + 5.47X2
i + 15.28X3

i + 15.87X4
i + 5.14X5

i + 0.22Zi if Xi < 0,

0.38 + 0.62Xi − 2.84X2
i + 8.42X3

i − 10.24X4
i + 4.31X5

i + 0.28Zi if Xi ≥ 0,

mz(Xi) =

0.49 + 1.06Xi + 5.74X2
i + 17.14X3

i + 19.75X4
i + 7.47X5

i if Xi < 0,

0.49 + 0.61Xi + 0.23X2
i − 3.46X3

i + 6.43X4
i − 3.48X5

i if Xi ≥ 0.

• Model 3 is the same as Model 2 except for ρ = 0.

• Model 4 is the same as Model 2 except for ρ = 2× 0.2692.

The true value for τ is 0.04 in Model 1 and approximately 0.05 in Models 2-4. Table 8

reports
√

MSE, bias as a percentage of τ and empirical coverage (EC) for the confidence

intervals based on τ̂ and τ̃ . The EC for τ̂ is obtained using bias-corrected, s.e.-adjusted t-

statistic in Theorem 3; the EC for τ̃ is obtained using the same t-statistic for τ̂ but replacing

τ̂ with τ̃ on the numerator. See also Section 4.3 for a discussion of this ad hoc method for

τ̃ . The last column in Table 8 gives reasonably good coverage probabilities, suggesting the

ad hoc approach described in Section 4.3 works well under the considered DGP. However,

more simulation studies are needed to investigate its performance.

Table 8: Simulation results using a single bandwidth

τ̂ in eq. (42) τ̃ in eq. (43)
√

MSE Bias (%) EC
√

MSE Bias (%) EC

Model 1 0.046 0.369 0.953 0.046 0.368 0.952

Model 2 0.049 0.256 0.942 0.043 0.178 0.968

Model 3 0.047 0.275 0.938 0.046 0.231 0.944

Model 4 0.053 0.275 0.949 0.038 0.139 0.980

Notes : We use a single bandwidth h = 0.15 for estimation, bias-correction,
s.e.-adjustment in all four models. This number is chosen to mimic the band-
width used in the simulation section in Calonico et al. (2019). All num-
bers in the table are based on 5000 replications. The R code to replicate
this table can be downloaded from https://xhuang.netlify.app/post/

r-code-to-replicate-rd-tables/.
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